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Abstract: This article addresses the concept of a compound attack detection mechanism, that links
estimation-based and set-theoretic methods, and is mainly focused on the disclosure of intermittent
data corruption cyber-attacks. The detection mechanism is developed as a security enhancing tool for
the load-frequency control loop of a networked power system that consists of several interconnected
control areas. The dynamics of the power network are derived in observable form in the discrete-time
domain, considering that an adversary corrupts the frequency measurements of certain control areas
by means of a bias injection cyber-attack. Simulations indicate that an estimation-based detector is
unable to discern an intermittent attack, especially when the latter one occurs at the same time as
changes in the power load. The detector can be improved by exploiting the safe operation constraints
imposed on the state variables of the system. It is shown that the disclosure of intermittent data
corruption cyber-attacks in the presence of unknown power load changes is guaranteed only when
the estimation-based detector is combined with its set-theoretic counterpart. To this end, a robust
invariant set for the networked power system is computed and an alarm is triggered whenever the
state vector exits this set. Simulations indicate that the above detectors can operate jointly in terms of
a hybrid scheme, which enhances their detection capabilities.

Keywords: cyber-attacks; load-frequency control; power systems; set-theoretic methods; state
estimation

1. Introduction

Modern interconnected power systems often transmit their data through unprotected wireless
channels [1]. Vulnerabilities of this kind can be exploited by cyber-attackers, that aim to disrupt the
normal operation of the power network [2]. Common scenarios concern replay attacks [3], where
the adversary records measurements for a certain period of time and then resends them, therefore
replacing the real ones, denial of service attacks [4–6], where the adversary jams channels that transmit
control commands or sensor measurements, and data corruption cyber-attacks, where the adversary
injects system data with biased attack signals [7–9]. Stealthy attacks, that cause system malfunctions,
while remaining undetected in the process, have also been extensively studied in [10–13].

Security-enhancing techniques should prevent, mitigate and tolerate cyber-attacks on electric
power grids [14]. In [15,16], a generic framework is developed for the detection and identification of
different types of cyber-attacks in networked power systems based on state estimation and monitoring
methods. In [17], the number of the distributed estimators is reduced, while maintaining the coverage
of the entire network, whereas in [18], the authors address the optimal placing of estimation devices in
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the power network in order to maximize their utility and increase the security of the system in the
case of data corruption cyber-attacks. Finally, in [19,20], the authors develop attack detectors using
control-theoretic methods, that involve state estimation through Kalman filtering.

The load-frequency control loop of a networked power system is particularly interesting from a
security point of view. This loop depends on an extended digital layer that connects sensors, actuators
and physical entities through generally unprotected channels and is designed to operate without
human intervention. In addition, this loop is extremely sensitive in the discrepancies of the electrical
frequency. Indeed, frequency fluctuations that are caused either by a power load change or by an
attack in one control area, affect all other areas, thus jeopardizing the stability of the overall network.
Attacks on this loop were studied in [21], where the authors quantify the impact of a cyber-attack
on the automatic generation control unit of a two-area power system through a reachability analysis.
In this scenario, an attacker replaces the control signal of one control area and causes the abnormal
behavior of the overall system. In [22], the authors study a similar scenario and exploit Monte Carlo
optimization in order to design an attack signal, which remains robust with respect to the potential
parametric uncertainties of the system model.

The security of the load-frequency control loop is addressed in [23], where the authors develop an
overlapping networked control architecture, which is then recast into leader-follower configurations,
with a time-varying hierarchy. Set-theoretic concepts come also into play, by means of a reachability
analysis, that allows for the calculation of one-step ahead controllable sets, based on the input and
state constraints of the system. In [24], this framework is tested in the case of data loss cyber-attacks
and is used to successfully isolate the control areas under attack.

In this work, we examine a networked power system, where each individual control area is subject
to unknown power load changes due to the demand of the consumers. We assume that an adversary
can corrupt the frequency measurements, which are transmitted from the sensors to the automatic
generation control units, using intermittent bias injected attack signals. The proposed attack scenario
is realistic and highly effective. The adversary does not need any knowledge about the model of the
system or the detection mechanism and can cause discrepancies on the electrical frequency, which lead
to large fluctuations on the tie line power exchanged between the neighboring control areas. These
fluctuations are dangerous since they stress the tie line to its thermal limit and can cause the coupled
generators to desynchronize. The primary objective is to establish a mathematical link between the
classical estimation-based attack detectors [25] and their recently introduced set-theoretic counterparts,
proposed in [26,27]. The idea is to combine the best traits of the two methods and develop a hybrid
detector, which performs better than each detector alone in the case of intermittent attacks.

An estimation-based detector decides the existence of an attacker based on the value of the
estimation residue. If this residue obtains a steady-state value larger than a critical threshold, then an
alarm must be activated [25]. It is shown that an estimation-based detector is unable to disclose an
intermittent attack, in a guaranteed manner, especially when this attack occurs at the same time with
an unknown power load change. This happens because an intermittent attack forces the state vector to
oscillate. In this case, the residue is unable to obtain a steady-state value and therefore the alarm signal
cannot be activated. An estimation-based detector can also hint the existence of an attacker, when the
discrepancies of the estimation residue during the transients are highly intense. However, in this case
it is difficult to discern an attack from a load change and false alarms may also occur.

On the other hand, a set-theoretic attack detector relies on the extraction of suitable robust
invariant sets, which stem from safety considerations and are used as sets of alarm constraints [26,27].
A set is said to be robust invariant with respect to the dynamics of a system, when the state trajectories
emanating from every initial condition that belongs to this set remain within the same set for every
future time instant and for every admissible disturbance sequence [28]. The concept of a set-theoretic
detector is to activate an alarm signal whenever the state vector exits the robust invariant set, either
during the transient response or during the steady-state phase of the system. It is shown that the only
way to quantify the discrepancies of the estimation residue is to exploit the safety constraints of the
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state variables and resort to set-theoretic methods. In addition, we prove that we are mathematically
inclined to determine the robust invariant set based not on the dynamics of the estimator but based on
the dynamics of the system itself, inevitably resorting to the detectors developed in [26,27].

Our analysis demonstrates that each detection method complements the other. The two methods
are integrated into one via a three-modal system operation, where the individual modes indicate
normal operation, alert state or alarm condition, according to the value of the estimation residue and
the state vector at every time instant. Thus, emerges the notion of hybrid detection. We highlight
that the detection mechanisms that we develop in this article aims to disclose a particular type of
cyber-attack. Specifically, the objective of the proposed detectors is to improve the security of the
load-frequency control loop of a networked power system against data corruption cyber-attacks.
For evaluation purposes, we chose to examine the case where the adversary corrupts the frequency
sensor measurements with bias injected attack signals.

This article is organized as follows. In Section 2, we establish the model of a typical power network
subject to an intermittent data corruption cyber-attack. In Section 3, we develop an estimation-based
detector and we also determine the corresponding steady-state critical threshold. In Section 4,
we review the basic aspects of the set-theoretic detectors, indicating the need for a hybrid detection
scheme. Finally, in Section 5, we present simulation results for the test case of a two-area power
system and in Section 6 we provide some concluding remarks.

Regarding notations, the symbols Om×n and In×n are used for the zero and the identity matrix of
appropriate dimensions respectively, while all inequalities involving matrices or vectors are assumed
to be componentwise.

2. System Description

The algorithms used for the calculation of the robust invariant sets, and thus for the design of
the set-theoretic detectors, involve discrete-time systems [26,27]. In this work, we aim to develop an
estimation-based detector and then combine it with a set-theoretic one. We adopt a common modeling
basis for both detectors, by remaining consistent with the discrete-time approach introduced in [26,27].
However, our original framework requires certain modifications in order to yield an observable state
space model of the power grid.

2.1. Interconnected Control Area Model

Let us consider the generic interconnected control area model depicted in Figure 1. According
to [29,30] a state space model that describes the evolution of the system in the continuous-time
domain is

Sc
i : ẋi(t) = Ac,ixi(t) + Bc,iuc,i(t) + Dc,i∆PL,i(t) + Ec,i∆Ptie,i(t), xi(0) = xi,0,

yi(t) = Cixi(t),

where the index i ∈ I = {1, 2, ..., N} denotes the i-th area, and t ∈ R+ is the time variable.
The state vector xi(t) ∈ R2 is defined as

xi(t) = [∆ fi(t) ∆PG,i(t)]
> ,

where ∆ fi(t) is the deviation of the electrical frequency and ∆PG,i(t) is the deviation of the mechanical
power, which is produced in the output of the turbine. In order to simplify our analysis, we adopt the
common assumption that the mechanical power provided to the rotor shaft is equal to the electrical
power produced by the generator. We highlight that the system output yi(t) ∈ R coincides with ∆ fi,
therefore we have Ci = [1 0] and yi(t) = ∆ fi(t).
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Figure 1. Load-frequency control loop of a control area under a bias injection cyber-attack on the
frequency measurements. The speed governor dynamics are omitted. Model used for estimator design.

