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Abstract: C6F12O has been introduced as the potential alternative gas to SF6 because of its excellent
insulation properties and great eco-friendly performance. Considering that C6F12O may react with
the internal materials of switchgears in practical applications, its compatibility with metal materials
must be tested to evaluate its long-term application possibilities. In this work, the compatibility of
C6F12O–N2 gas mixtures with aluminum and copper was tested at different temperatures by setting
up a heat-aging reaction platform between the gas and each metal. The metal surface morphology
and gas composition before and after the reaction were compared and analyzed. The results show
that the surface color of the copper sheet changed considerably, and the corrosion degree of the
surface deepened with the increase of temperature. The decomposition of C6F12O was also promoted.
In contrast, aluminum did not react severely with the gas mixture. The compatibility of the gas
mixture with aluminum was generally better than that of copper.
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1. Introduction

SF6 has been widely used in the power industry, especially in high-voltage (HV) and
medium-voltage (MV) gas-insulated switchgears (GIS), since the early 1980s due to its excellent
technical performance and small footprint [1,2]. Approximately 80% of the global production of SF6 is
used in HV and MV gas-insulated equipment [3,4]. However, SF6 has a high global warming potential
(GWP) of 23,500 and a long atmospheric lifetime of 3200 years [5,6]. These characteristics indicate that
the unrestricted emission of SF6 would cause great harm to the atmospheric environment. Actually,
the atmospheric content of SF6 increases rapidly. The global annual mean concentration of SF6 in
2011 was 7.29 ppt, which is 1.65 ppt higher than the value in 2005 [7]. Thus, the Kyoto Protocol in
1997 and the Paris Agreement in 2015 were proposed to implement measures for controlling SF6

growth [8,9], and several countries have begun to take action. For example, Slovenia and Spain have
levied SF6 emission taxes [10]. Therefore, the use of SF6 should be urgently reduced or limited, and an
environmental-friendly gas must be identified to replace SF6.

The gases currently used in switchgears mainly include CO2, N2, dry air, SF6, and their gas
mixtures. However, due to the limited insulation strength of traditional gases (up to approximately
30%–40% of that of SF6) [11], the filling pressure or dimension must be increased when these gases are
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used as the insulating or arc extinguishing medium in the equipment. This condition entails security
risks and increased equipment cost [12].

In addition to the traditional gases mentioned above, potential alternatives to SF6 that have been
considered in recent years include perfluorocarbons (PFCs), trifluoroiodomethane (CF3I), HFO-1234zeE,
fluoronitrile (C4F7N), and fluoroketones (C5-PFK and C6-PFK). The GWP of PFCs is high (e.g., c-C4F8

and C2F6 have GWPs of 8700 and 12,200, respectively); thus, there is no significant reduction in
GWP [13–15]. CF3I is classified as a type 3 mutagen and presents disadvantages such as iodine I2

(acute toxicity) precipitation after repeated discharges. Therefore, it is not conducive for long-term
safe equipment operation [16,17]. HFO-1234zeE will precipitate carbon deposits on the solid after a
flashover and have a risk of flammability [3,18]. C4F7N demonstrates excellent insulation performance,
but its toxicity is relatively high, and the risks of large-scale engineering application still require further
study [19–21]. The application prospect of fluoroketones in electrical equipment has been widely
optimistic in the past few years, and related research has mainly focused on C5-PFK and C6-PFK
gas mixtures. Table 1 shows a comparison of several of the main characteristics of C5-PFK, C6-PFK,
and SF6 [22–25]. It can be seen that C6-PFK is less toxic than C5-PFK.

Table 1. Comparison of C5-PFK, C6-PFK, and SF6 GWP: global warming potential.

