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Abstract: The integration of wind energy into the power grid is challenging because of its variability,
which causes high ramp events that may threaten the reliability and efficiency of power systems. In this
paper, we propose a novel distributionally robust solution to wind power ramp management using energy
storage. The proposed storage operation strategy minimizes the expected ramp penalty under the
worst-case wind power ramp distribution in the Wasserstein ambiguity set, a statistical ball centered
at an empirical distribution obtained from historical data. Thus, the resulting distributionally robust
control policy presents a robust ramp management performance even when the future wind power
ramp distribution deviates from the empirical distribution, unlike the standard stochastic optimal
control method. For a tractable numerical solution, a duality-based dynamic programming algorithm is
designed with a piecewise linear approximation of the optimal value function. The performance and
utility of the proposed method are demonstrated and analyzed through case studies using the wind
power data in the Bonneville Power Administration area for the year 2018.

Keywords: energy storage operation; wind ramp rate; renewable integration; stochastic control;
dynamic programming; distributionally robust optimization; linear programming

1. Introduction

To decarbonize the electric power grid, there have been growing efforts to utilize clean, renewable
energy sources. The utilization of wind and solar power generation is challenging because these energy
sources are uncertain, intermittent, and nondispatchable. In particular, as the penetration of wind
power increases, fast-ramping generators must be called upon more frequently to balance supply and
demand, or wind power production must be curtailed [1,2]. Such ancillary services and wind power
curtailments will offset the economic and environmental benefits of wind energy.

One possible way to alleviate the negative impact of a growing wind power ramp rate is to
utilize the flexibility that energy storage can offer. Energy storage devices are capable of shifting wind
generation to reduce the ramp rate of wind generation [3,4]. For an efficient charging/discharging
operation of battery energy storage systems, a model predictive control approach was proposed
in [5]. However, a certain amount of wind generation must be curtailed when using this method.
In [6], the wind power ramp control problem using energy storage was formulated as a social welfare
maximization problem. As the optimal solution to the problem requires information about the future
wind generation and demand, a suboptimal online algorithm is presented; however, the suboptimal
approach suffers a performance loss. In [7], a storage control approach using a two-stage stochastic
optimization was proposed. This operational strategy utilizes the forecast of wind energy obtained
by a Gaussian process. Another optimization-based method was developed by using ramp scenario
forecasts [8]. The performance of both methods depends on the accuracy of forecasted information
because the optimization problems in [7,8] directly use wind forecasts. Arguably, the most popular
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method for efficient energy storage operation is stochastic optimal control [9–12]. The associated
stochastic optimal control problems are solved by dynamic programming or its approximate version,
which often allows important structural properties of optimal strategies. Unfortunately, this
method requires knowledge about the probability distribution of all the uncertainties such as future
wind power generation. However, accurate distribution models are difficult to obtain in practice.
Thus, the effectiveness of stochastic optimal control methods is limited as the wind power distribution
at any given time deviates from the distribution estimated using historical data.

The methods mentioned above either require reliable information about future wind power
generation or compromise the control performance. To account for these limitations, we seek an
efficient storage operation strategy for wind power ramp management when only an inaccurate
probability distribution of wind power generation is available. This method is based on distributionally
robust stochastic control, which minimizes the expected value of a given cost function in the face
of the worst-case distribution drawn from a known set, called the ambiguity set [13–19]. In this
work, the ambiguity set is chosen as the set of all probability distribution whose Wasserstein distance
from an empirical distribution constructed from data is no greater than a certain threshold [20–22].
The proposed storage control strategy is robust against wind ramp distribution errors characterized
by the Wasserstein ambiguity set. It is worth mentioning that some storage control techniques do not
require the exact distribution of uncertainties [23,24]. However, these approaches do not aim to design
a controller that is robust against distribution errors, unlike our method.