The system is driven by two individual control actions, namely the primary frequency control
∆Pf ,i(t) and the automatic generation control ∆Pc,i(t). The control input uc,i(t) ∈ R is defined as

uc,i(t) = ∆Pc,i(t) + ∆Pf ,i(t)

and is subject to a saturation hard constraint of the form

|uc,i(t)| ≤ ui,max, ∀t ≥ 0,

where the boundary ui,max ∈ R∗+.
The signal ∆PL,i(t) ∈ R encapsulates an unknown but bounded disturbance, that represents in

aggregated terms the deviation of the power load, due to the time-varying demand of the consumers,
and obeys the constraint

|∆PL,i(t)| ≤ ∆PL,i,max, ∀t ≥ 0,

where the boundary ∆PL,i,max ∈ R∗+.
The signal ∆Ptie,i(t) ∈ R encapsulates the deviation of the cumulative electrical power exchanged

between the i-th control area and the rest of the network through the tie line, whenever a power load
change takes place. The dynamics of this signal will be presented later.

The matrix Ac,i ∈ R2×2 is defined as

Ac,i =

[
−1/Tp,i Kp,i/Tp,i

0 −1/TT,i

]

and the matrices Bc,i, Dc,i, Ec,i ∈ R2×1 are defined as

Bc,i =

[
0

KT,i/TT,i

]
, Dc,i = Ec,i =

[
−Kp,i/Tp,i

0

]
.

If the balance between the produced and the consumed power is not ensured after each power
load change, then the ensuing frequency and tie line power deviations can damage the synchronous
generators. The regulation of these quantities is performed by two control loops. The first loop closes
over the speed governor, which performs the primary frequency control action and is implemented as
a proportional control law defined as

∆Pf ,i(t) = −
1
Ri

yi(t), (1)
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where Ri is the speed droop parameter. The second loop closes over the automatic generation control
unit and eliminates any remaining steady-state frequency errors through the integral control law [31]

∆Pc,i(t) = KI,i

∫ t

0
ACEi(τ)dτ. (2)

The quantity ACEi(t) represents the i-th area control error and is given as

ACEi(t) =
(

∆Pre f
tie,i − ∆Ptie,i(t)

)
+ Bi

(
∆ f re f

i − ỹi(t)
)

. (3)

The parameters ∆Pre f
tie,i = ∆ f re f

i = 0 stand for the tie line power deviation and the frequency
deviation reference signals respectively, whereas the gain Bi = 1/Ri. The signal ỹi(t) is defined as

ỹi(t) = yi(t)− αiσi(t), (4)

where αi ∈ R is the attack signal that falsifies the frequency measurements, which are forwarded to
the automatic generation control unit, and σi : R+ → {0, 1} is the switching logic that drives the i-th
attack pattern. An explicit mathematical expression of σi[k], describing an intermittent attack, will be
derived later. The control ∆Pf ,i is unaffected by the cyber-attack, since it is mechanically implemented.

In order to extract an equivalent discrete-time model of each individual control area, first we have
to calculate the eigenvalues of all the matrices Ac,i and then select a sampling frequency fs at least
ten times greater than the frequency that corresponds to the fastest eigenvalue of the grid. We apply
the zero-order hold method and we obtain the discrete-time state space representation of a generic
interconnected control area as

Sd
i : xi[k + 1] = Ad,ixi[k] + Bd,iud,i[k] + Dd,i∆PL,i[k] + Ed,i∆Ptie,i[k], xi[0] = xi,0,

yi[k] = Cixi[k],

where k ∈ N is the new time variable.
The next step is to define the controller dynamics of each control area and extract an equivalent

discrete-time representation. Contrary to our previous works [26,27], here, we use not two, but one
additional state variable to describe the integral action of the automatic generation control unit.
This modification was deemed necessary, because the networked power system model, as obtained
through our framework in [26,27], lacks observability guarantees. In particular, the dependence on
two integral variables per control area renders the networked power system model structurally
unobservable and, therefore, not suited for the design of an estimation-based attack detector.
The simplest way to resolve this problem is to consider only one accumulated time error

zi(t) =
1

|P◦tie,i|+ Bi f ◦

∫ t

0
ACEi(τ)dτ (5)

as the extra state variable augmenting the system due to the integrator of the Equation (2).
The parameter f ◦ denotes the nominal network frequency, whereas the parameter P◦tie,i denotes
the nominal power, that the i-th control area is scheduled to exchange with the rest of the grid via the
connecting tie line. We highlight that the tie line power is assumed to be positive when it flows from
the i-th control area towards the rest of the network. Based on the Equations (1)–(5), we can show that

ud,i[k] = K′I,izi[k]−
1
Ri

yi[k], (6)
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where the normalized gain K′I,i is defined as

K′I,i = KI,i
(
|P◦tie,i|+ Bi f ◦

)
(7)

and the state variable zi[k] satisfies the equation

zi[k + 1] = zi[k] +
1

fs

(
|P◦tie,i|+ Bi f ◦

)ACEi[k], zi[0] = 0. (8)

Now, the discrete-time closed-loop model of a generic interconnected control area, subject to a
data corruption cyber-attack, can be written in augmented form as

Scl
i : ξi[k + 1] = Acl,iξi[k] + αiBcl,iσi[k] + Dcl,i∆PL,i[k] + Ecl,i∆Ptie,i[k], ξi[0] = ξ0, (9)

yi[k] = Ccl,iξi[k], (10)

where the augmented state vector ξi[k] ∈ R3 is given as

ξi[k] = [∆ fi[k] ∆PG,i[k] zi[k]]
> , (11)

the matrix Acl,i ∈ R3×3 is given as

Acl,i =

[
Ad,i − (1/Ri) Bd,iCi Bd,iK′I,i

−1/
(

fs

(
|P◦tie,i|+ Bi f ◦

))
BiCi 1

]
, (12)

while the matrices Bcl,i, Dcl,i, Ecl,i ∈ R3×1 and Ccl,i ∈ R1×3 are given as

Bcl,i =
[
O1×2 1/

(
fs
(
|P◦tie,i|+ Bi f ◦

))
Bi
]> , (13)

Dcl,i =
[

D>d,i 0
]>

, (14)

Ecl,i =
[

E>d,i − 1/
(

fs
(
|P◦tie,i|+ Bi f ◦

))]>
, (15)

Ccl,i = [Ci 0] . (16)

The network representation provided by the Equations (9)–(16) is asymptotically stable and will
suffice for the needs of the estimators. However, the use of two distinct integral state variables to
describe the integral action of the automatic generation control unit remains essential for the design of
the set-theoretic detectors. Similarly to the Equation (5), we can define the accumulated time errors

z1,i(t) =
1
f ◦

∫ t

0

(
∆ f re f

i − ỹi(τ)
)

dτ, (17)

z2,i(t) =
1
|P◦tie,i|

∫ t

0

(
∆Pre f

tie,i − ∆Ptie,i(τ)
)

dτ. (18)

According to the stability analysis provided in [26,27], the state variables given by the
Equations (17) and (18) play a critical role in the detection of an adversary. The key idea is that
the variables z1,i, z2,i will demonstrate a linearly unstable behavior in the presence of an attacker,
unless the adversary is able to access and corrupt the frequency measurements of every control area,
using the same attack signals αi = α for all i ∈ I . The latter one is a less realistic scenario, since it
requires an excess amount of resources for its implementation. At any rate, the unstable behavior of the
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variables z1,i, z2,i along with the convex and compact nature of the robust invariant sets, that are used
by the set-theoretic detectors, guarantee the detection of an adversary, regardless of the disturbance
sequences affecting the power network and regardless of the magnitude of the attack signals affecting
the individual control areas. We highlight that the state variables z1,i, z2,i are virtual, in the sense that
they do not represent natural quantities. This implies that, their unstable behavior during an attack can
be exploited by the set-theoretic detectors, without putting at risk the safe operation of the networked
power system.

To better understand how the existence of an attacker triggers the unstable response of the state
variables z1,i, z2,i we consider the following example. Since we always have ∆Pre f

tie,i = ∆ f re f
i = 0,

a constant attack signal αi 6= 0 for some i ∈ I forces the corresponding control areas to alter their
frequency deviation reference signals from 0 to αi. In this case, the Equation (17) becomes

z1,i(t) =
1
f ◦

∫ t

0
(αi − yi(τ)) dτ. (19)

However, the frequency deviation of the overall power network must always converge to a
constant steady-state value, which is globally identical for every control area. As long as the adversary
does not affect every control area, the global steady-state value of the electrical frequency will belong
strictly to the range (mini∈I{αi}, maxi∈I{αi}). In this case, the quantity under the integral of the
Equation (19) is forced to obtain a steady-state constant nonzero value. This in turn implies that the
state variables z1,i are forced to diverge linearly towards infinity, for as long as the attacker remains
active. It is evident that the adversary will be disclosed the moment when the state vector will exit the
convex and compact robust invariant set.

