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Abstract: Adsorption heat transformation (AHT) systems can play a major role in protecting our 
environment by decreasing the usage of fossil fuels and utilizing natural and alternative working 
fluids. The adsorption isotherm is the most important feature in characterizing an AHT system. 
There are eight types of International Union of Pure and Applied Chemistry (IUPAC) classified 
adsorption isotherms for different “adsorbent-adsorbate” pairs with numerous empirical or 
semi-empirical mathematical models to fit them. Researchers face difficulties in choosing the best 
isotherm model to describe their experimental findings as there are several models for a single 
type of adsorption isotherm. This study presents the optimal models for all eight types of 
isotherms employing several useful statistical approaches such as average error; confidence 
interval (CI), information criterion (ICs), and proportion tests using bootstrap sampling. Isotherm 
data of 13 working pairs (which include all eight types of IUPAC isotherms) for AHT applications 
are extracted from literature and fitted with appropriate models using two error functions. It was 
found that modified Brunauer–Emmet–Teller (BET) for Type-I(a) and Type-II; Tóth for Type-I(b); 
GAB for Type-III; Ng et al. model for Type-IV(a) and Type-IV(b); Sun and Chakraborty model for 
Type-V; and Yahia et al. model for Type-VI are the most appropriate as they ensure less 
information loss compared to other models. Moreover; the findings are affirmed using selection 
probability; overall; and pairwise proportion tests. The present findings are important in the 
rigorous analysis of isotherm data.  

Keywords: bootstrap sample; information criterion; isotherm model; IUPAC; optimum isotherm 
 

1. Introduction 

To reduce global electricity demand, scientists are paying considerable attention to adsorption 
heat transformation (AHT) technologies such as cooling and heating as they can be driven by 
renewable energy or waste heat having a temperature of as low as 60 °C [1]. Waste heat [2–6] or heat 
from cost-effective non-concentrating solar thermal collectors [7–10] can be utilized for this purpose. 
The principal component of anAHT system is its adsorption chamber, which is a heat exchanger in 
which the adsorbent materials are placed. The chamber goes through adsorption and desorption 
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processes in cycles to provide thermal compression of the working fluid or adsorbate vapor. The 
significant factor affecting the performance of AHT is the “adsorbent-adsorbate” pair [11,12]. The 
fundamental characteristics of the “adsorbent-adsorbate” pair can be found by analyzing adsorption 
isotherm and kinetic models. The parameter values of the optimal isotherm model are needed for 
further analysis, like system design or simulation.  

An adsorption isotherm provides information about the maximum amount of adsorbate that 
can be absorbed by the adsorbent at a particular pressure. In order to standardize experimental data 
of different “adsorbent‒adsorbate” pairs, it is essential to correlate them with different isotherm 
models. Based on the nature of adsorption isotherms, the International Union of Pure and Applied 
Chemistry (IUPAC) [13,14] classifies adsorption pairs into eight different types, as can be seen in 
Figure 1. Type-I(a) isotherm is found for narrow microporous adsorbent having a pore size < ~1 nm. 
The Type-I(b) isotherm is mainly characterized by monolayer adsorption. The uptake continuously 
increases with pressure and reaches a plateau at saturation pressure. Type-II isotherm is 
characterized by multilayer adsorption [15] and nearly analogous to the Type-I(b) shape; the only 
difference between the two is the absence of the plateau in Type-II. The uptake continuously 
increases even when the pressure ratio is close to unity. The shape of the Type-III adsorption 
isotherm is convex [15,16]. At low pressures, the uptake is low, but it increases sharply at high 
pressures. Depending on the pore width, Type-IV isotherm is divided into two types, one with 
hysteresis and another without hysteresis, i.e., Type-IV(a) (pore width greater than 4 nm) and 
Type-IV(b) (pore width smaller than 4 nm), respectively. Type-IV(b) is observed for the adsorbent 
having cylindrical and conical mesoporous with a smaller width, which is entirely reversible closed 
at the tapered end. Type-V is distinguished by its characteristic S-shaped isotherm, and it also 
demonstrates a hysteresis loop. Finally, in Type-VI, the adsorption occurs in steps.  

 
Figure 1. Physisorption isotherms classification (©2015 IUPAC) [14]. B symbolizes monolayer 
formation. 
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Generally, isotherm data are correlated by applying various isotherm models where the best- 
fitted model is used to analyze the adsorption behavior. From the literature studies, it is found that 
different pairs exhibit different types of adsorption isotherms, and numerous authors had tried to 
get the best-fitted model for those [17]. Table 1 summarizes the different adsorption pairs with their 
isotherm type and the fitted model. 

Table 1. Examples of adsorption pair to correspond isotherm type and the fitted model. 

Adsorption Pair Type Best Fitted Model Reference 
(i) Carbon K4-700/N2 at 77 K  
(ii) BIDC-1-700/Ar at 87 K (pore size less than 1 nm 
for both (i) and (ii)). 