Name C5-PFK C6-PFK SF6

Chemical formula C5F10O C6F12O SF6
GWP <1 <1 23500

Atmospheric lifetime (years) 0.04 0.019 3200
Ozone depletion potential 0 0 0

Boiling point at 0.1 MPa (◦C) 24 49.2 −64
Relative dielectric strength to SF6 2 2.5 1

Flammability non-flammable non-flammable non-flammable
Toxicity (LC50, ppmv) >20000 >100000 >100000

Currently, C6F12O is only used as a fire-extinguishing agent and covering gas for magnesium
treatment as well as two-phase immersion cooling systems, which is safe to use and relatively low
in cost [26]. Furthermore, research on C6F12O as a gas-insulating medium has just started [27–30].
However, due to its high boiling point, C6F12O cannot be used as an insulating medium alone; that is,
it must be mixed with a buffer gas, such as N2 or CO2. Moreover, since the dielectric strength of pure
C6-PFK can reach about 2.5 times that of SF6, a gas mixture with a small percentage of C6-PFK can also
achieve a relatively high insulation strength. Relevant results demonstrate that C6F12O gas mixtures
have the potential to be used in MV switchgears, such as cubicle gas-insulated switchgears (C-GIS) [31].

In addition, in-depth studies of the long-term compatibility between gas-insulating medium and
materials must be conducted. Given that C6F12O gas is not as inert as SF6, chemical reactions might
exist between the gas components and materials, resulting in changes in the properties of materials
and jeopardizing the normal operation of gas-insulated equipment. Thus, material compatibility must
be tested before engineering application to avoid any negative effect of the interaction between the
materials and the C6F12O–N2 gas mixture.

In this study, considering that the advantage of CO2 is its arc-extinguishing ability and that
the C6F12O gas mixtures are mainly used in non-arcing applications, the N2 with an extremely low
boiling point was chosen as the carrier gas to reduce the liquefaction temperature of the gas mixture.
The compatibility of C6F12O–N2 gas mixtures with copper and aluminum, which are normally used
in medium-voltage switchgears (e.g., C-GIS) as conductors, was studied by aging tests. The surface
morphology of the metals and the composition of the gas mixtures after thermal aging were determined
and analyzed via scanning electron microscopy (SEM) and gas chromatography-mass spectrometry
(GCMS). The interaction mechanism between the gas mixture and metallic surface was also discussed.
Relevant results could provide guidance for the engineering application of C6F12O–N2 gas mixtures.
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2. Experimental Device and Methods

The experimental device, experimental methods, and analytical methods used in this paper are
described in detail as follows.

2.1. Experimental Device

The schematic of the compatibility test device is shown in Figure 1.
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Figure 1. Schematic of the compatibility test device.

The test device mainly consisted of a gas chamber, heating device, temperature feedback unit, and
control system. The heating device was composed of a heating element and a metal sleeve. The metal
sleeve was used to expand the contact area with the C6F12O–N2 gas mixture, and the outer surface of
the metal sleeve served as the reaction interface with the gas mixture. The metal sleeve and heating
element were kept in close contact to achieve even heat conduction. Moreover, two 100 mm × 5 mm ×
0.2 mm metal sheets were bundled on the metal sleeve to participate in the thermal aging test. The metal
sleeves and sheets were composed of copper or aluminum according to the experimental requirements.
The feedback unit detected the surface temperature of the metal sleeve through a temperature sensor
(K-type thermocouple) mounted on the metal sleeve surface. The temperature control system adjusted
the output power of the heating element to ensure that the surface temperature of the metal sleeve
remained at the set value during the tests. The main body and the upper cover of the gas chamber
are welded and machined with 304 stainless steel (due to its great corrosion resistance performance),
as well as polished inside and outside. The chamber can withstand a pressure of 0.7 MPa, and its
volume is about 2 L.

2.2. Experimental and Analytical Methods

Prior to the experiment, the gas chamber, metal sleeve, and metal sheet were carefully cleaned
using absolute alcohol, and the metal sheet was fixed to the metal sleeve. The gas chamber was
vacuumed and then filled with N2 three times to dispel the gas impurity. Finally, the gas mixture was
charged into the gas chamber. The volume fraction was determined by a partial pressure ratio based on
the Dalton partial pressure law. When inflating, the C6F12O was charged first, followed by the buffer
gas. The N2 is supplied by Wuhan Newred Special Gas Co., Ltd. with a purity of 99.999%. The C6F12O
gas is supplied by Zhengzhou Alfachem Co., Ltd. with a purity of 99%.