Following the same principles that we applied for the extraction of the Equations (6)–(8), we can
show that the control input of the system can be written as

ud,i[k] = K′I1,iz1,i[k] + K′I2,iz2,i[k]−
1
Ri

yi[k],

where the gains K′I1,i and K′I2,i are defined as

K′I1,i = KI,iBi f ◦, K′I2,i = KI,i|P◦tie,i|

and the state variables z1,i[k], z2,i[k] satisfy the equations

z1,i[k + 1] = z1,i[k]−
1

fs f ◦
ỹi[k], z1,i[0] = 0,

z2,i[k + 1] = z2,i[k]−
1

fs|P◦tie,i|
∆Ptie,i[k], z2,i[0] = 0.

The Equations (9) and (10), that were previously used to describe the discrete-time model of a
generic interconnected control area, are still valid, but they require a few modifications. The augmented
state vector ξi[k] ∈ R4 is now given as

ξi[k] = [∆ fi[k] ∆PG,i[k] z1,i[k] z2,i[k]]
> , (20)

the matrix Acl,i ∈ R4×4 is given as

Acl,i =

Ad,i − (1/Ri) Bd,iCi Bd,iK′I1,i Bd,iK′I2,i
−1/ ( fs f ◦)Ci 1 0

O1×2 0 1

 , (21)
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while the matrices Bcl,i, Dcl,i, Ecl,i ∈ R4×1 and Ccl,i ∈ R1×4 are given as

Bcl,i = [O1×2 1/ ( fs f ◦) 0]> , (22)

Dcl,i =
[

D>d,i 0 0
]>

, (23)

Ecl,i =
[

E>d,i 0 − 1/
(

fs|P◦tie,i|
)]>

, (24)

Ccl,i = [Ci 0 0] . (25)

Let us now address the design of the switching signals σi, that are used to drive the attack signals
αi. The purpose of an intermittent attack is to force the state variables to oscillate. The main objective is
to create large swingings of the power exchanged through the connecting tie lines in order to endanger
the stability of the grid. Such an attack pattern can be developed by employing a hysteresis-based
switching logic [32] of the form

σi[k] =


0, if |ỹi[k]| > ᾱi,max and σi[k− 1] = 1

1, if |yi[k]| < ᾱi,min and σi[k− 1] = 0

σi[k− 1], otherwise

, (26)

where ᾱi,max = αi,max − δ and ᾱi,min = αi,min + δ are the hysteresis bounds, that dictate the switching
surfaces, and δ ∈ R∗+ is the tolerance factor ensuring that a switching can occur when the state vector

is located strictly inside the frequency zone yi ∈
[
∆ f α

i,min, ∆ f α
i,max

]
= [αi,min, αi,max]. We remark that

the adversary requires the full knowledge advantage regarding the frequency sensor measurements yi
in order to be able to implement the switching signal presented in the Equation (26).

2.2. Tie Line Model

Whenever a power load change takes place, the power flow of every tie line deviates from its
prespecified value, according to the linearized [29,30] dynamical equation

∆̇Ptie,i(t) =
N

∑
j=1

(
2πTij

(
∆ fi(t)− ∆ f j(t)

))
,

where Tij is the synchronization coefficient between the areas i and j and ∆Ptie,i is the aggregated
electrical power exchanged between the i-th area and every other area of the grid that remains
connected with it. By definition we have Tij = Tji for all i, j ∈ I and if two areas i, j are not connected
with each other, then we have Tij = 0.

In order to extract a discrete-time equivalent model for the tie line, we use the global sampling
frequency fs and the zero-order hold method and we obtain the equation

∆Ptie,i[k + 1] = ∆Ptie,i[k] + Ts

N

∑
j=1

(
2πTij

(
∆ fi[k]− ∆ f j[k]

))
, (27)

where Ts = 1/ fs is the sampling period.

2.3. Network Model

If we calculate the discrete-time models of all control areas along with the discrete-time models of
their tie lines, then we obtain a discrete-time representation of the entire networked power system as

Snet : xnet[k + 1] = Anetxnet[k] + Bnet[k] + Dnet∆PL,net[k], xnet[0] = xnet,0, (28)
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ynet[k] = Cnetxnet[k], (29)

where n is the number of state variables per control area. We set n = 3 and we depend on the
Equations (11)–(16) in order to extract the networked system model used for the design of the
estimation-based detectors. On the other hand, we set n = 4 and we depend on the Equations (20)–(25)
in order to extract the networked system model used for the design of the set-theoretic detectors.

In both cases, the state vector xnet ∈ R(n+1)N is defined as

xnet[k] =
[
ξ>1 [k] ξ>2 [k] . . . ξ>N [k] ∆Ptie,1[k] ∆Ptie,2[k] . . . ∆Ptie,N [k]

]>
(30)

and the vector of power load changes ∆PL,net ∈ RN is defined as

∆PL,net[k] = [∆PL,1[k] ∆PL,2[k] . . . ∆PL,N [k]]
> . (31)

The matrix Anet ∈ R(n+1)N×(n+1)N is defined as

Anet =

[
Anet,11 Anet,12

Anet,21 Anet,22

]
, (32)

where Anet,11 ∈ RnN×nN and Anet,12 ∈ RnN×N are given as

Anet,11 =


Acl,1 On×n . . . On×n

On×n Acl,2 . . . On×n
...

...
. . .

...
On×n On×n . . . Acl,N

 , Anet,12 =


Ecl,1 On×1 . . . On×1

On×1 Ecl,2 . . . On×1
...

...
. . .

...
On×1 On×1 . . . Ecl,N

 , (33)

whereas Anet,21 ∈ RN×nN and Anet,22 ∈ RN×N are given as

Anet,21 =


L11 L12 . . . L1N
L21 L22 . . . L2N

...
...

. . .
...

LN1 LN2 . . . LNN

 , Anet,22 = IN×N (34)

and the vector elements Lij ∈ R1×n are given as

Lij =


[

∑N
j=1
(
2πTijTs

)
O1×(n−1)

]
, if i = j

[
− 2πTijTs O1×(n−1)

]
, if i 6= j

. (35)

Finally, we define the matrices Bnet ∈ R(n+1)N×1 and Dnet ∈ R(n+1)N×N as

Bnet[k] =


α1Bcl,1σ1[k]
α2Bcl,2σ2[k]

...
αN Bcl,NσN [k]

ON×1

 , Dnet =

[
Dnet,1
ON×N

]
, Dnet,1 =


Dcl,1 On×1 . . . On×1

On×1 Dcl,2 . . . On×1
...

...
. . .

...
On×1 On×1 . . . Dcl,N

 (36)

and the matrix Cnet ∈ R2N×(n+1)N is defined as
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Cnet =


Ccl,1 O1×n . . . O1×n O1×N
O1×n Ccl,2 . . . O1×n O1×N

...
...

. . .
...

...
O1×n O1×n . . . Ccl,N O1×N
ON×n ON×n . . . ON×n IN×N

 . (37)

For further details on the extraction of the above block matrices and their connection with the
physical quantities of the power system, the reader is referred to [26,27].

3. Estimation-Based Detector Design

Conventional attack detectors assume the form of state estimators. The concept is simple, easy
to generalize and can be applied both in a centralized and a decentralized manner. In the case of
a networked system, the idea of a decentralized application is tempting. However, when it comes
to the study of the load-frequency control loop of a power network, the decentralized approach
implies that the estimator has to be designed based exclusively on the model of each interconnected
control area and the locally available measured quantities. Under this scope, the tie line dynamics
are often ignored, since they implicate not only the frequency deviation of one control area, but also
the frequency deviations of all the other control areas that remain connected with the first one. As a
matter of fact, the Equation (27) is usually disregarded and the estimator is designed based only on
the Equations (9) and (10), where the tie line power deviation ∆Ptie,i[k] is considered as an additional
externally measured signal.

Although the decentralized approach works effectively in most networked systems, a centralized
approach can also be advantageous, since it involves the overall system dynamics and may allow us
to obtain a better estimation of the state vector. We highlight that, in the context of a secure-oriented
analysis, the estimation is not intended for control purposes, since the state vector of the power system
is already available through direct measurements. However, the estimation is still a necessary tool
used for the detection of an attacker.

A centralized estimation method can be applied on a networked power system in a meaningful
manner, only when the network under consideration can operate in a small scale and, preferably,
islanded from the rest of the grid. Such a case was described in the previous section. Further examples
include smart grids and micro grids, where, the islanded operation is an essential property of their
function. Thus, centralized estimation-based attack detectors can find practical application in such
systems, especially if we consider that these systems have a load-frequency control loop, that shares
similar traits and vulnerabilities with the one described in this article.

In the sequel, we examine two methods regarding the design of centralized estimation-based
attack detectors. In the first method, the estimation residue is calculated based exclusively on the
output measurements, whereas in the second improved method we use the entire state vector.