Type-I(a) Fitted model is not available  
(i) Hu et al. [18] 
(ii) Cychosz et al. 
[19] 

(i) Maxsorb III/ethanol 
(ii) Silica gel/water 
(iii) Carbon based composite/CO2 

(iv) WPT-AC/ethanol 
(v) M-AC/ethanol 
(vi) Zeolite/water at 25 °C 
(vii) (SRD 1352/3, FR 20, ATO and 
AP4-60/COCL-1200)/ N2 * 

(viii) Carbon based composite/CO2 

(ix) Ionic liquid binder based composite/ethanol 
(x) Silica gel based composite/water 

Type-I(b) 

(i) D–A model 
(ii) Tόth  
(iii) Tόth  
(iv) D–A and Tόth 
(v) D–A and Tόth  
(vi) Tόth 
(vii) D–A 
(vii) D–A and Tόth 
(ix) D–A 
(x) Tόth 

(i) El-Sharkawy et 
al. [20] 
(ii) Rahman et al. 
[21] 
(iii) Pal et al. [22] 
(iv) Pal et al. [23,24] 
(v) Pal et al. [23,24] 
(vi) Wang et al. [25] 
(vii) Brancato et al. 
[26] 
(viii) Berdenova et 
al. [27] 
(ix) Pal et al. [28] 
(x) Younes et al. 
[29]  

(i) PBA/water at 25 °C 
(ii) Alumina/water at 20 °C 
(iii) PCB/water at 22 °C 

Type-II 
(i) GAB model 
(ii) BET model 
(iii) Not fitted 

(i) Sultan et al. [30] 
(ii) Naono et al. 
[31] 
(iii) Wang et al. 
[32] 

(i) ACP/water at 30 °C 
(ii) Dried fruits/moisture 

Type-III 
(i) D–A model 
(ii) GAB model 

(i) Sultan et al. [30] 
(ii) Maroulis et al. 
[33] 

(i) Oxidized carbon/water 
(ii) PVDC/water at 35 °C 
iii) Tripolis/water at 21 °C 

Type-IV(a) 
(i) Do et al. model 
(ii) Do et al. model 
(iii) BET model 

(i) Do et al. [34] 
(ii) Do et al. [34] 
(iii) Rakitskaya et 
al. [35] 

(i) IRMOF-74-V-hex/argon at 87 K 
(ii) IRMOF-74-V-hex/nitrogen at 77 K (pore size less 
than 4 nm) 

Type-IV(b) The fitted model is not available 
(i) Cho et al. [36] 
(ii) Cho et al. [36] 

(i) ACF/water at 30 °C 
(ii) Hydrophobic carbon/water 
(iii) AQSOA-Z01/water and AQSOA-Z02/water 
(iv) Ferroaluminophosphate/water 
(v) AQSOA zeolite/ water 
(vi) AlPO-18, FAPO-34, SAPO-34/water  

Type-V 

(i) D–A model 
(ii) Do et al. model 
(iii) D–A, modified Langmuir 
(iv) Hybrid model 
(v) D–A, modified Langmuir, 
Sun and Chakraborty 
(vi) D–A model 

(i) Sultan et al. [30] 
(ii) Do et al. [34] 
(iii) Kayal et al. [37] 
(iv) Kim et al. [38] 
(v) Teo et al. [39] 
(vi) Brancato et al. 
[40]  

(i) MgO (100)/methane 
(ii) Exfoliated graphite/methane 

Type-VI 
(i) Ng et al. model 
(ii) Yahia et al. model 

(i) Ng et al. [41]  
(ii) Yahia et al. [42] 

* Activated carbon from various biomass sources. 

Thus, from the above literature reviews, it is evident that many adsorption isotherm models 
had been suggested for different types of IUPAC classified isotherms, but there is no widely 
accepted model for any specific isotherm type. Moreover, there is no model fitted yet for Type-I(a) 
and Type-IV(b) isotherm. Furthermore, there is also a lack of explanation about the determination of 
the most suitable model for any type of adsorption isotherm considering the statistical analysis of 
the best-fitted model. In almost all the cases, to the best of our knowledge, authors did not consider 
the information loss of the fitted model, and they used only root mean square deviation (RMSD) 
error analysis in their investigations. RMSD does not even consider the number of parameters of the 
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fitted model. Besides, different scientists proposed several models for a particular type of isotherm. 
For example, authors [43] proposed D–A, Tόth, Langmuir, Modified D–A for Type-I(b). Firstly, 
several models are fitted by the researcher for specific experimental data, and then based on RMSD, 
the researcher makes a decision for the optimal model, which is tedious work. The main aim of the 
current study is to find out optimal models for all the eight types of isotherms employing several 
statistical tools such as average error, confidence interval (CI), information criterion (IC’s), and 
proportion tests using bootstrap sampling. In the current study, two error functions, RMSD and 
hybrid fractional error deviation (HYBRID) used to optimize the parameters for Type-I(a) and 
Type-I(b) adsorption isotherm. Whereas, on the other hand only HYBRID error evaluation function 
is used for other types since authors [21] showed that HYBRID error was better than other errors for 
optimization of parameters. Parameter effect adjustment and information loss are considered in this 
investigation to find the optimal isotherm model for a particular type, which also makes it 
significant from the statistical analysis of the best-fitting model. 