Given the working pressure and liquefaction temperature requirements (−5 ◦C) of MV
switchgears [32], the total gas pressure and content of C6F12O in the experiment were fixed to 0.2 MPa
and 5%, respectively. The breakdown voltage of 5% C6F12O–95% N2 gas mixture at 0.2 MPa is about
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1.05 times that of 10% SF6–90% N2 [29]. Considering the temperature rise effect of the current-carrying
metal inside the equipment under the rated working condition and the local overheating faults caused
by the poor contact of the contacts, the experimental temperature was set to 150 ◦C, 200 ◦C, and 250 ◦C.
Each set of experiments was heated for 8 h.

The gas in the chamber was collected for GC-MS analysis after each group of tests. When the
gas is scanned by GC-MS, the range of the mass-to-charge ratios (m/z) is set to 45–350 to remove the
damage of the detector by the oversaturation of N2 and the interference of H2O and CO2 in the air.
The surface morphology of the metal sheets before and after thermal aging was observed and recorded
with optical and scanning electron microscopes.

3. Results of Compatibility between C6F12O–N2 Gas Mixture and Cooper

In order to comprehensively analyze the compatibility between the C6F12O–N2 gas mixture and
copper, the surface morphology of the copper sheets and the gas composition before and after the
reaction were analyzed by optical microscope, SEM.

3.1. Surface Morphology

Figure 2 shows surface morphology photos of the copper sheet before and after thermal aging for
8 h.

Energies 2019, 12, x FOR PEER REVIEW 4 of 11 

 

damage of the detector by the oversaturation of N2 and the interference of H2O and CO2 in the air. 
The surface morphology of the metal sheets before and after thermal aging was observed and 
recorded with optical and scanning electron microscopes. 

3. Results of Compatibility between C6F12O–N2 Gas Mixture and Cooper 

In order to comprehensively analyze the compatibility between the C6F12O–N2 gas mixture and 
copper, the surface morphology of the copper sheets and the gas composition before and after the 
reaction were analyzed by optical microscope, SEM. 

3.1. Surface Morphology 

Figure 2 shows surface morphology photos of the copper sheet before and after thermal aging 
for 8 h. 

                (a)                               (b)                               (c)                                (d) 
 

Figure 2. Surface morphology photos of the copper sheet before and after thermal aging. (a) Before 
the test; (b) 150 °C; (c) 200 °C; (d) 250 °C. 

It can be found that several areas of the copper sheet changed to red and green after an 8 h test 
at 150 °C. The surface color of the copper sheet deepened as the temperature increased. The copper 
surface turned bright orange at 200 °C, and most of the area turned purple–red at 250 °C, indicating 
that a significant chemical reaction occurred between the copper and the gas mixture. Meanwhile, 
the optical microscope showed that the grain structure on the copper sheet gradually became less 
clear as the temperature increased. These phenomena indicate that the material compatibility 
between copper and the C6F12O–N2 gas mixture was not very good, and the reactions resulted in a 
significant surface change. 

In order to facilitate comparative analysis with SF6, the copper sheets exposed to a 220 °C SF6 
environment for 8 h were also tested, and it was found that there is no significant change in the color 
of the copper surface. The relevant results confirm that the compatibility between copper and SF6 is 
superior to that between copper and the C6F12O–N2 gas mixture. 

Actually, when the C6F12O gas mixture is in contact with the heated copper surface, the thermal 
motion of C6F12O molecules and Cu atoms is intensified, which causes the intensification of the 
chemical bond vibration inside the molecule and the deterioration of the structure stability, 
eventually leading to a chemical reaction between the gas molecule and the heated copper surface. 