3.1. Output-Based Estimator

Let us consider the discrete-time state space model of the networked power system given by the
Equations (28)–(37) for n = 3. The discrete-time state space model of the corresponding Luenberger
observer is given as

Ŝ : x̂net[k + 1] = Anet x̂net[k] + L (ynet[k]− ŷnet[k]) , x̂net[0] = 0, ŷnet[0] = 0, (38)

r[k] = ‖ynet[k]− ŷnet[k]‖2, (39)

where the symbols x̂net and ŷnet denote the estimated values of the state vector xnet and the output ynet

respectively, the symbol r denotes the value of the estimation residue and ‖ · ‖2 denotes the Euclidean
norm. We highlight that the Equations (38) and (39) implicate the output signal ynet, which is derived
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from the Equations (28) and (29) and thus it contains the corrupted frequency measurements. On the
other hand, the matrix L ∈ R(n+1)N×2N is selected so as to ensure that the error dynamics of the
estimation-based detector respond fast in the presence of disturbances.

According to the Equation (29), the output signal ynet is expressed as a linear combination of the
state variables implicated in the control signals. If we consider the form of the matrix Cnet, then the
Equations (38) and (39) become

Ŝ : x̂net[k + 1] = Anet x̂net[k] + LCnet (xnet[k]− x̂net[k]) , x̂net[0] = 0, (40)

r[k] = ‖Cnet (xnet[k]− x̂net[k]) ‖2. (41)

Now, if we introduce the estimation error

e[k] = xnet[k]− x̂net[k], (42)

then the error dynamics of the estimation-based detector can be obtained from the
Equations (40) and (41) as

e[k + 1] = (Anet − LCnet) e[k], e[0] = e0, (43)

r[k] = ‖Cnete[k]‖2. (44)

The gain matrix L is calculated using pole placement methods. A commonly accepted approach
is to demand that the eigenvalues of the error dynamics are at least ten times faster than the dynamics
of the system. To this end, we can select a matrix L such that

eig{Anet − LCnet} = 0.1× eig{Anet}. (45)

We remark that an equivalent, but more convenient, way to express the Equation (45) is
the equation

eig{A>net − C>netL
>} = 0.1× eig{Anet},

which encapsulates the objective of pole placement in a manner that fits nicely in most
programming routines.

The design of a Luenberger observer is possible if and only if the system under consideration is
observable, that is when the pair (Anet, Cnet) satisfies the condition

rank[O] = (n + 1)N, (46)

where the observability matrix O is defined as

O =


Cnet

Cnet Anet

Cnet A2
net

...
Cnet A(n+1)N−1

 . (47)

It is apparent that the property of observability depends not only on the form of the matrix
Anet but also on the form of the output matrix Cnet. In general, we assume that the output matrix
of any system is formulated so as to ensure that the state variables implicated in the control signals
are available through direct measurements. In our case, the state variables implicated in the control
signals ud,i are ∆ fi and ∆Ptie,i. Hence, the output matrix Cnet has the structure that we established in
the Equation (37). Extensive simulations indicated that the model of the networked power system
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provided by the Equations (28)–(37) for n = 3 remains always observable, regardless of the way that
the individual control areas are connected with each other. On the other hand, the Equations (28)–(37)
for n = 4 yield the structurally unobservable system model that was used for the design of the
set-theoretic detectors in [26,27]. Since the observability property is necessary for the design of an
estimator, and since this property can only be ensured through the reduction of the state vector in
every control area, the modified modeling approach with n = 3, that we presented in the previous
section, is the preferred way to continue.

An estimation-based detector activates an alarm signal, whenever the steady-state value of the
estimation residue r[k] exceeds a critical threshold. In order to determine this critical threshold, we
have to calculate the maximum admissible steady-state value of r[k] in the presence of the maximum
admissible load disturbances ∆PL,i[k] and in the absence of an attacker, that is when σi[k] = 0 for all
k ≥ 0 and for all i ∈ I . However, the estimation residue can converge to a constant steady-state value
only when the load changes ∆PL,i[k] are described by step functions. We remark that the assumption
about piecewise constant load changes is a realistic one, because the load-frequency control loop is
expected to act in a different time scale and much faster than the variation of the power loads. Since
we assume that σi[k] = 0 for all k ≥ 0 and for all i ∈ I , the primary frequency control ∆Pf ,i and the
automatic generation control ∆Pc,i ensure that after each step load change, both the frequency and the
tie line power deviations converge to their nominal values, that is

lim
k→∞

∆ fi[k] = lim
k→∞

∆Ptie,i[k] = 0, ∀i ∈ I . (48)

The matrix Cnet given by the Equation (37) implies that the estimation residue given by the
Equation (44) depends only on the state variables ∆ fi and ∆Ptie,i for all i ∈ I . This fact along with
the Equation (48) imply that after every step power load change, the estimation residue is bound to
converge to 0 and, therefore, the critical steady-state threshold has to be chosen as

rcrit = 0. (49)

We can infer that the threshold given by the Equation (49) does not suffice for the detection of
an intermittent attack. Indeed, an intermittent attack pattern is based on consecutive activations and
deactivations of the attack signal. If the activations remain brief and the adversary allows the transients
to settle down before reactivating the attack signal, then he will always be able to create the undesirable
power oscillations on the tie lines and at the same time ensure that the estimation residue will satisfy
the Equation (49). On the other hand, when we tried to exploit the transient behavior of the estimation
residue for the detection of an attacker, we concluded that this estimator is unable to discern between
the power load changes and the actual attack signals. The latter difficulty will be fully illuminated in
the simulation studies.

3.2. Full State-Based Estimator

To improve the performance of the estimation-based detector, we opted for two distinct changes.
Firstly, since every state variable is measurable, we decided to use the entire state vector during the
calculation of the estimation residue. Secondly, we adjusted the impact of each state variable on
the estimation residue, normalizing each state variable according to its maximum admissible value.
For the maximum and minimum admissible values of every state variable, we used the standard safety
considerations found in the literature. Simulations will later demonstrate that this detector is able to
discern an attack from a load change during the transient response of the system.

According to [21,22], the large transient fluctuations of the electrical frequency are generally
undesirable since they can cause stability problems in the overall network. It is commonly
accepted [21,22] that the deviations of the electrical frequencies must obey the inequalities

|∆ fi[k]| ≤ ∆ fi,max = 1.5 [Hz], ∀k ≥ 0, ∀i ∈ I . (50)
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On the other hand, the saturation constraints imposed on the control signals uc,i and ud,i imply
that the maximum available mechanical power ∆PG,i must also be bounded. According to [26,27],
the mechanical power produced in the output of each turbine must obey the inequality

|∆PG,i[k]| ≤ ∆PG,i,max = ui,max, ∀k ≥ 0, ∀i ∈ I . (51)

According to [29,33], the accumulated time errors zi, z1,i and z2,i need to be limited and they must
obey the inequalities

|zi[k]|, |z1,i[k]|, |z2,i[k]| ≤ zi,max = 3 [s], ∀k ≥ 0, ∀i ∈ I . (52)

Finally, the tie line power deviations should not exceed certain limits, otherwise the coupled
generators may face desynchronization problems. As a matter of fact, the tie line power deviations
must obey theinequalities

|∆Ptie,i[k]| ≤ ∆Ptie,i,max, ∀k ≥ 0, ∀i ∈ I . (53)

We highlight that although the inequalities (51) express hard saturation constraints that can never
be violated, the inequalities (50), (52) and (53) express merely soft safety constraints. Hence, the state
variables ∆ fi, zi, z1,i, z2,i and ∆Ptie,i can also receive values that may not belong to the domains specified
by the inequalities (50), (52) and (53) respectively, but this case is regarded as undesirable.

Let us now consider that the output of the networked system comprises of all the individual state
variables and also that each state variable is normalized in terms of its corresponding boundary value,
given by the inequalities (50)–(53). We define the normalizing vector of boundary values for every
individual control area i as

q∗i,max = [1/∆ fi,max 1/∆PG,i,max 1/zi,max]
> (54)

and the normalizing vector of boundary values for the tie line power deviations as

q̄∗max = [1/∆Ptie,1,max 1/∆Ptie,2,max . . . 1/∆Ptie,N,max]
> . (55)

Finally, based on the Equations (54) and (55), we define the normalizing vector of boundary values
for the networked power system as

q∗net,max =
[
q∗>1,max q∗>2,max . . . q∗>N,max q̄∗>max

]>
.

Consequently, the output matrix given by the Equation (37) for n = 3 can be modified as

Cnet = I(n+1)N×(n+1)Nq∗net,max, (56)

allowing us to extract every state variable as a system output and at the same time normalize each
output with its corresponding maximum admissible or safety value.

