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Abstract: A new curved-type reflector for solar power generation is proposed. By adopting the
curved-type reflector between consecutive solar panel arrays, all incoming sunlight can be utilized and
thus, the generated power is significantly increased. Furthermore, the proposed curved-type reflector
can be generally used in four seasons regardless of the altitude or angle of the installation environment.
The optimum design rule for the curved-reflector, comparing to a plane-type reflector, is completely
developed in this paper. A new solar cell configuration best fit for the proposed curved-reflector is also
provided. Experimental results showed that the curved-type reflector improves the spatial average
solar power by 61% compared to no reflector case, which is even 11% higher than the plane-type
reflector. Reflectors, especially curved-type reflectors, are found to be one of promising solutions for
highly efficient solar power generation.
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1. Introduction

Solar power is rapidly replacing existing power sources such as fossil fuels in an effort to address
issues mostly related to global climate change, economy, and safety [1–8]. However, solar power has a
few limitations, including large fluctuations of the output power depending on weather conditions
and angle of sunlight incidence as well as low power generation efficiency [8,9]. Many studies have
attempted to improve the efficiency of solar power generation by: improving solar cell efficiency [10],
a maximum power point tracking (MPPT) operation method [11,12], a cooling system for solar
panels [13], and, optimization of photovoltaic inverters [14–16]. However, the impacts of these methods
on efficiency have remained limited due to the seasonal-, time- or weather-varying intensity levels of
sunlight incidence on the solar panels.

As the highest elevation angle of the sun is high in summer and low in winter, the seasonal
efficiency of the fixed-type solar panel system varies depending on the installation angle of the panels.
Generally, in solar power generation, solar panels are arranged consecutively, as shown in Figure 1.
However, if two or more panels are installed, additional efficiency loss can arise due to shadows created
by the variation of the elevation angle of the sun, especially in winter. Thus, the distance between
neighboring panels is often elongated to minimize the efficiency decrement due to the shadows, as
shown in Figure 2a. However, this elongated distance increases investment costs, such as land and
management costs. Furthermore, it causes waste of sunlight in summer when the unused area is
widened, as shown in Figure 2b.
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Figure 1. Proposed curved-type reflector for solar power generation. 

In an effort to overcome these problems, a bifacial solar panel that uses both sides of the panel 

was suggested [17,18]. Although it enables the use of the reflected sunlight from the ground or the 

water surface, the amount of increased power generation is merely about 10%. Therefore, using a 

reflector with high reflectivity is generally more desirable to increase the efficiency of solar power 

generation. 

Thus, reflectors are installed between neighboring panels, as shown in Figure 2c, to increase the 

solar power efficiency by nearly 50% in summer compared to no reflector case [19–24]. However, 

some reflected sunlight cannot enter the solar panel when the elevation angle of the sun is high.  

A curved-type reflector, also known as a parabolic-shaped collector, is often used to reflect the 

incident sunlight onto its focal line, which raises the temperature of the fluid inside the convergence 

point [25]. However, the curved-reflector has never been used to increase the generated power by 

consecutive solar panel array. As reflectors are one of the highly promising solutions for an additional 

efficiency increase in solar power generation, its potential contributions and limitations should be 

studied in more detail. Not enough analysis and design guidelines on the reflector type have been 

proposed so far. 

In this paper, a new solar panel array using a curved-type reflector by which all incoming 

sunlight can enter the solar panel regardless of the elevation angle of the sun is proposed, as shown 

in Figure 2d. Efficiency comparisons with no reflector and a plane-type reflector are provided with 

explicit analysis results [26]. 
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Figure 2. Perspectives of solar panel arrangements according to the inter-panel distance and elevation 

angle of the sun: (a) no reflector without shadows in winter, (b) no reflector without shadows in 

summer, (c) plane-type reflector with a loss of sunlight in summer, and (d) curved-type reflector 

without a loss of sunlight in summer. 

Figure 1. Proposed curved-type reflector for solar power generation.

In an effort to overcome these problems, a bifacial solar panel that uses both sides of the panel was
suggested [17,18]. Although it enables the use of the reflected sunlight from the ground or the water
surface, the amount of increased power generation is merely about 10%. Therefore, using a reflector
with high reflectivity is generally more desirable to increase the efficiency of solar power generation.