Figure 2. Surface morphology photos of the copper sheet before and after thermal aging. (a) Before the
test; (b) 150 ◦C; (c) 200 ◦C; (d) 250 ◦C.

It can be found that several areas of the copper sheet changed to red and green after an 8 h test
at 150 ◦C. The surface color of the copper sheet deepened as the temperature increased. The copper
surface turned bright orange at 200 ◦C, and most of the area turned purple–red at 250 ◦C, indicating
that a significant chemical reaction occurred between the copper and the gas mixture. Meanwhile,
the optical microscope showed that the grain structure on the copper sheet gradually became less
clear as the temperature increased. These phenomena indicate that the material compatibility between
copper and the C6F12O–N2 gas mixture was not very good, and the reactions resulted in a significant
surface change.

In order to facilitate comparative analysis with SF6, the copper sheets exposed to a 220 ◦C SF6

environment for 8 h were also tested, and it was found that there is no significant change in the color
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of the copper surface. The relevant results confirm that the compatibility between copper and SF6 is
superior to that between copper and the C6F12O–N2 gas mixture.

Actually, when the C6F12O gas mixture is in contact with the heated copper surface, the thermal
motion of C6F12O molecules and Cu atoms is intensified, which causes the intensification of the
chemical bond vibration inside the molecule and the deterioration of the structure stability, eventually
leading to a chemical reaction between the gas molecule and the heated copper surface. As the
temperature increases, the reaction rate is further accelerated, causing the decomposition of gas
molecules and severe corrosion of the copper surface.

3.2. SEM Analysis

SEM was used to observe the surface morphology and further analyze the microscopic morphology
of the copper sheet. The observation results are shown in Figure 3. The surface shape of the copper
sheet before the reaction was clear, and the structure was flat and compact. Fewer corrosion spots
were observed at 150 ◦C, and the texture was not damaged. As the temperature increased further,
the surface of the copper sheet became uneven, indicating that serious corrosion occurs at this stage.
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magnification. (a) Before the test; (b) 150 ◦C; (c) 200 ◦C; and (d) 250 ◦C.

3.3. GC-MS Analysis

Qualitative analysis of the gas mixture after the aging test was performed in accordance with the
National Institute of Standards and Technology’s (NIST 14.0) standard chromatographic database [33].
Given that the gas composition after the experiment was unknown, the gas could only be qualitatively
analyzed using the SCAN mode. Figure 4 shows the gas chromatogram of the C6F12O–N2 gas mixtures
before and after the experiment.

It can be seen from Figure 4 that the C6F12O–N2 gas mixture decomposed at 150 ◦C, and the main
decomposition products included C4F8O, C3F6, and C2F5H. With the increase in temperature, the peak
areas of C3F6 and C2F5H increased considerably. This result indicates that the macromolecular product
decomposed further with the increase in temperature. The production of C2F5H may be related to
trace moisture.
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Figure 4. Gas chromatography of the C6F12O–N2 gas mixtures.

According to the surface morphology change of the copper sheet and the composition change
of the C6F12O–N2 gas mixtures before and after the reaction, the C6F12O–N2 gas mixtures interacted
with the copper sheet at 150 ◦C and above, and the surface structure of the copper sheet exhibited
certain corrosion. The gas mixtures decomposed to produce decomposition products, such as C2F5H
and C3F6. The compatibility of the C6F12O–N2 gas mixtures with copper was not very good, and the
mutual reaction between them may pose a potential threat to gas-insulated equipment.

4. Results of Compatibility between C6F12O–N2 Gas Mixtures and Aluminum

Similarly, the results of analysis by optical microscope, SEM, and GC-MS before and after the
reaction are as follows.

4.1. Surface Morphology

Figure 5 shows surface morphology photos of the aluminum sheet before and after the
high-temperature 8 h aging test.
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After the high-temperature reaction of the aluminum sheet and C6F12O–N2 gas mixture, the surface
color of the aluminum did not change considerably. The aluminum surface stayed white and silver,
and the gloss was bright. The main reason for this phenomenon is that aluminum is more active and
easily oxidized in air to form a dense Al2O3 protective film, which is extremely resistant to corrosion
and therefore forms an effective protection of the internal aluminum.