In this study, 13 relevant isotherm data of “adsorbent-adsorbate” pairs are extracted from the 
literature for identifying optimal models for IUPAC classified eight types of isotherms. Statistical 
information criteria using a bootstrap sample have been used to select the optimal isotherm model 
for all IUPAC classified adsorption isotherms. Section 2 of this article describes different isotherm 
models and the corresponding equations used in this study. Error evaluation functions and 
descriptions of statistical tools are narrated in Sections 3 and 4, respectively. In R-programming, 1000 
(large sample size) bootstrap samples (n = 1000) are taken, and the distribution of n = 1000 bootstrap 
errors is constructed to validate the use of model selection criteria, which are used for finding the 
optimal isotherm model. The probability of optimal model selections is also calculated. Finally, 
overall and pairwise proportion tests are conducted, for the equality of minimum information 
criterion, to identify the statistically significant optimal models for all types of IUPAC classified 
isotherms.  

2. Adsorption Isotherm Models 

The maximum amount of adsorbate that can be adsorbed by the adsorbent at specific pressure 
and temperature is known as the equilibrium uptake. This equilibrium uptake at a particular 
temperature can be represented by an isotherm model that shows the change in uptake with 
pressure. Various isotherm models are given by scientists to simulate the adsorption characteristics 
of different adsorption pairs. 

2.1. Dubinin–Astakhov (D–A) Model 

The Dubinin–Astakhov (D–A) model [44] is widely used in the adsorption of water and several 
gases on carbon-based adsorbent [25]. Carbonaceous solids resulting from a high degree of burn-off 
during activation; for these consequences, heterogeneity increases; in this case, the D–A model is 
used [45]. The model can be expressed by, 

0

exp ln
n

sPW RT
W E P

   = −   
    

 (1) 

where, W is the instantaneous uptake in [g/g], 0W denotes maximum uptake [g/g], E is the 
characteristic energy [kJ/mol] and n  is the heterogeneity parameter [–]. P is the pressure [kPa], 
and Ps denotes saturated vapor pressure [kPa]. When n = 2, the D–A model reduces to the Dubinin–
Radushkevic (D–R) model. 
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2.2. Modified Dubinin–Astakhov (D–A) Model 

In the D–A model, Ps denotes the saturated vapor pressure at temperature T. The critical point, 
Tc of CO2 is 31 °C. So above this point, the liquid state does not exist. In such a case, the saturated 
vapor pressure is replaced by the pseudo saturated vapor pressure determined by [46,47], 

k

s c
c

TP P
T
 

=  
 

 (2) 

where k is the parameter indicating the interaction between adsorbate and adsorbent. The modified 
D–A model can be written as, 

0 exp ln
n

s

m

W PRTq
V E P

   = −   
    

 (3) 

where q is the instantaneous adsorbed phase volume (cm3/g), 0W denotes maximum micropore 
volume (cm3/g). The molar volume mV of the adsorbed phase is estimated using properties of CO2 at 
triple point and coefficient of thermal expansion which is given by Ozawa et al. [48], 

( )expm t tV V T Tα= −    (4) 

where Tt and Vt denote temperatures and molar volume of the liquid adsorbate at the triple point, 

respectively, α is the thermal expansion coefficient of the superheated liquid and 1
T

α = . For CO2 

adsorption onto activated carbon, the values observed are 0.84858tV =  cm3/g, 216.6 tT K=  and 
10.0025 Kα =  [49]. 

2.3. Tόth Model 

The Tόth model [43] performs well in estimating the adsorption uptake both in low pressure 
and in high-pressure regions. It describes well many systems with sub-monolayer coverage. It can 
be expressed by, 

0
1

0

01

Q
RT

t tQ
RT

b e PW
W

b e P

=
  
 +  
   

 
(5) 

where b0 is the equilibrium constant [1/kPa], Q is the isosteric heat of adsorption [J/mol], and R is 
universal gas constant [J/(mol.K)]. The parameter t is supposed to characterize the system 
heterogeneity. If it deviates further from unity, the system is said to be more heterogeneous [45]. 

2.4. Langmuir Model 

The Langmuir model [50] assumes that all sites of adsorbents are energetically equivalent and 
identical, i.e., homogeneous, and each site is occupied only by one atom [45]. It can explain well the 
monolayer adsorption process. When t = 1, the Tόth model reduces to the Langmuir model and can 
be expressed as, 

0

0
01

Q
RT

Q
RT

b e PW
W

b e P
=

+
 (6) 
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2.5. Modified Langmuir Model 

The Modified Langmuir model [37,51] was developed based on the Fermi-Dirac distribution 
function that includes the interaction between refrigerant and adsorbent, loading, and surface 
heterogeneity factors. It can be described by, 

( )

*

1
0

*1
m m

m

P
W
W

P

β
ϕ

β α
ϕ

 
 
 =

  + −  
   

 
(7) 

where, * exp 1
n

m

s s

P P P z
P RT P

φ
ϕ

        = − +      
        

. 

where, β  is load factor [–], z is compressibility factor [–], α is a coefficient[–], mφ  is minimum 
potential energy [J/mol], m  is heterogeneity factor or mass [kg] and n  is adsorbate-adsorbent 
interaction factor[–]. 