Thus, reflectors are installed between neighboring panels, as shown in Figure 2c, to increase the
solar power efficiency by nearly 50% in summer compared to no reflector case [19–24]. However, some
reflected sunlight cannot enter the solar panel when the elevation angle of the sun is high.

A curved-type reflector, also known as a parabolic-shaped collector, is often used to reflect the
incident sunlight onto its focal line, which raises the temperature of the fluid inside the convergence
point [25]. However, the curved-reflector has never been used to increase the generated power by
consecutive solar panel array. As reflectors are one of the highly promising solutions for an additional
efficiency increase in solar power generation, its potential contributions and limitations should be
studied in more detail. Not enough analysis and design guidelines on the reflector type have been
proposed so far.

In this paper, a new solar panel array using a curved-type reflector by which all incoming sunlight
can enter the solar panel regardless of the elevation angle of the sun is proposed, as shown in Figure 2d.
Efficiency comparisons with no reflector and a plane-type reflector are provided with explicit analysis
results [26].
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Figure 2. Perspectives of solar panel arrangements according to the inter-panel distance and elevation 

angle of the sun: (a) no reflector without shadows in winter, (b) no reflector without shadows in 

Figure 2. Perspectives of solar panel arrangements according to the inter-panel distance and elevation
angle of the sun: (a) no reflector without shadows in winter, (b) no reflector without shadows in
summer, (c) plane-type reflector with a loss of sunlight in summer, and (d) curved-type reflector without
a loss of sunlight in summer.
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2. Analysis of the Incidence Power for Different Reflector Types

2.1. Effective Amount of Sunlight Normal to a Panel

In this section, the output power of each type of reflector is fully analyzed. It is assumed that
the solar panel is installed to face south (in the northern hemisphere) for all reflectors. In solar power
generation systems, the generated power is mainly affected by three factors: the elevation angle of
the sun θg, the azimuth angle of the sun measured from the north θa, and the shadow caused by
neighboring panels, as shown in Figure 3. Note that θn is the angle of the normal vector of the panel
and

→
s and

→
n are the vectors indicating the direction of the sun from the panel and the normal vector of

the panel, respectively.
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Figure 3. Description of the solar panel and incident sunlight in vector form at an arbitrary date
and time.

The average power generated by a solar panel at a certain elevation and azimuth angle of the sun
can be expressed as follows:

Pout
(
θg,θa

)
= p0w0Re

(
θg,θa

)
Le

(
θg

)
(1)

where p0, w0, Re
(
θg,θa

)
, and Le

(
θg

)
correspondingly represent the solar power per unit area of the

panel, the panel width, the coefficient of the effective amount of sunlight normal to the panel, and the
effective length that determines the amount of sunlight entering into the panel. Therefore, given the
type and the size of the solar panel, the photovoltaic power from the solar panel will be determined by
two factors: Re

(
θg,θa

)
, which is the ratio of the sunlight that intersects the panel perpendicularly, and

Le
(
θg

)
, which is varied by the reflector types and θg for a given panel installation environment.

Figure 3 shows the solar panel and incident sunlight in vector form at an arbitrary date and time.
Re

(
θg,θa

)
is expressed as the inner product of two vectors

→
s and

→
n as follows:

→
s =

(
cosθg sinθa, cosθg cosθa, sinθg

)
(2)

→
n = (0,− cosθn, sinθn) (3)

Re
(
θg,θa

)
=

→
s ·
→
n∣∣∣∣→s ∣∣∣∣∣∣∣∣→n ∣∣∣∣ = − cosθg cosθa cosθn + sinθg sinθn (4)

As the fixed type of solar panel has a fixed direction for the sun regardless of whether or not
a reflector is used, the value of Re

(
θg,θn

)
for all reflector types changes in unison according to the

position of the sun. Therefore, Pout
(
θg,θa

)
concerning the type of reflector or without a reflector is only

affected by Le
(
θg

)
. In this paper, only Le

(
θg

)
is therefore considered in the performance comparison of

the different reflector types.
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2.2. Effective Panel Length for the Elevation Angle of the Sun