The contributions of this work can be summarized as follows. First, a novel storage operation
strategy is proposed to provide a robust ramp management performance even when future wind
power ramp distribution deviates from the empirical distribution obtained by historical data.
Second, we develop a computationally tractable dynamic programming (DP) algorithm by using
a piecewise linear approximation of the optimal value function with a uniform convergence property
and Kantorovich duality. Thus, in each DP iteration, it suffices to solve linear programs for all grid
points that discretize the state space. Third, the performance of the distributionally robust method is
evaluated using the wind power generation data in the Bonneville Power Administration (BPA) control
area and is compared with that of the standard stochastic optimal control method. Our simulation
studies indicate that the proposed method reduces the ramp penalty by 4.82% on average compared to
the standard stochastic optimal control method. We also examine how the ambiguity set size and the
storage size affect the ramp management performance of the distributionally robust control method.
This paper is significantly expanded from a preliminary conference version in many aspects [25].
The problem studied in this paper is wind power ramp management, while [25] considers a wind
energy balancing problem. In addition, we use the Wasserstein ambiguity set and examine the effect
of the set size, unlike [25], which employs the moment-based ambiguity set (The performance of the
moment-based approach in [25] depends on the reliability of moments estimated from wind power
generation data. However, the proposed Wasserstein approach does not have such an issue because it
does not use information about moments.) Furthermore, a tractable dynamic programming solution
is carefully developed in this work, using a linear programming approximation with a uniform
convergence property.

The remainder of this paper is organized as follows. In Section 2, the Wasserstein distributionally
robust storage control problem is formulated for wind power ramp management using historical data.
Its dynamic programming solution with a piecewise linear approximation is proposed in Section 3.
In Section 4, the performance and utility of the proposed method are demonstrated and analyzed
using the wind power generation data in BPA for the year 2018.
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2. Problem Formulation

2.1. Energy Storage Model

Consider an energy storage device whose state of charge (SOC) xs
t evolves as

xs
t+1 = η[xs

t + (αcuc
t − ud

t )∆t], t = 0, 1, . . . , T − 1,

where ∆t is the length of each time interval. Here, the control inputs uc
t and ud

t determine the
amount of power (MW) by which the storage device is charged and discharged, respectively,
at time t. The coefficients η ∈ (0, 1] and αc ∈ (0, 1] account for the dissipation loss and the charging
inefficiency, respectively. Given the capacity of the storage device, xs

t ∈ [xs
min, xs

max], the decision
variable ut := (uc

t , ud
t ) must satisfy the following constraints:

0 ≤ uc
t ≤ min{(xs

max − xs
t )/(α

c∆t), uc
max}

0 ≤ ud
t ≤ min{xs

t /∆t, ud
max},

(1)

where uc
max and ud

max denote the charging and discharging limit, respectively. If the storage device is
connected to a bus, the amount of power drawn from the bus at time t is given by

h(ut) := uc
t − αdud

t ,

where αd ∈ (0, 1] represents the discharging efficiency. This energy storage model is illustrated
in Figure 1.
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+
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Figure 1. Flow of power in the energy storage model.

2.2. Wind Power Ramp Management

Let wt denote the amount of power generated by wind power plants in an area of interest at time t.
We model the evolution of wind power production by

wt+1 = wt + ξt,

where ξt is a random variable in Ξ ⊆ R. Note that (wt+1 − wt)/∆t = ξt/∆t represents the (average)
ramp rate of the wind power production. We introduce a new state xp

t , which evolves according to

xp
t+1 = h(ut) + ξt.

Let xt := (xs
t , xp

t ) ∈ R2 be the augmented state, and X := [xs
min, xs

max] × [xp
min, xp

max] be the
augmented state space.
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Suppose the wind power plants and the energy storage device are located in the same area
(possibly connected in the same bus). Their net power production in period t is given by

yt := wt − h(ut),

as illustrated in Figure 1. Let

dt := yt − yt−1 = ξt−1 − h(ut) + h(ut−1) = xp
t − h(ut). (2)

Then, dt/∆t represents the ramp rate of net power production.
Let Ru > 0 and Rd > 0 denote the ramp-up limit and ramp-down limit (MW), respectively.

To compute the ramp penalty when dt ≥ 0, consider the following cases:

• If 0 ≤ dt < Ru, then the ramp penalty, denoted by rt(xt, ut), is linear in dt, i.e.,

rt(xt, ut) := pdt.

• If dt ≥ Ru, then the ramp penalty is given by

rt(xt, ut) := pu(dt − Ru) + pRu,

where pu > p. In other words, for the amount exceeding the ramp-up limit, we are penalized
with price pu greater than p.

When dt ≤ 0, by symmetry, we have the following:

• If −Rd < dt ≤ 0, then the ramp penalty is given by

rt(xt, ut) := −pdt.