The estimation-based detector is again designed based on the standard Equations (40)–(44), where
this time the output matrix Cnet is given by the Equation (56) and the gain matrix L ∈ R(n+1)N×(n+1)N .
We highlight that, in this case, the observability condition of the pair (Anet, Cnet) is structurally ensured
due to the form of the matrix Cnet. Indeed, since Cnet is now a diagonal matrix, it possesses exactly
(n + 1)N linearly independent rows. Hence, the observability matrix O given by the Equation (47) has
always full rank and the observability condition given by the Equation (46) is always satisfied.

The next step is to determine the critical steady-state threshold of the estimation residue rcrit,
using the output matrix Cnet of the Equation (56). In this case, we have to calculate the maximum
admissible steady-state value of r[k] in the presence of the maximum admissible load disturbances
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∆PL,i[k] and in the absence of an attacker, that is when σi[k] = 0 for all k ≥ 0 and for all i ∈ I . In order
to ensure that the estimation residue ultimately converges to a steady-state value, we must again
assume that the disturbances under consideration are described as step load changes. Hence, based on
the Equation (44), we can write that

rcrit = lim
k→∞

(
max

∆PL,net [k]∈Wnet
‖Cnet (xnet[k]− x̂net[k]) ‖2

)
, (57)

where the setWnet is defined as

Wnet =
{

∆PL,net ∈ RN : Rnet∆PL,net ≤ rnet

}
,

with the matrix Rnet ∈ R2N×N given as

Rnet =


R′1 O2×1 . . . O2×1

O2×1 R′2 . . . O2×1
...

...
. . .

...
O2×1 O2×1 . . . R′N

 , R′i =

[
1
−1

]

and the vector rnet ∈ R2N given as

rnet =
[
r>1 r>2 . . . r>N

]>
, ri =

[
∆PL,i,max
∆PL,i,max

]
.

It is evident that the normed quantity of the Equation (57) is maximized when

lim
k→∞

xnet[k] = xnet,max, lim
k→∞

x̂net[k] = x̂net,max, (58)

where xnet,max and x̂net,max denote the steady-state values of the vectors xnet and x̂net respectively,
when each individual control area is subjected to its maximum admissible step load change ∆PL,i,max
and σi[k] = 0 for all k ≥ 0 and for all i ∈ I . Based on the Equations (58), the Equation (57) becomes

rcrit = max
∆PL,net,max∈Wnet

‖Cnet (xnet,max − x̂net,max) ‖2, (59)

where xnet,max is obtained from the Equation (28) as

xnet,max =
(
I(n+1)N×(n+1)N − Anet

)−1
Dnet∆PL,net,max (60)

and x̂net,max is obtained from the Equation (43) as

x̂net,max =
(
I(n+1)N×(n+1)N − (Anet − LCnet)

)−1
LCnetxnet,max, (61)

while the maximization in the Equation (59) is performed over all vectors ∆PL,net,max, that represent
the vertices of the convex and compact polyhedral setWnet.

4. Set-Theoretic Detector Design

The state estimators provide detection guarantees only through the steady-state value of the
estimation residue. In the simulations section, we shall demonstrate that the overshoots that occur
during the transient response of the system can be exploited for the detection of an attacker, but the
criteria have to be decided ad-hoc and they do not offer specific assurances. In order to consider the
overall behavior of the system response and still offer detection guarantees, we have to calculate a



Energies 2019, 12, 4625 15 of 29

robust invariant set for the networked system dynamics given by the Equations (28)–(37) for n = 4.
We highlight that choosing n = 4 is mandatory for the design of an effective centralized set-theoretic
detector. Indeed, if the control area models are derived through the Equations (20)–(25), then, according
to the stability analysis given in Section 2, the network is bound to respond unstably in the presence of
an attacker. This unstable behavior ultimately forces the state vector to exit the convex and compact
robust invariant set, thus triggering an alarm and disclosing the attacker.

First, we review the basic aspects of the set-theoretic detectors developed in [27], and in the sequel,
we study a link with the estimation-based attack detectors. Finally, we present a hybrid scheme that
combines both methods.

4.1. Set-Theoretic Detection Preliminaries

Let us consider the networked power system described by the Equations (28)–(37) for n = 4.
In order to design a set-theoretic detector, first we have to extract the safety constraints of the overall
power network based on the inequalities (50)–(53). The constraints of each vector ξi, given by the
Equation (20), can be expressed as

Xi = {ξi ∈ Rn : Qiξi ≤ qi},

where Qi ∈ R2n×n and qi ∈ R2n are given as

Qi =

[
In×n

−In×n

]
, qi =

[
qi,max
qi,max

]
,

qi,max = [∆ fi,max ∆PG,i,max zi,max zi,max]
> .

Accordingly, the safety constraints of each tie line power deviation ∆Ptie,i can be expressed as

X ′i = {∆Ptie,i ∈ R : Q′i∆Ptie,i ≤ q′i},

where Q′i ∈ R2×1 and q′i ∈ R2 are given as

Q′i =

[
1
−1

]
, q′i =

[
∆Ptie,i,max
∆Ptie,i,max

]
.

Finally, the constraints of xnet can be expressed as

Xnet =
{

xnet ∈ R(n+1)N : Qnetxnet ≤ qnet

}
,

Qnet =

[
Qnet,11 Qnet,12

Qnet,21 Qnet,22

]
,

qnet =
[
q>1 q>2 . . . q>N q

′>
1 q

′>
2 . . . q

′>
N

]>
,

where Qnet,11 ∈ R2nN×nN and Qnet,22 ∈ R2N×N are given as

Qnet,11 =


Q1 O2n×n . . . O2n×n

O2n×n Q2 . . . O2n×n
...

...
. . .

...
O2n×n O2n×n . . . QN

 , Qnet,22 =


Q′1 O2×1 . . . O2×1

O2×1 Q′2 . . . O2×1
...

...
. . .

...
O2×1 O2×1 . . . Q′N

 ,
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whereas Qnet,12 and Qnet,21 are given as

Qnet,12 = O2nN×N , Qnet,21 = O2N×nN .

The set of all the states ξi that yield a control law ud,i[k] that respects the input saturation hard
constraints is expressed as

Ui = {ξi ∈ Rn : Piξi[k] ≤ pi, ∀k ≥ 0} ,

where Pi ∈ R2×n and pi ∈ R2 are given as

Pi =

[
− (1/Ri)Ci K′I1,i K′I2,i
(1/Ri)Ci −K′I1,i −K′I2,i

]
, pi =

[
ui,max
ui,max

]
.

Therefore, the set of the states xnet that obey the input saturation constraints is expressed as

Unet =
{

xnet ∈ R(n+1)N : Pnetxnet[k] ≤ pnet, ∀k ≥ 0
}

,

Pnet =
[

Pnet,1 Pnet,2

]
, pnet =

[
p>1 p>2 . . . p>N

]>
,

where Pnet,1 ∈ R2N×nN and Pnet,2 ∈ R2N×N are given as

Pnet,1 =


P1 O2×n . . . O2×n

O2×n P2 . . . O2×n
...

...
. . .

...
O2×n O2×n . . . PN

 , Pnet,2 = O2N×N .

Now, we can specify the set of safety and admissible constraints of xnet as Anet = Xnet ∩ Unet and
its maximal robust invariant subset is defined as

Anet,∞ = {xnet,0 ∈ Anet : Anetxnet[k] + Dnet∆PL,net[k] ∈ Anet,∞, ∀∆PL,net[k] ∈ Wnet, ∀k ≥ 0} . (62)

A maximal robust invariant subset is usually extracted in terms of the algorithm proposed in [34].
However, this algorithm returns the desired invariant set after a finite number of iterations only when
the system is described by asymptotically stable dynamics. According to [27], the networked system
dynamics (28)–(37) for n = 4 are Lyapunov stable, that is the system has some eigenvalues located
exactly on the boundary of the unit disc. In [27], we developed an alternative method, that allows us to
extract an approximation of the desired robust invariant set, say Ânet,∞ ' Anet,∞. The corresponding
set-theoretic detection mechanism was summarized in the alarm signal

ρ(xnet[k]) =

{
0, if xnet[k] ∈ Ânet,∞

1, otherwise
. (63)

For the procedure followed to extract the set Ânet,∞, the reader is referred to our work in [27],
where the centralized nature of the method is also justified. In [26], we developed a second method,
which involves not one, but two robust invariant sets. However, for the purposes of this article, where
we aim to link estimation-based and set-theoretic attack detectors, the first method will suffice, since it
is direct and requires only one set.
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4.2. Set-Theoretic Methods and State Estimation

Since we are about to reexamine estimators, we must consider that the networked power system
is described by the Equations (28) and (37) for n = 3. Our intention here is to apply, if possible,
the invariance concept of the Equation (62) on the estimators that we developed in the previous section.
To this end, the Equations (43) and (44), describing the error dynamics of the estimator, must be written
in a way that will allow us to amend for the unknown but bounded load disturbances ∆PL,net, that is

e[k + 1] = (Anet − LCnet) e[k] + Dnet∆PL,net[k], e[0] = e0. (64)

It is important to highlight that the Equation (64) is only meant for the extraction, if possible,
of a robust invariant set for the estimator. The dynamic model of the estimator is always given by
the Equations (40) and (41). We remark that although the load disturbances ∆PL,net do not appear
directly in the Equations (40) and (41), they are nonetheless considered in the calculation of the critical
steady-state threshold of the estimation residue rcrit. The matrices Anet and Dnet implicated in the
Equation (64) are given by the Equations (32)–(36) respectively and since we refer to a state estimator,
we set n = 3. Finally, since we try to extract a robust invariant set, we require the overall state
vector. Hence, we must use the full state-based estimator and the matrix Cnet has to be given by the
Equation (56).