The proposed reflector-based solar panel system is described in Figure 1, where θp and θr are
the installation angle of the panel and reflector, Lp and Lr are likewise the lengths of the panel and
the reflector, and h is both the height of the panel and the reflector, respectively. In order to obtain
maximum power, it is important to choose the proper panel and reflector angle, as the altitude of the
sun varies with the time and season. In the fixed-type solar power system, the angle of the panel is
typically determined within the range of 0◦ to 60◦ [27,28]. However, there is a trade-off between the
amounts of power generated in summer and winter according to the installation angle of the panel.
If the installed panel angle is low, the amount of power generated can be maximized in summer in
exchange for the greater power loss in winter due to the low incidence angle of the sunlight on the solar
panel. On the other hand, the opposite is true if the installed angle of the panel is high. A reflector can
be used to increase the power generated in summer without affecting the power generated in winter
even if the installed panel angle is high. In this paper, the panel angle θp is set to 60◦ for example, so
that sunlight can enter the panel vertically in winter which can maximize the conversion efficiency
when the latitude of the location is 36.5◦, as it is at the experiment site in Korea. The reflector angle θr

is set to 30◦ so that the panel and the reflector are at a right angle which can minimize the inter-panel
distance while avoiding shadows in winter. Moreover, in order to simplify the analysis, the efficiency
change caused by the incident angle of sunlight into the solar panel or the optical loss of the reflector
are ignored.

As shown in Figure 4, the amount of generated solar power is in proportion to the intensity of
sunlight incident on the area of the solar panel, where Lh is the horizontal length of the inter-panel
considering the addition of the reflector which is represented as follows:

Lh = Lp(cosθp +
sinθp

tanθr
) (5)

Additionally, ground cover ratio (GCR) usually used for comparison with other configurations
can be described as follows [29,30]:

GCR =
Lp

Lh
=

tanθr

cosθp tanθr + sinθp
(6)

where the horizontal axis of the panel is assumed to be infinitely large.
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no reflector (left), plane-type reflector (middle), and curved-type reflector (right).

The effective length Le
(
θg

)
is increased by the amount of sunlight reflected by the reflector into

the panel, which enhances the intensity of the sunlight entering the solar panel, as shown in Figure 4.
The effective length can be categorized into three cases depending on θg and θr. Moreover, the effective
length in each case varies depending on the type of reflector (the plane-type reflector or curved-type
reflector) or whether a reflector is used. First, if θg is lower than θr (θg ≤ θr), the neighboring
panel blocks the sunlight and all reflector types show an identical value of Le

(
θg

)
. In this region, the

unblocked panel length Ls can be determined as follows [31,32]:

Ls = Lp·
cosθp + sinθp/ tanθr

cosθp + sinθp/ tanθg
(7)

Second, if θg is between θr and 2θr (θr < θg ≤ 2θr), all reflected sunlight by both the plane and
curved reflectors enters the solar panel. In this region, both reflector types show an identical value of
Le

(
θg

)
which is higher than in the absence of a reflector, and Le

(
θg

)
is determined by θg and Lh.

Third, if θg is between 2θr and 2θr + θp (2θr < θg ≤ 2θr + θp), some of the sunlight reflected by
the plane reflector does not enter the solar panel, whereas all of the sunlight reflected by the curved
reflector enters the solar panel, as shown in Figure 4c.

Fourth, if θg is higher than 2θr + θp (θg > 2θr + θp), then Le
(
θg

)
. of the plane reflector becomes

the same with no reflector type as all of the sunlight reflected by the plane reflector does not enter the
solar panel.

The effective length Le
(
θg

)
with respect to θg and the reflector type including GCR is summarized

and plotted as shown in Table 1 and Figure 5, respectively. From Equations (5) and (6), and Table 1,
following inequality for θg can be satisfied:

Lh sinθg ≥
Lp

sinθr
sinθr = Lp ≥ Lp cos

(
θg − θr

)
, for θr < θg ≤ 2θr (8)

2Lh sinθr cos(θg − θr) = 2Lp sin
(
θp + θr

)
cos

(
θg − θr

)
≥ 2Lp sin

(
θp + θr

)
cos

(
θp + θr

)
= Lp sin 2

(
θp + θr

)
≥ Lp sin

(
θg + θp

)
, for 2θr < θg ≤ 2θr + θp

(9)