• If dt ≤ −Rd, then the amount below the ramp-down limit is penalized with price pd > p, i.e.,

rt(xt, ut) := −pd(dt + Rd) + pRd.

Note that the ramp penalty depends on the storage control action ut as well as the new state xp
t

through the ramp dt of net power production. Thus, the ramp penalty can be reduced by carefully
controlling the storage device. The ramp management problem using energy storage can be formulated
as (To focus on the wind power ramp management capability of our method, we use this stylized
control problem, neglecting the energy cost and the aging of batteries (in the case of battery energy
storage systems). However, these additional factors can be incorporated by modifying the cost
function.)

min
π∈Π

Eπ

[ T−1

∑
t=0

rt(xt, ut) | x0 = x
]

, (3)

where Π is the set of admissible control policies,

Π := {π = (π0, . . . , πT−1) |ut = πt(xt)

∈ U (xt) := [0, min{(xs
max − xs

t )/(α
c∆t), uc

max}]× [0, min{xs
t /∆t, ud

max}]}.

The stochastic optimal control problem (3) can be solved when the probability distribution µt of
the wind ramp variable ξt is available. Unfortunately, it is difficult to accurately estimate the probability
distribution µt. Suppose that T = 288 and ∆t = 5 min. In other words, by solving this problem, we can
design an optimal controller that operates for 24 h. To estimate the distribution of ξt, we may use its
historical data for the past 15 days. However, this distribution may not be valid for the next 15 days.
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For example, as shown in Figure 2, there is a clear discrepancy between the empirical distribution
of wind power ramp rate at 12PM in the BPA area obtained by the data for 1–15 April 2018 and that
obtained by the data for 16–30 April 2018. If an optimal controller is constructed using distributional
information that will be invalid at the test time, it may not perform well. Our distributionally robust
method aims to resolve this issue, as we will see later.
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Figure 2. The empirical distribution of wind power ramp rate at 12PM in the Bonneville Power
Administration (BPA) control area obtained by the data for (a) 1–15 April 2018 and (b) 16–30 April 2018.

2.3. Ambiguity of Wind Ramp Distribution

One of the simplest ways to estimate the probability distribution of the wind ramp variable ξt is
to use the empirical distribution constructed from the (historical) data {ξ̂(1)t , . . . , ξ̂

(N)
t }:

νt :=
1
N

N

∑
n=1

δ
ξ̂
(n)
t

,

where δ
ξ̂
(n)
t

denotes the Dirac delta measure concentrated at ξ̂
(n)
t . However, this empirical distribution

may not reflect the actual behavior of ξt, particularly at the (future) test time or operation time of
energy storage. To characterize errors in the empirical distribution, we introduce the following set
called the ambiguity set, of probability distributions:

Dt := {µt ∈ P(Ξ) |W(µt, νt) ≤ θ}, (4)

where P(Ξ) is the set of probability distributions on Ξ. The ambiguity set is a statistical ball centered at
the empirical distribution with radius θ > 0. Here, the distance between two probability distributions
is measured by the Wasserstein metric of order 1,

W(µ, ν) := min
κ∈P(Ξ2)

{ ∫
R2
|ξ − ξ ′|κ(dξ, dξ ′) | Π1κ = µ, Π2κ = ν

}
,

where Πiκ denotes the ith marginal of κ. The Wasserstein distance between two probability
distributions can be interpreted as the minimum cost of transporting mass from one to another using
nonuniform perturbation. The true distribution of ξt lies in the ambiguity set if a sufficiently large θ

is chosen. We use the Wasserstein ambiguity set Dt to design a control policy that is robust against
errors in the empirical distribution νt of the ramp variable ξt. The Wasserstein ambiguity sets have
received much attention because the associated distributionally robust optimization (DRO) problems
provide solutions with probabilistic out-of-sample performance guarantees and have equivalent
tractable forms [20–22].
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2.4. Wasserstein Distributionally Robust Stochastic Control

Our goal is to construct a control policy that performs well even when the true distribution µt of
the wind ramp variable ξt deviates from its empirical distribution νt obtained from (historical) data.
We take a game-theoretic approach. Consider a two-player zero-sum game in which Player I selects a
storage control action to minimize the total ramp penalty while Player II, an adversary, chooses the
probability distribution of ξt from the Wasserstein ambiguity set Dt to maximize the same penalty.
The strategy space for Player I is given by Π. The policy space ΓD for Player II is chosen as