2.6. Freundlich Model 

The Freundlich model [24,52] is the most primitive model that describes the adsorption 
mechanism and assumes that the surface is heterogeneous for energy distribution; also, surface 
topography is patchwise [45]. It can be written as, 

1

0

n

s

W P
W P

 
=  
 

 (8) 

Generally, the parameter n is greater than unity [45]. Freundlich model turns into Henry’s law if 
n = 1, which works very well to simulate the adsorption uptake in the low- pressure region. 

2.7. Hill Model 

The binding capability of the different gas molecules onto homogeneous adsorbent can be 
described by the Hill model. The model adopts that adsorption is a cooperative phenomenon, with 
the ligand-binding capacity at one site on the macromolecule, which may impetus different binding 
sites on the same macromolecule [53]. It is a three-parameter model that combines properties of 
Langmuir and Freundlich isotherms and can be expressed as, 

0

H

H

n

s
n

D
s

P
PW

W PK
P

 
 
 =

 
+  
 

 (9) 

where, Hn  and DK  represent the Hill cooperativity coefficient of the binding interaction [–] and 
Hill constant [–] respectively. Here 1Hn > indicates positive binding, 1Hn =  is used for 
non-cooperative binding and 1Hn <  indicates negative cooperativity in binding. 

2.8. Mahle Model 

The Type-V adsorption isotherm is characterized by its typical S-shape. It assumes to describe a 
pore scattering that would be occupied by capillary condensation. Mahle [54] developed a model 
that explains a Type-V adsorption isotherm. It can be expressed as, 

1 11 tan tan
s

W x A A
W C B B

− − − −    = −        
 (10) 
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where, 1 11tan tanA AC
B B

− −− −   = −   
   

, 1
0exp AA A
T

 = + 
 

 is the locus of the maximum of the 

distribution function in terms of relative humidity. So, the adsorption uptake depends on three 
parameters 0 1, ,A A B  and saturation uptake sW [g/g]. 

2.9. Brunauer–Emmet–Teller (BET) Model 

The Brunauer–Emmet–Teller (BET) model is developed to explain multilayer adsorption and is 
most widely used in the characterization of porous materials. The assumptions of the theory are the 
same as those used in Langmuir’s theory. It is assumed that the interaction energy between solid and 
molecule of the first layer is higher than the heat of vaporization. The heat of adsorption of the 
second and subsequent layers are the same and equal to the heat of liquefaction [45]. The BET model 
is given by, 

( )( )1 1m

V Cx
V x x Cx

=
− − +

  (11) 

where x is the pressure ratio 
0

Px P= , V is the amount of total gas adsorbed [m3], Vm is the 

monolayer coverage [nm]. The parameter C depends on the exponential of the difference between 
the adsorption energy of the first layer and the heat of liquefaction[–]. The larger the value of C, the 
sooner is the multilayer formation, and the convexity of the isotherm increases toward the low- 
pressure range. 

2.10. Modified BET Model 

The BET model is unable to explain the adsorption uptake near saturation pressure since with x 
= 1, and uptake becomes infinite. It assumes that adsorption heat of the second layer and the next 
several layers being less than the heat of liquefaction [45]. The model is thus modified by 
introducing a parameter K, and the modified model takes the form, 

( ) ( )( ){ }1 1 1m

V CKx
V Kx C Kx

=
− + −

  (12) 

If K = 1, the modified BET model becomes the classical BET model. 

2.11. Guggenheim–Anderson–De Boer (GAB) Model 

The Guggenheim–Anderson–De Boer (GAB) model [33] is also a modification of the BET model 
and is used for the fitting of type III adsorption isotherm. It can be described by, 

( ) ( ){ }1 1 1m

V CKx
V Kx C Kx

=
− + −

  (13) 

where, C and K are constant parameters related to the temperature of following equations, 

1
0 exp HC C

RT
Δ =  

 
 and 2

0 exp HK K
RT

Δ =  
 

; and 1 m nH H HΔ = − , 2 1 nH H HΔ = − are the functions of 

the heat of adsorption. mH and nH are the heat of adsorption for monolayer and multilayer 
adsorption of water. 

2.12. Sun and Chakraborty Model 

Sun and Chakraborty [55] developed a model that can explain well the S-shaped isotherms. The 
model can thermodynamically connect the adsorption uptake with the porous structure of the 
adsorbent material. The uptake is a function of isosteric heat of adsorption and depends on the 
adsorptive sites of the adsorbent materials. The model can be expressed by, 
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( )0 1 1

m

s
m

s

PK
PW

W PK
P

 
 
 =

 
+ −  

 

  (14) 

where ( )exp fgm Q h
K RTα

 −
=  

  
. Q is the isosteric heat of adsorption at zero surface coverage 

[kJ/kg], and hfg is the enthalpy of evaporation [kJ/kg]. 

2.13. Hybrid Model (Henry + Sips) 

The hybrid model proposed by Kim et al. [38] comprising both the Henry and Sips isotherms 
includes nine parameters that are physically meaningful. The hybrid model is expressed as, 

( ) ( )
( )

1/

1/

/
1

1 /

n
m s s

H n
s s s

q K P PPq K
P K P P

β β
 

= + − 
+ 

 (15) 

where q and qm denote the absolute and maximum amount adsorbed. n is the heterogeneity 

parameter determined by Bn A
T

= + . A and B are the parameters of heterogeneity exp
s

P
P

β α
 

= − 
 

, 

where α is a function of temperature following relation 1 2
ref

TK K
T

α = + . The reference temperature 

273.15 refT K= . The first term of the right- hand side of the Equation (15) is dominant in the low 
pressure or Henry region, and the last term takes dominance in the high-pressure region. K is the 

Henry constant whose values for both the regions are determined from 0 exp HK K
RT
Δ = − 

 
, where 

K0 is the pre-exponential factor of the Henry constant, and ∆H is the isosteric enthalpy of 
adsorption at zero loadings. 