To quantify the maximum admissible discrepancies of the estimation residue r[k] during the
transient response and during the steady-state phase, first we need to bound the state trajectories of
the estimation error e[k] in terms of the robust invariant set

E∞ = {e0 ∈ E : (Anet − LCnet) e[k] + Dnet∆PL,net[k] ∈ E∞, ∀∆PL,net[k] ∈ Wnet, ∀k ≥ 0} .

The initial set E can be defined in a manner similar to the one employed for the set Anet, but this
time we have to use the estimation error e instead of the state vector xnet. We remark that since the
matrix Anet − LCnet is by design asymptotically stable, the corresponding maximal robust invariant set
E∞ can always be calculated using the standardized algorithm presented in [34].

The problem in this approach is not the calculation of E∞ but the definition of the initial set E .
Indeed, if we consider the Equation (42), then it becomes apparent that the safety constraints of the
estimation error e stem from the safety constraints of the state vectors xnet and x̂net. Since x̂net is the
estimation of xnet, it is natural to assume that both state vectors xnet and x̂net must satisfy the exact
same constraints. Let us now consider, without any loss of generality, the constraints associated with
the frequency deviations ∆ fi and their estimated values ∆̂ f i. According to the inequality (50), we have

− 1.5 ≤ ∆ fi[k] ≤ 1.5 = ∆ fi,max, ∀k ≥ 0, ∀i ∈ I , (65)

− 1.5 ≤ ∆̂ f i[k] ≤ 1.5 = ∆ fi,max, ∀k ≥ 0, ∀i ∈ I . (66)

The first element of the state vector e[k] is defined as

e1[k] = ∆ f1[k]− ∆̂ f 1[k]

and based on the inequalities (65) and (66) we have

− 3 ≤ e1[k] ≤ 3 = 2∆ f1,max, ∀k ≥ 0. (67)

The inequality (67) creates a major problem, because it implies that it is both possible and
admissible to have, for example, ∆̂ f 1[k] = 0 and also ∆ f1[k] = 2 ≥ 1.5 for some k ≥ 0. In other
words, even if the inequality (67) is always satisfied, the inequalities (65), that concern the actual state
variables, may be violated. Clearly, this problem can be generalized for the other state variables as well.
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Since the constraints imposed on the estimation error do not guarantee the satisfaction of the
inequalities (50)–(53), our next best alternative is to use the estimated state vector x̂net alone. This
is possible only if the estimator (40) is designed with a matrix L = O(n+1)N×(n+1)N . In this case,
the estimator dynamics (64) become

x̂net[k + 1] = Anet x̂net[k] + Dnet∆PL,net[k], x̂net[0] = 0. (68)

We remark that the matrix Anet used in the design of the state estimators is defined by the
Equations (32)–(35) for n = 3 and is always asymptotically stable. Therefore, the dynamics (68)
are guaranteed to converge, even without the use of the gain matrix L. Careful observation of the
Equation (68) reveals that it has the same form as the Equation (28), when σi[k] = 0 for all k ≥ 0 and
for all i ∈ I . If we consider that the overall state vector xnet is always measurable, then it becomes
clear that there is no need to involve the estimated vector x̂net in the calculation of the robust invariant
set. Instead, we can work directly with the actual state vector xnet and calculate the robust invariant
set for the overall networked power system. As a matter of fact, the set-theoretic detector, described by
the alarm signal (63), is the only way to quantify the admissible bounds of the state trajectories of the
power network.

4.3. Hybrid Detection Concept

Although the set-theoretic detectors provide strict detection guarantees, even in the case of an
intermittent attack that occurs at the same time with a power load change, they tend to react slowly
when the attack signals obtain small values. On the other hand, the estimation-based detectors are
inherently unable to detect intermittent attacks using the steady-state value of the estimation residue,
but the transient overshoots of the residue can be helpful to hint the presence of an adversary almost
immediately after the activation of the attack signal. Since an estimator does not offer strict detection
guarantees, we can exploit the transient behavior of the residue to put the system into alert state, thus
reacting faster to any observed abnormalities, and then wait to verify these abnormalities once the
state vector exits the convex and compact polyhedral robust invariant set, whereupon the set-theoretic
detector triggers the actual alarm signal.

As a matter of fact, we can combine the best feats of the two methods based in the following
reasoning: First, we calculate the critical steady-state threshold of the full state-based estimator and
then we use it to determine an upper bound rb of the transient response overshoots. For the transient
bound rb we assume that

rb = γrcrit (69)

for some arbitrary parameter γ > 1, that has to be chosen ad-hoc. We highlight that although we do
not provide an explicit mathematical expression for the transient bound rb, an appropriate value can
always be extracted through simulations. It is also worth mentioning that the transient bound rb does
not qualify as a robust criterion and does not offer any specific detection assurances.

Finally, the hybrid attack detection mechanism can be introduced in terms of the following
three-modal system operation concept:

mode =


alarm condition, if ρ(xnet[k]) = 1 or limk→∞ r[k] > rcrit

alert state, if r[k] > rb and ρ(xnet[k]) = 0

normal operation, otherwise

. (70)

5. Simulation Studies

In this section, we investigate the security enhancing capabilities of the previously developed
estimation-based and set-theoretic attack detectors, considering the load-frequency control loop of
the test case two-area power system, subject to an intermittent data corruption cyber-attack on the
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frequency measurements. The efficiency of the proposed hybrid detection scheme is also commented
and verified in each attack scenario studied.

According to [27], an attacker can change the nominal regulation point of the electrical frequency
of the power network, and thus cause serious system malfunctions, via a persistent coordinated attack
scheme with a constant attack signal αi = α for all i ∈ I and σi[k] = 1 for all k ≥ 0 and for all i ∈ I .
Although persistent attacks of this kind are potent, they require a significant amount of resources for
their implementation, such as free access to an abundance of communication channels and the ability
to corrupt them. Furthermore, their effect on the response of the system renders them immediately
detectable, without the need of any kind of detector, because every nonzero steady-state frequency
deviation is immediately regarded as unacceptable.

In contrast, intermittent attacks, that affect only some control areas, are much more realistic, since
they require less resources for their implementation. From an impact point of view, the intermittent
attacks are equally potent, since they can create oscillations on the power exchanged between the
connected areas. In this way, they stress the tie lines to their thermal limits, forcing them to transmit on
average more power than they are scheduled to, and they also compromise the synchronized operation
of the coupled generators. Finally, their effect on the response of the power system is only temporary,
something that makes them hard to detect during the nominal operation of the grid and even harder
in the presence of load changes.

The parameters of the two-area power network used in the simulations are provided in the Table 1.
The formulas of Kp,i and Tp,i are given as

Kp,i =
1

Di
, Tp,i =

2HiPB,i

f ◦Di
, ∀i ∈ I ,

where f ◦ = 50 [Hz] is the nominal network frequency. The simulations start at k = 0, the initial
condition is set to be xnet[0] = 0 and we have a global sampling frequency fs = 100 [Hz]. The tie line
is assumed to be lossless, the nominal exchanged power between the areas is scheduled to be P◦tie,1 =

−P◦tie,2 = 1000 [MW] and the synchronization coefficients are T12 = T21 = 175 [MW/rad]. The bounds
∆PL,i,max are selected as small percentages of the power bases P◦B,i and the bounds ∆Ptie,i,max are selected
through simulations. Specifically, we observed that even in the presence of the maximum admissible
step load changes ∆PL,i,max, the deviations ∆Ptie,i remain always bounded by ∆Ptie,i,max = 0.5|P◦tie,i|.
The bounds ui,max service the maximum admissible load changes and they also ensure the existence of
a nonempty robust invariant set Ânet,∞. The design parameters of the set-theoretic detector that was
used here are taken directly from [27].

Table 1. Parameter values for the two-area power system. Source: [29].