ΓD := {γ := (γ0, . . . , γT−1) | µt = γt(xt) ∈ Dt},

where the subscript D is used to emphasize the fact that the adversary’s strategy space depends on
the Wasserstein ambiguity set. The Wasserstein distributionally robust stochastic control problem for
ramp management is then formulated as

min
π∈Π

max
γ∈ΓD

Eπ,γ
[ T−1

∑
t=0

rt(xt, ut) | x0 = x
]

. (5)

An optimal distributionally robust policy π? minimizes the worst-case ramp penalty under the
most adversarial wind ramp distributions in the ambiguity set. Thus, π? is robust against distribution
errors characterized by the Wasserstein ambiguity set. The radius θ of the Wasserstein ball controls the
robustness and conservativeness of control policy π?. A detailed discussion of tuning θ and theoretical
properties of π? can be found in [19].

3. Solution via Dynamic Programming

To solve the minimax stochastic control problem (5), we use dynamic programming in conjunction
with modern distributionally robust optimization (DRO). To describe the evolution of the augmented
state xt := (xs

t , xp
t ) ∈ X , we use the following notation:

xt+1 = f (xt, ut, ξt),

where f (x, u, ξ) :=
(
η[xs + (αcuc− ud)∆t], h(u) + ξ

)
. Note that the ramp penalty is a convex piecewise

linear function and can be expressed as

rt(xt, ut) = max{pdt, pu(dt − Ru) + pRu,−pdt,−pd(dt + Rd) + pRd}
= max{p(xp

t − h(ut)), pu(x
p
t − h(ut)− Ru) + pRu,−p(xp

t − h(ut)),−pd(x
p
t − h(ut) + Rd) + pRd}.

(6)

3.1. Bellman Equation

We define the (optimal) value function vt : X → R of (5) as

vt(x) := min
π∈Π

max
γ∈ΓD

Eπ,γ
[ T−1

∑
τ=t

rτ(xτ , uτ) | xt = x
]

,

which represents the minimum cost-to-go under the most adversarial distributions chosen from D.
By the dynamic programming principle, the value function satisfies the following Bellman equation:

vt(x) = inf
u∈U (x)

sup
µ∈Dt

Eµ[rt(x, u) + vt+1( f (x, u, ξt))], t = 0, . . . , T − 1

with vT(x) ≡ 0 (More precisely, the dynamic programming principle holds under the measurable
selection condition, which we assume throughout this paper. More technical details can be found in [26].)
This Bellman equation may be solved backward in time, i.e., from T to 0. However, it requires an
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optimal solution to the minimax optimization problem, which is computationally challenging to solve.
This is because the inner minimization problem over probability distributions is infinite dimensional.

3.2. Tractable Reformulation

To alleviate the computational difficulty, we reformulate the Bellman equation into a tractable
form by using Wasserstein DRO based on the Kantorovich duality principle [20,22]. Specifically,
the right-hand side can be expressed in the following dual form:

vt(x) = inf
u,λ,z

θλ + rt(x, u) +
1
N

N

∑
n=1

zn

s.t. vt+1( f (x, u, ξ))− λ|ξ̂(n)t − ξ| ≤ zn ∀ξ ∈ Ξ ∀n = 1, . . . , N

0 ≤ uc ≤ min{(xs
max − xs)/(αc∆t), uc

max}
0 ≤ ud ≤ min{xs/∆t, ud

max}
λ ≥ 0.

(7)

It is shown that strong duality holds under a minor technical condition [22]. Note that the
reformulated Bellman equation involves a single minimization problem instead of the minimax
problem in the original one. This minimization problem is a convex optimization problem given any
x ∈ X because rt and vt are convex and f is affine. Furthermore, all the optimization variables u, λ,
and z are finite dimensional, unlike those of the original Bellman equation. However, the first inequality
constraint must be satisfied for all ξ in the support Ξ, which is a dense set. Thus, the reformulated
minimization problem is a convex semi-infinite program. This can be numerically solved by several
existing algorithms, such as discretization and sampling-based methods (see [27–29] and the
references therein).