2.14. Ben Yahia Model 

The mathematical model developed by Yahia et al. [42], is used for the fitting of the Type-VI 
adsorption isotherm. They inferred that there could be two possibilities to explain the shape of this 
curve: energetic and geometric/stereographic. According to their assumptions, the energetic aspect 
is dominant, and there are four levels of energy present in the adsorption surface. The equation to 
determine the adsorbed quantity at equilibrium is expressed as, 

31 2 4

1 2 3 4

3 31 1 2 2 4 4
31 2 4

1 2 43

1 1 11

nn n n

MM M M

n n n n

PP P Pn Nn N n N n N
PP P P

W
P P PP
P P PP

      
      

       = + + +
       

+ + ++       
      

  (16) 

with i = 1, 2, 3, and 4, pressure Pi can be expressed as, exp ai
i s

E
P P

RT
 =  
 

. ni is the number of molecules 

per site, Nmi is the density of receptor sites, and Eai denotes the molar adsorption energy of gases in 
the site i. 

2.15. Universal Isotherm Model 

A universal isotherm model is proposed by Ng et al. [41], which assumed adsorbent with the 
heterogeneous surface where homogeneity is assumed in each site for energy level and which can be 
expressed by, 



Energies 2019, 12, 4565 9 of 36 

 

1

exp

*
1 exp

RT
mi

oi
n

s
i RT

i mi
oi

s i

p
p RTq

q
p
p RT

ε

α
ε=

 
        =  

    +       

   (17) 

where, n = 2 indicates that two peaks can describe the energy distribution of the isotherm, which is 
valid for IUPAC classified isotherms from Type-I to Type-V having varied probability factors 1α  
and 2α  where 1 2 1α α+ = . For Type-VI, the energy distribution function needs four peaks (n = 4) 
with probability factors 1 2 3,  ,  ,α α α  and 4α , where 1 2 3 4 1α α α α+ + + = . oiε  is the adsorption 
energy site with maximum frequency and im  denotes the range of energy sites available for 
adsorption. In other words, they represent the mean and deviation of an energy term, respectively. 
The larger value of m means high surface heterogeneity as well as the smaller slope of the model 
graph. 

3. Error Evaluation Function 

In this study, two error functions, namely the HYBRID and RMSD error functions, are used to 
optimize the parameters of the models. In our previous study [21], through analysis of the sum of 
normalized error (SNE), it was concluded that the HYBRID error function is appropriate to use for 
parameter optimization for almost all isotherm models. On the other hand, RMSD error function is 
frequently used by the researchers [21] for the optimization of parameters. Simultaneous use of these 
two error functions is considered in the current study for optimization since both of them are 
squared-type error function. 

3.1. Root Mean Square Deviation (RMSD) 

The most widely used error function used by the researchers is RMSD, which can be expressed 
as, 

( )2

1

n

experimental calculated i
i
W W

RMSD
n

=

−
=


  
(18) 

RMSD error function is used to estimate the parameters of the model, avoiding large error 
deviation between experimental data and the isotherm model. The error distribution of RMSD 
follows meso-kurtic, which is the assumption of least square regression fitting. 

3.2. Hybrid Fractional Error Deviation (HYBRID) 

Assumptions of RMSD/SSE errors are unbiased, free from outliers, and errors follow normal 
distribution [56]. Some special cases do not follow these assumptions. For example, in a 
low-pressure region, experimental uptake is not found precisely. In this case, some errors (deviation 
from the model) are considered as outliers. On the other hand, if we increase the model parameters, 
better fitting is possible. However, it will increase the model complexity. So the effect of the number 
of parameters should be incorporated in the error evaluation function. Porter et al. [57] developed a 
new error evaluation function, known as hybrid error evaluation function and denoted by HYBRID 
in the current study, for improving the fit of low- pressure region. In the HYBRID error function, the 
parameter effect is considered. This HYBRID error evaluation function balances absolute deviation 
against fractional error. It can be expressed as, 

( )2

1

100 *
n

calculated experimental

i experimental
i

W W
HYBRID

n p W=

 −
 =
 −
 

   (19) 
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Here, p is the number of parameters in the model, and (n − p) is the degrees of freedom. HYBRID 
error evaluation function considers the number of parameters in the model. So, for the comparison 
of several models with an unequal number of parameters, the HYBRID error evaluation function is 
found to be more suitable than the RMSD error function. 