The results of optical microscopy show that the surface grain structure of the aluminum sheet was
maintained with the increasing temperature, and no corrosion changes occurred. These phenomena
indicate that the material compatibility between aluminum and the gas mixtures was great, and the
reaction between the gas mixtures and aluminum sheet did not change the surface of the sheet.

4.2. SEM Analysis

Figure 6 shows the SEM of the aluminum sheet before and after tests. The surface morphology
of the aluminum was flat and tight, and no change was observed at all temperature conditions.
No corrosion spots were observed.
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4.3. GC-MS Analysis

Figure 7 shows the gas chromatogram of the C6F12O–N2 gas mixtures after heat aging with
aluminum for 8 h at different temperatures.
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Figure 7. Gas chromatography of the C6F12O–N2 gas mixtures after thermal aging.

The chromatogram results show that the decomposition components of the C6F12O–N2 gas
mixture that interacted with aluminum were similar to those of copper. C2F5H, C3F6, and C4F8O
were detected after the test. These results, together with the characterization results in Section 3.2,
indicate that the surface structure of the aluminum sheet was not destroyed, so the appearance of this
decomposition product is presumed to be a slight decomposition of C6F12O gas after heating.

Overall, the C6F12O–N2 gas mixture could interact with copper and aluminum at temperatures
higher than 150 ◦C. The corrosion degree of the copper sheet was more serious than that of aluminum.
The compatibility of the C6F12O–N2 gas mixture with aluminum is better than that of copper.

Thus, it is necessary to consider the reaction of the C6F12O–N2 gas mixture with copper materials
used inside gas-insulated switchgears for engineering application, which would lead to internal
insulation failure of the electrical equipment and pose safety hazards during normal long-term
operation of the equipment.

5. Discussion

In fact, the reason why the material compatibility of the C6F12O–N2 gas mixtures with aluminum
was better than with copper may be attributed to the difference in the activity of these two metal surfaces.

As we know, aluminum is more active and easily oxidized in air to form a dense Al2O3 protective
film, which is extremely resistant to corrosion and therefore forms an effective protection of the internal
aluminum. The existence of Al2O3 could effectively inhibit the interaction between aluminum and
C6F12O–N2 gas mixtures.

In contrast, the chemical reactivity of copper is quite strong. When a C6F12O gas molecule interacts
with the copper surface, the interaction between the gas molecule and the metal surface occurs along
with charge transfer process. The structure of the gas molecule will change and the weaker chemical
bonds in the C6F12O molecule will dissociate to form some particles. Finally, the reaction between the
particles could result in the formation of gaseous by-products.

The possible reactions between the metal surface and C6F12O can be summarized as shown in
Figure 8.
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6. Conclusions

In this work, the material compatibility of a potential SF6 substitute gas, C6F12O, with copper
and aluminum was studied. Thermal aging test results at different temperatures were analyzed.
The compatibility of the gas mixtures with copper and aluminum was evaluated by comparing the
surface morphology of the metal materials and the composition of the C6F12O–N2 gas mixture before
and after the reaction. The following relevant conclusions were obtained.

(1) The C6F12O–N2 gas mixture could react with hot copper higher than 150 ◦C. The surface
structure of the copper sheet was corroded to some extent, the color change was evident, and the gas
mixture decomposed to produce by-products including C2F5H, C3F6, and C4F8O.

(2) The interaction of the C6F12O–N2 gas mixtures with aluminum under high-temperature
conditions did not cause corrosion of aluminum surface, while the gas mixture also decomposed to
produce C3F6, C2F5H, and C4F8O.

(3) The compatibility of the C6F12O–N2 gas mixture with aluminum was better than that of copper.
It is necessary to consider the reaction of the gas mixture with the copper used inside gas-insulated
switchgears to avoid potential hazards during the normal long-term operation of the equipment.
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