3.3. Controller Design Algorithm Using Linear Programming

By using the piecewise linear structure of the ramp penalty function, we can further rewrite the
Bellman Equation (7), with a slack variable b, as

vt(x) = inf
u,λ,z,b

θλ + b +
1
N

N

∑
n=1

zn

s.t. vt+1( f (x, u, ξ))− λ|ξ̂(n)t − ξ| ≤ zi ∀ξ ∈ Ξ ∀n = 1, . . . , N

p(xp − h(u)) ≤ b

pu(xp − h(u)− Ru) + pRu ≤ b

− p(xp − h(u)) ≤ b

− pd(xp − h(u)− Rd) + pRd ≤ b

0 ≤ uc ≤ min{(xs
max − xs)/(αc∆t), uc

max}
0 ≤ ud ≤ min{xs/∆t, ud

max}
λ ≥ 0.

(8)

This optimization problem has a linear objective function. Furthermore, all the constraint functions
are affine except the first. Observing that u 7→ vt+1( f (x, u, ξ)) is a convex function, we approximate it
as a convex piecewise linear function, i.e.,

vt+1( f (x, u, ξ [k])) ≈
M

∑
i,j=1

γi,j,kvt+1(x[i], y[j]),
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where {(x[i], y[j])}M
i,j=1 is the set of rectangular grid points that discretize the state space (Here, we

assume that there are the same number of grid points on each axis. However, this assumption can
easily be relaxed)and {ξ [k]}K

k=1 is the set of grid points that discretize the support Ξ. The uniform
convergence property of this approximation scheme is shown in [30]. Here, the weight γi,j,k represents
the contribution of (x[i], y[j]) to approximating f (x, u, ξ [k]), and thus satisfies

f (x, u, ξ [k]) =
M

∑
i,j=1

γi,j,k

[
x[i]

y[j]

]
,

M

∑
i,j=1

γi,j,k = 1, γi,j,k ≥ 0.

With this piecewise linear approximation, the Bellman Equation (8) can be expressed as

vt(x) = inf
u,λ,z,b,γ

θλ + b +
1
N

N

∑
n=1

zn

s.t.
M

∑
i,j=1

γi,j,kvt+1(x[i], y[j])− λ|ξ̂(n)t − ξ [k]| ≤ zn ∀k = 1, . . . , K, ∀n = 1, . . . , N

f (x, u, ξ [k]) =
M

∑
i,j=1

γi,j,k · (x[i], y[j]) ∀k = 1, . . . , K

M

∑
i,j=1

γi,j,k = 1 ∀k = 1, . . . , K

γi,j,k ≥ 0 ∀i, j = 1, . . . , K, ∀k = 1, . . . , K

p(xp − h(u)) ≤ b

pu(xp − h(u)− Ru) + pRu ≤ b

− p(xp − h(u)) ≤ b

− pd(xp − h(u)− Rd) + pRd ≤ b

0 ≤ uc ≤ min{(xs
max − xs)/(αc∆t), uc

max}
0 ≤ ud ≤ min{xs/∆t, ud

max}
λ ≥ 0.

(9)

Given any x ∈ X , this optimization problem is a linear program (LP) because f and h are
affine functions. Thus, this optimization problem can be efficiently solved by using existing algorithms
such as interior-point methods and simplex methods (see, e.g., [31–33] and the references therein).

Algorithm 1 describes the design procedure for a distributionally robust storage controller.
It aims to solve the Bellman equation to compute the value function vt over a discretized state space.
As specified in Line 7, the value function at a particular grid point is obtained by solving the
LP (9). Note that an optimal u? of this LP is assigned to be an optimal action at state (x[i], y[j]),
i.e., π?

t (x[i], y[j]) = u?. An optimal control action at a nongrid point x can also be computed by solving
the LP with x. Thus, this algorithm does not require any explicit interpolation, which may introduce
additional numerical errors. The input data {ξ̂(1)t , . . . , ξ̂

(N)
t } can be considered as a training sample.

In fact, the proposed method can be interpreted as an adversarial training of a storage controller to make
it robust against distributional errors.

The distributionally robust control problem (5) is solved once using Algorithm 1 before the storage
operation starts. In other words, the proposed controller design approach is an offline method unlike,
for example, receding horizon control. Note also that the proposed reformulation method does not
require the direct calculation of Wasserstein distances, which is #P-hard [34]. This is an advantage of
Wasserstein DRO that enables us to obtain an optimal solution through the dual form (7) or (9) without
explicitly computing Wasserstein distances.
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Algorithm 1: Distributionally Robust Storage Controller Design via Linear Program (LP).