Lh sinθg ≥ Lp(cosθp +
sinθp

tanθg
) sinθg = Lp sin

(
θg + θp

)
, for θg ≥ 2θr + θp (10)

Thus, Le
(
θg

)
of the curved-type reflector is always higher than that of the plane-type regardless of

θg which also can be verified from Figure 5. The panel angle θp is set to 60◦ for example in this paper,
so that sunlight can be incident on the panel vertically in winter to maximize the conversion efficiency
at the experiment site in Korea which has a latitude of 36.5◦. To minimize the inter-panel distance and
avoid the shadows in winter, the reflector angle θr and the GCR are set to 30◦ and 0.5, respectively.
As the output power is proportional to Le

(
θg

)
from (1), the ratio of theoretical spatial average solar
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powers for no reflector, plane-type reflector, and curved-type reflector can be achieved from Le
(
θg

)
,

which is 1.00 : 1.53 : 1.80 when θp = 60◦, GCR = 0.5.

Table 1. Effective length Le
(
θg

)
according to the elevation angle of the sun θg and the type of reflector.

Le(θg) No Reflector Plane-Type Reflector Curved-Type Reflector

Low angle (θg ≤ θr) Ls sin
(
θg + θp

)
Ls sin

(
θg + θp

)
Ls sin

(
θg + θp

)
Middle angle (θr < θg ≤ 2θr) Lp sin

(
θg + θp

)
Lh sinθg Lh sinθg

High angle (2θr < θg < 2θr + θp) Lp sin
(
θg + θp

)
2Lh sinθr cos

(
θg − θr

)
Lh sinθg

High angle (2θr + θp < θg) Lp sin
(
θg + θp

)
Lp sin

(
θg + θp

)
Lh sinθg

Ground cover ratio (GCR) tanθr
cosθp tanθr+sinθp

tanθr
cosθp tanθr+sinθp

tanθr
cosθp tanθr+sinθp
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Figure 5. Theoretical results of L
(
θg

)
/Lp with respect to θg, which is plotted for θp = 30◦, 60◦, and

GCR = 0.3, 0.5, 0.7, for example.

2.3. Design of the Curved Reflector

As shown in Figure 4c, some of the sunlight reflected by the plane-type reflector may not enter
the solar panel when the elevation angle of the sun is high, which can decrease the efficiency. To avoid
such sunlight leaks, the curved-type reflector must be designed carefully such that all of the reflected
sunlight enters the panel regardless of the elevation angle of the sun. If all of the sunlight reflected by
the curved-type reflector is incident on the panel when the sun’s altitude is at the meridian altitude in
summer, θg,max, leaked sunlight can be eliminated under all conditions, as shown in Figure 6. Sunlight
with a maximum altitude in summer θg,max can be represented as follows:

θi + θt ≤ θg,max, (11)

where θi is the angle between the sunlight and the tangent line at the endpoint of the curved reflector
and θt is the angle of the tangent line at the endpoint of the curved reflector.
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Figure 6. Description of the solar panel system with a curved reflector and sunlight with an elevation
angle of θg.

In order to enter all of the reflected sunlight into the panel, θi must be smaller than θt, considering
that a pair of angles opposite to each other are identical and the incident and the reflection angle are
also identical at the reflector interface. This is expressed as follows:

θi ≤ θt (12)

From Equations (11) and (12), the relationship between θi and θg,max can be expressed as follows:

θi ≤
1
2
θg,max (13)

When the sunlight enters at an angle lower than θg,max, conditions of Equations (11)–(13) are met
such that all of the reflected sunlight enters the panel regardless of the elevation of the sun. In this
paper, θt was set to 0.5θg,max, thus meeting the requirements.