4. Statistical Tools 

In this section, we introduce the statistical techniques applied for selecting the best model(s) for 
the eight IUPAC-classified types of isotherms. These models are compared based on a number of 
model selection criteria discussed in Section 4.1. The selection criteria require estimating the 
residual sum of squares (RSS) for the candidate models, i.e., the sum of the squared differences 
between the observed and expected values of Y (uptake). However, given the model under study, 
the experimental data allows obtaining a single estimate of RSS, which in turn gives an estimate for 
each of the selection criteria. For deterministic (mathematical) models, one approach to drawing 
inference on the likelihood of selecting a model can be based on simulation studies (non-parametric 
methods). In the present context, a simulation-based approach generates samples repeatedly from 
the exiting data, since the actual experiment cannot be repeated many times due to time and 
economic constraints. We consider the bootstrap sampling approach (Section 4.2) for generating the 
repeated samples. Since our experiment was conducted under controlled conditions, the 
experimental outcomes are assumed to represent the underlying (non-existent) population. Thus, 
the simulated data are also assumed to represent the actual outcome for the corresponding 
treatment combinations. This allows comparing the candidate models a large number of times by 
estimating a selection criterion from each sample. The proportion of samples that correspond to a 
certain model having the minimum of a selection criterion among the candidate models gives an 
empirical estimate of the rate (likelihood) that the model is selected by the criterion for such 
experimental outcomes as in the current study. In this study, the likelihood of each model is 
estimated separately for each criterion, and statistical tests are carried out for finding evidence that 
certain model(s) may be more likely to be selected (better) than other models. The statistical tests 
include the overall proportion test and pairwise comparisons discussed in Section 4.3. 

4.1. Information-Based Criterion for Model Selection 

Given a dataset and a list of candidate models, one approach to selecting the best model is by 
estimating a model selection criterion. The commonly used criteria in the literature include the AIC, 
BIC, and their extensions, which are called the information-based criteria (IC). The IC estimates a 
loss of information that the model incurs, as a measure of distance from the most parsimonious 
(true) model. Thus, the model with the lowest IC incurs the minimum information loss, hence 
selected as the parsimonious to the true model. In this study, a number of information criteria are 
applied separately for selecting the best candidate model among the candidates. 

The information-based criteria consist of the goodness of fit term (maximized log-likelihood, 
−2l) and a penalty term f(n,p) for the complexity of the model. The penalty term f(n,p) is a function of 
sample size (n) and the number of parameters (p), required for fitting the model [58–60]. Under 
Gaussian error, the term −2l can be expressed as n(log(2π) + log(RSS) + log(n) + 1), which indicates 
that for fixed n, the goodness of fit term is mainly a function of residual sum of squares. In general, 
the information-based model selection criteria take the form 

2 ( , )IC l f n p= − +   (20) 

Akaika (1969) [61–63] proposed using f(n,p) = 2p and suggests that the criterion AIC = −2l + 2p 
[59] minimizes the average Kulback–Leibler (K–L) distance (1951) [64] between the candidate model 
and the true model. It was found that the performances of AIC were poor if the number of 
parameters in the model is large compared to the sample size [60]. Considering the K–L distance and 
maximized log-likelihood, different authors [65–67] recommended using corrected versions of AIC, 
which usually apply a slightly heavier penalty to the goodness of fit term. Sugiura [66] first derived a 
second-order alternative of AIC in which bias correction was added by Hurvich and Tsai [65]. Thus, 
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a corrected version of AIC namely, AICc. If n is large, compared to p, the correction terms [n/(n – p − 
1)] is negligible; hence, the AICc and AIC are equally efficient. In all other cases, it is recommended to 
use AICc [68]. Phoa et al. [69] recommended a modified version of AIC, i.e., mAIC = −2l + 2p2, which 
uses a quadratic penalty for model complexity instead of a linear penalty in AIC. In a Bayesian 
framework, Schwarz (1978) [70] proposed BIC = −2l + pln(n) [70] that uses Bayesian information and 
posterior probability. The form of BIC is similar to AIC except that the penalty term 2p is replaced by 
pln(n). Sclove (1987) [58] proposed adjusted BIC (denoted by ABIC), based on the information from 
Rissanen (1978) [71] and Boekee and Buss (1981) [72]. Here, the form of the penalty term is, f(n,p) = 
pln[(n + 2)/24] [21,48]. Likewise, Bozdogan [62] proposed another modified version of BIC, namely 
CAIC using f(n,p) = p[ln(n) + 1). More explanation of information-based criteria can be found in our 
previous study [21]. In this paper, the information criterion (IC) as mentioned above is applied 
separately for comparing the selection rates of the competing models. Since current experimental 
outputs allow only one estimate of each criterion for the competing models, we consider bootstrap 
samples to re-estimate the criteria many times and compared the likelihood of the models, 
separately for each criterion. Therefore, we have concluded our findings based on the decision of the 
majority of the ICs.  

4.2. Bootstrap Approach 

Efron and Tibshi-rani (1993) [73] introduced a bootstrap sampling method that can be used to 
perform data-based (non-parametric) statistical inference [74]. In this approach, the 
observed/experimental data are assumed to represent the underlying population, and new samples 
are generated by randomly selecting samples from the original sample (outcome) with replacement. 
Thus, an estimate of a parameter/metric or a hypothesis test can be obtained repeatedly based on 
random samples of the same size as the original sample. The estimates from the repeated samples 
generate an empirical sampling distribution as a straightforward non-parametric way to derive the 
standard errors and confidence intervals of complex parameters, such as percentile points, 
proportions, odds ratio, and correlation coefficients. In the present context, the parameter of interest 
is the residual sum of squares of the candidate models. The underlying idea of bootstrapping is that 
the inference about a population from sample data (sample → population) can be modeled by 
resampling the sample data and performing inference about a sample from resampled data 
(resampled → sample). 