1 Input:

2 (Historical) data of the wind ramp variable ξt: {ξ̂(1)t , . . . , ξ̂
(N)
t } for t = 0, 1, . . . , T − 1;

3 Initialization:
4 Set vT(x[i], y[j])← 0 for all i, j = 1, . . . , M;

5 Dynamic programming:
6 for t = T − 1 : −1 : 0 do
7 foreach (x[i], y[j]) do
8 Set x← (x[i], y[j]);
9 Evaluate vt(x[i], y[j]) by solving the LP (9);

10 Set π?
t (x[i], y[j]) as an optimal u? of the LP (9);

11 end
12 end

4. Case Studies

To demonstrate the performance and utility of the proposed distributionally robust ramp
management method, we perform simulation studies using the wind power generation data in
the BPA control area for the year of 2018 [35]. The storage size is chosen as xs

max = 10 MWh with
power rating uc

max = ud
max = 10 MW. The initial SOC of storage is chosen to be the half of its capacity,

i.e., xs(0) = xs
max/2. The storage operation interval is ∆t = 5 min, and the number of time steps T

is 288. Thus, the storage device manages the ramp rate for 24 h. The ramp-rate limit is chosen as
±0.5 MW/min by setting Ru = Rd = 2.5 MW. Additionally, the following parameters are used in the
simulations: η = 0.99, αc = αd = 0.9, p = 0.005, pu = pd = 1, θ = 0.1, and K = 21. The sample of the
ramp variable ξt is constructed for each month from the BPA wind generation data. Since outliers bias
the trained controller, we clipped out data points lying outside [−120, 120] MW and replaced such
outliers with ±120 MW. The state space X = [0, 10]× [−120, 120] was discretized with 11× 21 grid
points with grid spacing 1 for x-axis and 12 for y-axis. All the numerical experiments were performed
on a Mac with 4.2 GHz Intel Core i7 and 64 GB RAM. The LP problem (9) was solved using CPLEX
for MATLAB.

4.1. Comparison with Stochastic Optimal Control

We first compare the performance of the proposed distributionally robust method and that
of the standard stochastic optimal control method, which is the most popular approach to energy
storage operation (e.g., [9–11]). The stochastic optimal controller is designed by solving (3) via
dynamic programming. To evaluate the performance for all four seasons, the BPA wind data of
January, April, July, and October are used. For each month, we split the data into the training and test
data set: the training data are chosen as the ramp data for the first 15 days, i.e., from day 1 to day 15;
and the test data are selected as those for the next 15 days, i.e., from day 16 to day 30. We use three
different training sample sizes, 5, 10, and 15, in this comparison study. The training data are chosen
from day 15, backward in time. For example, in the case of sample size 5, the training data are selected
for days 11–15.

The performance of the two controllers are evaluated as the total ramp penalty for 24 h relative to
the “no storage” case. In other words, the cost is evaluated as the ratio of the total ramp penalty with
energy storage to that without storage. As shown in Figure 3, the proposed distributionally robust
controller outperforms the standard stochastic optimal controller for all months and for all sample sizes.
Specifically, the distributionally robust method saves the ramp penalty by 4.82% on average compared
to the stochastic optimal control method, as summarized in Table 1. This result indicates that the
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distributionally robust method consistently resolves the issue coming from distribution errors for
every season and sample size. The stochastic optimal controller sometimes performs worse than the
“no storage” case. This is because the training set distribution is different from the test set distribution,
i.e., the training set does not offer useful information about the behavior of wind power ramping in
the near future. The stochastic optimal controller believes such a misleading or uninformative training
set distribution, while the distributionally robust controller does not. The proposed method actively
takes into account potential distribution mismatches and makes control decisions robust against
the distribution errors. The effect of the distributionally robust method on net power production is
shown in Figure 4. The controlled storage smoothens wind power fluctuations and thus reduces the
ramp penalty.

When the sample size is too small, the data may provide too little information that is useful
in decision making. On the other hand, as the sample size increases, old data are used for
designing controllers. This addition of old data, which may be different from the future ramping
behavior, may distort the training set distribution in an undesirable way. Thus, in both control cases,
the performance is improved when increasing the sample size from 5 to 10 and is almost unaffected
when increasing the sample size from 10 to 15.
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Figure 3. Performance comparison between the standard stochastic optimal controller and the
proposed distributionally robust (DR) controller for the sample size (a) N = 5, (b) N = 10, and (c)
N = 15. Here, the cost is defined as the ratio of the total ramp penalty with energy storage to that
without storage.