Figure 7 shows parameters that determine the curvature of the proposed curved-type reflector.
Note that Hr and Rr. are the height and radius of the curved reflector and θC is the angle between
the tangent line at the endpoint of the reflector and the line connecting the endpoints of the reflector.
The parameters of θt, θr, and Lr are given values determined by the installation environment and
specifications of the solar panel. Thus, the curvature of the proposed curved reflector which meets
the conditions of Equations (11)–(13) is determined by two parameters, Hr and Rr, which can be
represented as follows:

Hr = Rr(1− cosθc) (14)

Rr =
Lr

2 sinθc
(15)

θc = θt − θr (16)
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2.4. Design of the Solar Cell Configuration of the Solar Panel

If the distribution of the light intensity incident on the solar panel is uneven, the power generated
by the solar panel varies depending on the method used to connect the solar cells, such as a series
connection or a parallel connection. For the curved-type reflector system, the intensity of the sunlight
along the vertical line of the solar panel varies depending on the solar altitude and the curvature of the
reflector. However, in conventional solar panels, solar cells are usually arranged vertically in series, as
shown in Figure 8a. If the solar cell is connected in the conventional arrangement in the curved-type
reflector system, the amount of generated power is determined by the solar cells at the weakest point
of the sunlight. Therefore, the conventional configuration is not suitable for the proposed curved-type
reflector solar power system, as the increased sunlight by the curved reflector cannot be used for
power conversion.

Instead, a solar cell configuration that each horizontal line of the solar panel is connected in series
is proposed in this paper, as shown in Figure 8b. As the sunlight intensity of each horizontal line of the
panel is nearly constant regardless of the reflector type, the maximum power can be obtained in each
line by arranging the solar cells as shown in Figure 8b.
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Figure 8. Description of (a) the conventional and (b) the proposed solar cell configurations best fit for
the curved-type reflector.

The maximum power point (MPP) of the output power Pout with respect to the reflector type is
obtained in each case using the open-circuit voltage of each line Voc,k, the short-circuit current of each
line Isc,k, and the fill factor of the solar panel F f which is the ratio of the maximum output power of the
solar cell to the product of the open-circuit voltage and short-circuit current of the solar cell, where k
represents the kth line of the panel, as described in Figure 9. This is expressed as follows [11]:

Pout = F f

n∑
k=1

Voc,k·Isc,k (17)

where n is the number of series-connected solar cell lines of the panel.
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3. Results

The proposed solar panel with the curved-type reflector was verified using an experimental
prototype, as shown in Figures 10 and 11. The solar panel was fabricated using eight lines of
series-connected monocrystalline solar cells with 48 cells in each line, with the sectional area of
1342 mm by 798 mm, as shown in Figure 10. The three reflector designs (no reflector, the plane-type
reflector, and the curved-type reflector) were fabricated and tested. Both the planar and curved
reflectors were made of acrylic, with reflectivity of 85% for convenience of manufacturing, and the
sectional area in both cases was 1342 mm by 1383 mm. The installation angles of the solar panel and
the reflectors were set to 60◦ and 30◦, respectively, and the latitude of the location where they were
installed was 37.5◦. The curvature of the curved reflector was set according to the parameters θc and
Hr, which were set to 7.5◦ and 125 mm, respectively, such that all of the reflected sunlight can enter the
solar panel where θg,max is 75◦.
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Figure 11. Fabricated prototypes of (a) the planar-type reflector and (b) the proposed curved-type
reflector solar power system.

To measure the maximum output power of the panel, as identified from Equation (17), the
open-circuit voltage Voc,k and short-circuit current Isc,k of eight lines of the solar panel for each reflector
type were measured simultaneously over various elevation angles of the sun θg using LABVIEW,
where n was set to 8. Additionally, the current-voltage characteristics of the fabricated solar panel were
assessed, and the experimental value of fill factor F f was found to be 0.74.