In the context of the present study, the outcome of the experiments is the base sample, from 
which the observed estimates of RMSD/HYBRID (and the IC) for the candidate models. In practice, 
since it is usually not feasible to repeat an experiment large number of times, bootstrapping allows 
generating a large number of samples, so that the errors can be estimated repeatedly from these data 
sets. Here the i-th bootstrap sample (i = 1,2,…,L) gives the i-th estimate of observed error, the RSSi (i 
= 1,2,..,L) for the goodness of fit terms, which in turn is used to estimate the IC. In this study, L = 1000 
is used as we believe that the number is large enough to generate the sampling distributions of the 
estimates. Using these bootstrap estimates, we thus test for significance of RSS and obtain interval 
estimates in a nonparametric approach. 

4.3. Bootstrap p-Value and Confidence Interval (CI) of Residual Sum of Squares (RSS) 

The bootstrap distribution of error allows finding the p-value and confidence interval of RSS. 
The confidence interval [56] gives a degree of certainty of an estimator since it is associated with a 
probability statement. If the same sampling technique is employed to draw different samples and 
95% confidence interval is calculated, then the probability that the true parameter will fall in that 
interval is 0.95. In this study, the 95% bootstrap confidence intervals (CIs) for the errors are obtained 
by discarding the 2.5% lower and 2.5% higher values of observed errors from the bootstrap 
distribution. The tail area in bootstrap distribution, starting from the observed RSS, gives p-value 
[21] for testing the significance of the error estimate. 

Thus in a bootstrap approach, p-value refers to the proportion of bootstrap samples that 
correspond to the observed and more extreme values of observed error.  
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4.4. Proportion Tests 

The bootstrap samples generate 1000 estimates of each IC, separately for each candidate model. 
For a certain criterion, the proportion of 1000 samples when a model archives the minimum value 
compared to other candidate models, is given by:  

(Number of times the model attains minimum IC)/(1000 (number of bootstrap samples)) 
Using the bootstrap samples, since we estimate each IC separately for six (for example) 

candidate models, the models correspond to six proportions for a given criterion. The proportions 
are estimated rate or likelihood that the models are selected by the specific criterion. Since the 
proportions are bootstrap estimates of true likelihood, we perform a statistical test for the equality of 
the likelihoods.  

Hypotheses (H0). The models are equally likely to be selected by the criterion.  

vs. 

Hypotheses (H1). They are not equally likely 

A rejection of the hypothesis leads to pairwise comparisons of the proportions. These tests are 
conducted by applying a chi-square test and t-tests, respectively. Thus, a single or set of best models 
are identified SEPARATELY by each criterion. 

4.4.1. Chi-Squared Test for Equality of Proportions 

The Chi-squared test is an overall test for the equality of more than two proportions. For 
example, suppose a gambler wishes to test if the six numbers of a six-sided die are equally likely to 
appear on the top when the die is rolled. The gambler performs an experiment by rolling the die a 
large number (say 1000) of times and records the frequency (Oi) that the i-th number (i = 1,2,…,6) 

appears on top out of the 1000 trials. Thus, the proportion ˆ 1000
iOπ = . If P1, P2, …, P6 denote the 

actual probability of occurrence of the six numbers, then the following hypotheses can be tested by 
applying the chi-squared test,  

Hypotheses (H0). 1 2 6...P P P= = =  vs. 

Hypotheses (H1). At least two are different 

The test–statistic is given by, 

( )26
2

1

i i

i i

O E
E

χ
=

−
=   

where Oi refers to the observed frequency and Ei = (1/6), *L refers to the expected frequency of i-th 
number in the 1000 trials under the assumption that H0 is true. The test statistic is chi-square 
distribution with 5 degrees of freedom. The overall proportion test rejects H0 in favor of H1 if the 
p-value is less than the significance level α = 0.05. 

As with the above example, in this study, we have six candidate models. For each bootstrap 
sample, errors are obtained for different models; IC’s are calculated based on the errors, and the 
model that attains the minimum of an IC is recorded. Given IC, thus, the L bootstrap samples give Oi 

and Ei = (1/6) × 1000 for the i-th model (i = 1,2,…,6). Finally, the test statistic is calculated, and the 
p-value is obtained. A small p-value (<0.05) is a piece of evidence against the hypothesis that the 
six-candidate models are equally likely to be selected by the criterion. This indicates that the 
proportions of times the models attained minimum IC may not be equal. In other words, at least one 
model may be more likely to be selected by the criterion compared to other models when p-value 
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<0.05. The overall test is conducted separately for each criterion to examine if certain model(s) 
consistently attain a higher chance to be selected by most criteria.  