Table 1. Average ramp penalty relative to the “no storage” case depending on the sample size.

Sample Size 5 10 15 Avg

Stochastic optimal control 0.9939 0.9902 0.9970 0.9937
Distributionally robust control 0.9612 0.9399 0.9363 0.9458
Cost saving 3.29% 5.08% 6.09% 4.82%
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Figure 4. Net power production (on 23 April 2018) with and without energy storage controlled by the
distributionally robust method. Here, the net power is wind power generation minus power drawn by
energy storage. (b) is the close-up of (a) for 12–6PM.

4.2. Effect of Ambiguity Set Size

A notable advantage of Wasserstein distributionally robust control is that it provides a
nonasymptotic probabilistic guarantee on the out-of-sample performance, which is the control
performance evaluated with unseen test samples drawn from the true distribution [19,20]. It is
well known that the out-of-sample performance critically depends on the radius θ that controls the size
of ambiguity set (4). In our simulation studies, the ramp penalty computed with test samples is the
measure of out-of-sample performance. We now examine how the radius affects the ramp management
performance of the distributionally robust method. Figure 5 displays the effect of θ on the total ramp
penalty relative to the “no storage” case, where the data of April are used for the test. As θ increases
from 0.05, the performance initially decreases and then increases for θ greater than 0.2. When the radius
is too small, the resulting controller is not sufficiently robust to take into account the deviation of the
test set distribution from the training set distribution. On the other hand, in the case of a large radius,
decisions made by the distributionally robust storage controller are overly conservative. Thus, it is
incapable of aggressively charging or discharging energy storage to minimize the ramp rate. According
to the simulation result, the proposed controller with θ = 0.1–0.2 presents the best out-of-sample
performance for wind power ramp management in the setting used for these simulations.
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Figure 5. Total ramp penalty relative to the “no storage” case, depending on the radius θ of the
Wasserstein ambiguity set. Note that the x-axis is log scale.

4.3. Effect of Storage Size

To examine the impact of storage size, the total ramp penalties relative to the “no storage” case are
computed for different sizes xmax of energy storage with radius θ fixed as 0.1, using the data of April. As
shown in Figure 6, the ramp penalty decreases as the storage size increases up to 11 MWh in both standard
stochastic optimal control and distributionally robust control cases. This is because a bigger storage device
provides greater operational flexibility, which can be utilized to mitigate the ramp rate of wind power
generation. However, the benefit of such flexibility is saturated around 11 MWh: the ramp penalty even
slightly increases with storage size. This counterintuitive result is caused by the mismatch between the
training and test sets. The controllers use the prior knowledge obtained from the training set about wind
power ramp to fully utilize the flexibility provided by energy storage. However, such behaviors can be
overly aggressive when the storage size is large. Thus, as the test set distribution deviates from the training
set distribution, the aggressive storage operation produces undesirable ramp events.
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Figure 6. Total ramp penalty relative to the “no storage” case, depending on the size xmax of energy storage.

5. Conclusions

We have proposed a distributionally robust storage control method for wind power ramp
management using historical data that may not provide reliable information about future wind
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power ramp events. Our simulation studies using the BPA data indicate that the proposed storage
operation strategy overcomes wind ramp distribution errors and presents a robust performance
unlike the standard stochastic optimal control method. The control performance depends on the
Wasserstein ambiguity set size as well as the storage size, and there exist an optimal ambiguity
set size and an optimal storage size given the trade-off between robustness and efficiency.
The proposed distributionally robust storage control method can be extended in several interesting
ways. First, an approximate dynamic programming algorithm can be designed to solve a large-scale
distributionally robust control problem, taking into account transmission constraints in the network
setting. Second, a more sophisticated model for wind power dynamics or even its forecast model can
be used in conjunction with the distributionally robust method. Third, other types of services including
frequency regulation and energy arbitrage can be considered by extending the proposed framework.
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The following abbreviations are used in this manuscript:

BPA Bonneville Power Administration
DP dynamic programming
DRO distributionally robust optimization
LP linear program (or linear programming)
SOC state of charge
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