Parameter Symbol Area 1 Value Area 2 Value Units

Power Base PB,i 2000 1500 MW
Load Dependency Factor Di 16.66 10.5 MW/Hz
Speed Droop Ri 1.2× 10−3 1.33× 10−3 Hz/MW
Generator Inertia Constant Hi 5 4 s
Turbine Static Gain KT,i 1 1 MW/MW
Turbine Time Constant TT,i 0.3 0.25 s
Area Static Gain Kp,i 0.06 0.095 Hz/MW
Area Time Constant Tp,i 24 22.85 s
Controller Static Gain KI,i 0.5 0.45 1/s
Control Input Bound ui,max 600 450 MW
Power Load Bound ∆PL,i,max 20 15 MW

The performance of both the estimation-based and the set-theoretic attack detectors is assessed in
the case of an intermittent attack that affects only the first control area. The switching signal σ1[k] is
given by the Equation (26), the switching bounds are given as α1,min = 0.01 [Hz] and α1,max = 0.1 [Hz],
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whereas the tolerance is selected as δ = 10−3. For the second area we have an attack signal α2 = 0 and
σ2[k] = 0 for all k ≥ 0. We remark that the value of α1,min is meaningful only if it is smaller than the
frequency measurement error (∼ 10−3).

The remainder of this section is split into three parts. In the first part, we calculate the steady-state
and transient critical thresholds of the output-based and the full state-based estimators, verifying their
values via simulations. In the second part, we perform a comparative study on the behavior of the
output-based, the full state-based and the set-theoretic attack detectors, for indicative values of the
attack signal α1. It is shown that the two detectors complement each other and that we can achieve
better results if we use the three-modal system operation proposed in the Equation (70). Finally, in the
third part, we address certain limitations of the above detection mechanisms.

The polyhedral constraints as well as the optimization problems were handled with the MPT
Toolbox 3.0 [35] and the YALMIP library [36].

5.1. Estimator Thresholds Verification

For the extraction of the steady-state thresholds, we have to consider that each control area is
affected by its maximum admissible step load change. Since the bounds of all ∆PL,i are symmetric for
all i ∈ I , the maximum admissible step load changes for the overall networked system can be described
by any vertex of the polyhedral setWnet. Consequently, we can select ∆PL,net,max = [20 15]> and
then apply the disturbance ∆PL,net[k] = ∆PL,net,max for all k ≥ 0. We highlight that for the extraction of
the estimator thresholds, we must assume that the system evolves in the absence of an attacker, that is
when σi[k] = 0 for all k ≥ 0 and for all i ∈ I .

For the output-based estimator we have explained that the steady-state threshold must always be
selected as rcrit = 0. Hence, the transient threshold cannot be explicitly derived by the Equation (69)
and needs to be decided arbitrarily. We select rb = 2.5× 10−2 and based on the Figure 2a the values of
both thresholds are meaningful. For the full state-based estimator the steady-state threshold is given
by the Equations (59)–(61) as rcrit = 5.91× 10−4 and this value is verified by the Figure 2b. Based on
the Equation (69) for γ = 3, we can obtain the transient bound as rb = 1.773× 10−3.

We highlight that for a two-area power system, and only then, we encounter the degenerate
case ∆Ptie,1 = −∆Ptie,2. Therefore, the equation used to describe ∆Ptie,2 in the network dynamics (28)
and (29) can be neglected as redundant during the design of the estimators.
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5.2. Case Study of an Intermittent Attack

The detection capabilities of the proposed detectors are assessed in the presence of unknown load
changes. We assume that the power network is subject to the following step load changes:

∆PL,1(t) = 15 [MW], ∀t ≥ 0 [s],

∆PL,2(t) =

{
0 [MW], if 0 ≤ t < 20 [s]

−10 [MW], if t ≥ 20 [s]
.

Let us observe the Figure 3, where we depict with solid blue lines (•) the response of the estimation
residue and with dashed black lines (•) the transient threshold rb. It is evident that an output
estimator is unable to disclose an attack with α1 = 2.2, when it is driven by the switching signal
of the Equation (26). In addition, if we consider the transient threshold rb and the hybrid detection
scheme (70), then it is obvious that the output estimator will never put the system in alert mode, since
r[k] ≤ rb for all k ≥ 0. Furthermore, the intense spike observed in the Figure 3a occurs not due to the
attack but due to the load change that happens at t = 20 [s]. On the other hand, the improved full
state estimator is able to put the system into alert mode every time the attacker affects the automatic
generation control unit and is always able to discern between an attack and a load change. Indeed,
the normalization of the state variables with their maximum safety values smooths the spike at
t = 20 [s], and creates overshoots in the response of the residue only when an actual attacker affects
the networked system. Finally, the set-theoretic detector will never trigger an alarm, unless the state
vector exits the set Ânet,∞ at t = 33.6 [s]. In this case, the hybrid scheme (70) allows us to react faster in
comparison to the case where we would depend only on the use of a set-theoretic detector.

Let us now perform an analysis regarding the detection and the early detection of the attack,
in terms of absolute time units. For α1 = 2.2, the Figure 3b reveals that the first activation of an alert
occurs at t = 0.81 [s]. Considering that the set-theoretic detector will trigger an alarm at t = 33.6 [s], we
infer that the hybrid detection scheme hints the abnormal system behavior ∆t = 33.6− 0.81 = 32.79 [s]
faster than the set-theoretic detector, offering a significant improvement.

Accordingly, in the Figure 4, we consider the case of an attack with α1 = 4.2. Again, the output
estimator is unable to detect an attack during the transient response and decides that the system
operates normally. Once more, the spike observed in the Figure 4a at t = 20 [s] is caused by the load
change and not by the attack. On the other hand, the improved full state estimator is again able to
smooth the load change spike and can put the system into alert mode at the correct time instances.
Lastly, for α1 = 4.2, we observe that the set-theoretic detector can trigger an alarm whenever the
attacker affects the system, ensuring its disclosure even from the very first activation.

Next, we address again the matter of the detection and the early detection of the attack, in terms
of absolute time units. For α1 = 4.2, the Figure 4b reveals that the first activation of an alert occurs
at t = 0.42 [s] and occurs faster than the first activation of an alert when α1 = 2.2, because now we
have an attack signal with a larger value. On the other hand, the Figure 4c reveals that the set-theoretic
detector activates an alarm for the first time at t = 0.38 [s]. In this case, an alarm is triggered almost
immediately after the activation of the attacker, therefore the hybrid detection scheme does not offer
further advantages in the faster detection of the adversary.

In conclusion, we infer that the hybrid detection scheme (70) encapsulates successfully the best
traits of the two detection methods. Whenever the set-theoretic detector triggers an alarm, we know
with certainty that the state vector has exited the robust invariant set Ânet,∞, thus we can guarantee
the existence of an attacker. Accordingly, whenever the residue of the full state estimator exceeds a
transient threshold, while the alarm signal is inactive, the existence of an attacker is hinted, and the
system is put in alert state. In this way, we can deploy countermeasures faster than we would if we
relied only on the outcome of the set-theoretic detection mechanism.
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Figure 3. Estimation residue and alarm signal evolution for an intermittent attack with α1 = 2.2.
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We close this part by providing a set of figures that depict the response of the state variables in
the case of an intermittent attack with α1 = 2.2. These figures will be helpful in order to understand
the differences between the two modeling approaches for n = 3 and n = 4, and will also clarify how
the set-theoretic oriented modeling approach works for the detection of an intermittent attack pattern.
The results obtained for an attack signal with α1 = 2.2 are similar to those obtained for an attack signal
with α1 = 4.2, so the latter ones are omitted.

Let us observe the graphs in the Figure 5. The state variables associated with the first control area
are printed in red (•) and blue (•) lines, whereas the state variables associated with the second control
area are printed in black (•) lines. The red color indicates an active attacker, whereas the blue color
indicates an inactive attacker. It is evident that the intermittent pattern forces the electrical frequency
to oscillate, according to the hysteresis-based switching signal (26). The frequency oscillations remain
within the bounds of the inequality (50). However, these oscillations cause fluctuations on the power
which is exchanged between the two areas through the connecting tie line. As we can see, the state
variables ∆Ptie,i have an oscillatory behavior and the average power that flows through the connecting
tie line is increased. This leads to problems associated with the synchronization of the generators and
with the thermal limits of the tie line. Finally, the state variables zi obtained for n = 3 are always stable,
while the state variables z1,i and z2,i obtained for n = 4 have an unstable behavior. Indeed, after every
new activation of the attacker, the state variables z1,i and z2,i begin to diverge linearly towards infinity.
This behavior is essential for a set-theoretic detector, since it ensures that at some point the state vector
will exit the set Ânet,∞, ultimately triggering an alarm. This last remark is visible in the Figure 3c after
t = 33.6 [s], when α1 = 2.2, and in the Figure 4c after t = 25.92 [s], when α1 = 4.2.
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Figure 5. State variable trajectories for an intermittent attack with α1 = 2.2.