Figure 12 shows the experimental results of Pout for each reflector case with respect to θg when it
ranged from 0◦ to 90◦ in 5◦ steps. Since θg,max is 75◦ in the installation environment for the latitude of
36.5◦ incident sunlight angle above θg,max cannot be measured experimentally. Thus, experimental
results where incident sunlight angles exceeding θg,max were measured by leaning the entire solar
power system. For example, θg of 80◦ was measured by leaning the whole system 5 degrees to the
direction of sunlight. Note that as the proposed curved type reflector was optimized at θg,max, some of
the reflected sunlight may not enter into the panel if the incident sunlight angle is above θg,max. Each of
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the results was normalized according to Pmax, which is the maximum value of Pout. As described in the
analysis, the power generated by the solar panel was higher in the curved-type reflector as θg increases
due to the increased incident solar power entering the panel due to the curved-type reflector. When
θg exceeds 60◦, the generated output power of the curved-type reflector decreases, as the angle of
incidence is high enough to decrease the conversion efficiency of the solar cell [33] and the curved-type
reflector was designed for θg,max of 75◦. The ratio of the measured spatial average solar powers for no
reflector, plane-type reflector, and curved-type reflector was 1.00 : 1.45 : 1.61. This ratio is a little less
than the theoretical result of 1.00 : 1.53 : 1.80, as the reflectivity of the reflector is not ideal and the
efficiency of the solar cell depends on the angle of the incident light or its actual temperature. The
experiment values for θg > 60◦ deviate from the theory, as shown in Figure 12b,c due to the non-ideal
reflectivity of reflectors.

However, the proposed curved reflector basically aims to increase the incident light on the panel
dramatically compared to the conventional system, and the temperature increment effect can be
minimized by changing the curvature of the curved reflector. As the goal of this paper is to verify
the effectiveness of the curved-type reflector, long-term performance and a time average comparison
among the reflector types during the year or day was not done, and this remains as future work.

The maximum output power from the solar panel for three cases which are no reflector, plane-type
reflector, and curved-type reflector, is summarized in Table 2. Output power was measured when
the sunlight illuminance is 100 kLux, which is the same as the illuminance of direct sunlight. The
theoretical value was calculated based on the characteristics of the fabricated solar panel. The result
shows that not only the spatial average power but also the maximum output power is higher than the
other two cases when the curved reflector is adopted.
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Figure 12. Experimental results of Pout/Pmax with respect to the elevation angle of the sun θg and the
reflector type: (a) no reflector, (b) plane-type reflector, and (c) curved-type reflector.

Table 2. Comparison of maximum output power for no reflector, plane-type reflector, and
curved-type reflector.

No Reflector Plane-Type Reflector Curved-Type Reflector

Theory (W/100kLux) 107.0 (θg = 30◦) 185.3 (θg = 60◦) 214.0 (θg = 90◦)
Experiment (W/100kLux) 105.6 (θg = 35◦) 161.5 (θg = 55◦) 171.2 (θg = 60◦)

Figure 13 shows the measured uneven characteristics of the illuminance distribution of the
curved-type reflector when the elevation angle of the sun is 60◦. A total of 242 points were measured
and each result was normalized by the minimum value of the illuminance. The results indicate that
reflected sunlight was concentrated along the horizontal line as the light distribution of the reflected
sunlight is not even. Therefore, the horizontal connection of the solar cells in series is more suitable
for the proposed curved-type reflector-based solar power system. The concentration of the reflected
sunlight can be mitigated by adjusting the curvature of the curved-type reflector, which remains as
future work.
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Figure 13. Measured illuminance distribution of the solar panel with a curved-type reflector when the
elevation angle of the sun is 60◦.

4. Conclusions

Solar panels using the curved-type reflector showed significantly increased generated solar power
compared to conventional systems with no reflector or plane-type reflector. Complete theoretical
analyses on the performance of the curved-type and plane-type reflectors according to the elevation
angle of the sun are first shown in this paper. With the proposed curved-type reflector, all of the reflected
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sunlight enters the panel regardless of the elevation angle of the sun. The ratio of experimental results
for the spatial average solar power for no reflector, plane-type reflector, and curved-type reflector was
1.00 : 1.45 : 1.61. The proposed theoretical models are found to be quite accurate except for a higher
elevation angle of the sun, where reflectivity of the non-ideal reflectors is deteriorated. The proposed
curved-type reflector can be easily installed between existing solar panels, which increases the solar
power generation on average of up to 61%. It is demonstrated throughout this paper, that reflectors are
one of the promising solutions for solar power generation. Especially a curved-type reflector is a better
solution than the plane-type one. However, the efficiency improvement for a higher elevation angle of
the sun was not effective due to the non-ideal reflectivity of the reflectors.

To improve the efficiency of the reflector-type solar power generation for a higher angle of the
sun, as well as to determine the minimum reflectivity of reflectors for achieving a given efficiency
improvement, are left for future works.
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