Finally, it is worth mentioning that we cannot use the networked system dynamics (28)–(37) for
n = 4 to develop both a set-theoretic detector and a full state estimator, because the Equation (60),
which is necessary for the extraction of the steady-state estimation threshold rcrit, involves the matrix
(I(n+1)N×(n+1)N − Anet)−1. Indeed, the latter matrix does not exist when the matrix Anet is Lyapunov
stable with unit eigenvalues, something that happens when we select the modeling approach that
depends on the Equations (28)–(37) for n = 4 [27].

5.3. Limitations of the Proposed Detectors

The limitations of the proposed detection mechanisms are presented based on the occurrences of
false positive or false negative activations of the alarm condition and the alert state. For the remainder
of our analysis, the term false positive refers to an activation of the alarm condition or the alert state of
the hybrid detection scheme (70), when the system is not affected by an attacker. Accordingly, the term
false negative refers to the case where an attacker affects the system but neither the alarm condition
nor the alert state are ever activated. We address the occurrences of false positives and false negatives
considering the cases of the set-theoretic detectors and the estimation-based detectors separately.

First, we examine the false positives and the false negatives of the set-theoretic detectors.
The set-theoretic detector triggers an alarm signal only when the state trajectory exits the robust
invariant set Ânet,∞. The robust invariance property ensures that if the state vector xnet[k] begins to
evolve from an initial condition xnet[0] that belongs to the set Ânet,∞, then the emanating state trajectory
will remain within the set Ânet,∞ for all future time instances k ≥ 0 and for all admissible disturbances
sequences ∆PL,net[k] ∈ Wnet. In addition, the set Ânet,∞ has been calculated in the absence of an
attacker. This implies that, it is impossible for the state trajectory to exit the set Ânet,∞ in the absence of
an attacker, and therefore it is impossible for the set-theoretic detector to yield a false positive.

On the other hand, the stability analysis that was established in our previous work [27] and
was briefly reviewed in the current article, indicates that the set-theoretic detector may be unable to
disclose an attack, only when the adversary affects all the control areas of the network with the same
persistent attack signals, that is when αi = α and σi[k] = 1 for all k ≥ 0 and for all i ∈ I . In this case,
a false negative may occur, because the response of the system is proven to be asymptotically stable.
Indeed, if the attack signals remain small, then the attained steady-state equilibrium may still belong
to the set Ânet,∞ and respect the alarm constraints. For further details on this scenario, the reader is
referred to [27]. However, if the attacker affects only some control areas of the network, but not all of
them, as is the case in this work, then the integral variables z1,i and z2,i will always demonstrate an
unstable behavior. In other words, it is only a matter of time until the state trajectory exits the convex
and compact set Ânet,∞, whereupon an alarm will be triggered. In conclusion, it is impossible for the
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set-theoretic detector to yield a false negative, unless αi = α and σi[k] = 1 for all k ≥ 0 and for all i ∈ I
and for relatively small values of the attack signals αi.

We proceed with the analysis of the false positives and the false negatives of the estimation-based
detectors. Out of the two estimation-based detectors, the output-based estimators perform poorly and
unreliably in every scenario that we presented. They yield constantly false negatives and are unable to
disclose an attacker. Therefore, we focus on the full state-based estimators. We have to address the
false positives and the false negatives associated both with the alarm condition limk→∞ r[k] > rcrit and
the alert state condition r[k] > rb.

First, we address the false positives and the false negatives of the alarm condition limk→∞ r[k] >
rcrit. The full state-based estimator triggers an alarm signal only when the estimation residue reaches a
steady-state value larger than the critical threshold rcrit. As long as the estimation residue oscillates,
something that occurs in an intermittent attack, the alarm condition limk→∞ r[k] > rcrit can never be
used to activate an alarm, either correct or false. Persistent attacks can lead to false negatives, as shown
in [27], but never to false positives, since rcrit is calculated for ∆PL,net,max and αi = 0 for all i ∈ I .

Let us now address the false positives and the false negatives of the alert state condition r[k] > rb.
In the case of an intermittent attack, the full state-based estimator can help with the timely disclosure of
the attacker by putting the system into alert mode, whenever r[k] > rb = γrcrit. Clearly, since the value
of the design parameter γ has to be selected ad hoc, it is possible for this detector to fail to trigger an
alert state, thus yielding a false negative. This scenario is presented in the following simulation, where
the responses of the state variables are again similar to the ones given in the Figure 5 and, therefore,
are omitted for brevity. We consider that the attack signal becomes α1 = 0.2 and that the system is now
subject to a different disturbance sequence, which is described by the equations

∆PL,1(t) = 10 [MW], ∀t ≥ 0 [s],

∆PL,2(t) =

{
0 [MW], if 0 ≤ t < 20 [s]

5 [MW], if t ≥ 20 [s]
.

The output-based estimator and the set-theoretic detector remain the same but we consider two
different transient thresholds for the full state-based estimator. Specifically, in the Figure 6b, we depict
with black (•) dashed line the standard transient threshold rb = γrcrit, with γ = 3, whereas we use the
green (•) dashed line to depict a different transient threshold with γ = 4. It is evident that for γ = 3
the full state-based estimator is able to put the system in alert state whenever the attacker actually
affects it and the first activation of the alert state occurs at t = 3.01 [s]. However, if we select γ = 4,
then the full state-based estimator yields constantly false negatives.

The Figure 6c also reveals that the set-theoretic detector is able to disclose the attack only when
the state vector exits the robust invariant set Ânet,∞, something that happens at t = 57.45 [s]. Finally,
we remark that the hybrid detection scheme for γ = 3 improves the behavior of the set-theoretic
detector, since it is able to hint the existence of an attack ∆t = 57.45− 3.01 = 54.44 [s] faster than the
set-theoretic detector alone. However, the hybrid detection scheme for γ = 4 is unable to trigger an
alert state and can only activate an alarm at t = 57.45 [s] due to the set-theoretic detector.

Lastly, we address the false positives regarding the condition r[k] > rb. As we have already
explained, since the parameter γ is selected ad hoc, the transient threshold rb does not offer any
detection guarantees. Consequently, it is possible for the full state-based estimator to yield a false
positive, when an attacker is absent and the system is affected by a more elaborate disturbance sequence
∆PL,net[k] ∈ Wnet. However, typical disturbance sequences assume the form of step load changes,
in which case a sufficiently large value of the parameter γ reduces the occurrence of false positives.
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Figure 6. Estimation residue and alarm signal evolution for an intermittent attack with α1 = 0.2.

To sum up, the set-theoretic detectors can never yield a false positive and they can yield a false
negative only when αi = α and σi[k] = 1 for all k ≥ 0 and for all i ∈ I and for small attack signals.
Thus, they can never yield a false negative during intermittent attacks. The output-based detectors
yield constantly false negatives and are not suitable for the disclosure of intermittent attacks. Finally,
the full state-based estimators cannot rely on their alarm condition to disclose intermittent attacks but
they can help inprove the security of the system through the alert condition r[k] > rb = γrcrit, which
can be activated during the transients. The activation of this condition depends on the value of the
ad hoc selected parameter γ and can either lead to false negatives, for small-valued attack signals
paired with small-valued disturbance sequences and a poorly chosen value of γ, or to false positives,
for elaborately constructed disturbance sequences and a poorly chosen value of γ. However, the latter
case is rare, since usually we are mostly concerned with step load changes.

In conclusion, the above analysis along with the overall simulation results demonstrate that a
hybrid detection scheme that combines a set-theoretic detector and a full state-based estimator is
particularly robust, regarding the matter of false positives and false negatives. A false positive simply
cannot occur, whereas a false negative may occur only under certain circumstances and can be avoided
with the proper selection of the design parameters of the detectors.

6. Conlusions

In this article, we develop estimation-based and set-theoretic detectors as security-enhancing
tools for the load-frequency control loop of a networked power system. The two detectors are linked
in terms of a hybrid concept that combines the best feats of each approach. Comparative studies and
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an overall assessment of the efficiency of the proposed compound scheme are performed in the case of
a two-area power system, considering an intermittent attack, that occurs at the same time with power
load disturbances. It is shown that a hybrid detection scheme, that implicates both methods, allows for
the timely and precise disclosure of an intermittent adversary.

The proposed detectors can also be used for the detection of other types of attacks as long as these
attacks alter directly the system dynamics. Examples include cyber-attacks that can cause parametric
changes in the model of the system or physical attacks that can lead to infrastructure failures and,
therefore, result in a different model of the system. If the attack alters the dynamics of the system,
then clearly there is no guarantee that the emanating state trajectories will always remain inside the
robust invariant set, which is used by the set-theoretic detector, and there is also no guarantee that the
estimation residue will always respect the steady-state and transient thresholds. The reason is that
both the robust invariant set and the estimator thresholds were calculated based on a different system
model. This implies that any attack scenarios that alter the system dynamics are potentially disclosable
with our methods. As a matter of fact, future researchers can test and assess the performance of the
proposed detectors considering the above attack scenarios. However, we stress that the proposed
detectors offer strict detection guarantees only in the case of the data corruption cyber-attacks which
were addressed in this work.
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