4.4.2. Pairwise Test: Multiple Comparisons 

In case the overall proportion test shows evidence against equality of likelihoods of the six 
models, it is of interest to identify which model(s) may have a relatively higher chance of to be 
selected by an IC. This is done by multiple comparisons tests [75], which performs pairwise 
comparisons of all 6

2 15C = pairs of proportions. For example, the hypothesis that model 1 and 
model 2 are equally likely to attain a minimum value of a given IC (i.e., equally likely to be selected) 
is denoted as follows.  

0 1 2:H P P=  Vs. 0 1 2:H P P≠   

H0 is rejected at 5% level of significance if the test statistic 
( )( )

1 2

1 2

ˆ ˆ

1 1ˆ ˆ1

p pZ
p p n n

−=
− +

, where 

1 2

1 2

ˆ x xp
n n

+=
+

 results the p-value < 0.05. By rejecting H0, the pair-wise test suggests that one model may 

be more likely to be selected by a given IC than the other model. In such a case, the model that 
attains a higher π̂  value can be declared to be the better model. Similarly, all other pairs of models 
are compared based on certain model selection criteria, and finally, a single or set of model(s) are 
identified that may be better than the other candidates. In this study, since we consider eight 
different criteria, the overall test and multiple comparisons are conducted separately for each 
criterion.  

5. Results and Discussion 

In this study, relevant adsorption pairs for all the IUPAC-classified adsorption isotherms are 
first selected for analysis. One adsorption pair data with more than one temperature consider for 
Type-I(b), Type-III, and Type-V. On the other hand, two different adsorption pairs with single 
temperature consider for Type-I(a), Type-II, Type-IV(a), Type-IV(b) and Type-VI IUPAC classified 
adsorption isotherm. Generalized reduced gradient (GRG) non-linear optimization methods have 
been employed to optimize the parameters of the model using two error evaluation functions RMSD 
and HYBRID for Type-I(a) and Type-I(b) adsorption isotherm. On the other hand, the only HYBRID 
error evaluation function is used for other types since Rahman et al. [21] showed that HYBRID error 
was better than other errors for the optimization of parameters. Bootstrap error mean, CI, the value 
of model selection criteria, selection probabilities/rates of the model have been calculated, and two 
proportion tests have been performed for Type-I(a), Type-I(b), Type-III, and Type-V adsorption 
isotherms. For Type-II, Type-IV(a), Type-IV(b) and Type-VI, the bootstrap error means, CI, the value 
of model selection criteria have been presented. 

5.1. Type-I(a) Adsorption Isotherm 

Type-I(a) is recommended isotherm in the 2015 IUPAC report [14]. This type of isotherm is 
found for narrow microporous adsorbent having a pore size less than 1 nm. For instance, adsorption 
of N2 onto K4-700 adsorbent at temperature 77 K [18] and Ar onto BIDC-X-700 adsorbent at 
temperature 87 K [19] showed Type-I(a) isotherm. 

5.1.1. Bootstrap Error Analysis and Model Selection Using Information Criteria 

Hu et al. [18] measured the adsorption isotherms at 77 K for adsorption of high-resolution N2 
onto a K4-700. Cychosz et al. [19] measured adsorption isotherm at 87 K for adsorption of argon onto 
heteroatom-doped carbons BIDC-X-700 adsorbent. These isotherms are fitted with Tόth, D–A, 
Mod-BET, Ng et al., and Mahle model in the current study and presented in Figure 2.  
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Based on the bootstrap mean and CIs of the RMSD and HYBRID errors from Table 2, it is 
observed that the modified BET model has smaller average error and smaller CI than the other 
models. 

The value of all information criteria in the bold number of modified BET model is small 
compared to other probable model for carbon K4-700/N2 and BIDC-1-700/Ar adsorption pairs 
presented in Table 3, which means that considering all ICs and both error functions, modified BET 
models information loss is less compared to other models followed by the Tόth model. The 
probability of the possible models for Type-I(a) is graphically presented in Figure 3. It is marked that 
the selection rate/probability of the modified BET model is maximum among all the models 
considering all criteria for both adsorption pairs.  

 

 

Figure 2. Type-I(a) adsorption isotherm of Carbon K4-700/N2 and BIDC-1-700/Ar pairs (data are 
fitted with the D–A, Tόth, modified BET, Ng et al. and Mahle models using RMSD and HYBRID 
error evaluation functions) depicted in (a) and (b), respectively. 
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Table 2. Mean error and confidence interval of error for n = 1000 bootstrap samples for K4-700/N2 
and BIDC-1-700/Ar pairs. 

Model Mean RMSD CI of RMSD Mean HYBRID CI of HYBRID 
K4-700/N2 pair 

Tόth 0.0745 (0.045, 0.0956) 1.884 (1.24, 2.152) 
D–A 0.0838 (0.047, 0.0971) 1.912 (1.55, 2.923) 

Mod. BET 0.0638 (0.050, 0.0723) 1.871 (1.52, 1.983) 
Ng et al. 0.1066 (0.032, 0.3254) 1.913 (1.43, 3.851) 
Mahle 0.1019 (0.042, 0.2321) 4.146 (3.654, 5.123) 

BIDC-1-700/Ar pair 
Tόth 0.1047 (0.045, 0.126) 3.6648 (2.24, 4.152) 
D–A 0.0936 (0.047, 0.0971) 8.9234 (6.55, 10.923) 

Mod. BET 0.0872 (0.050, 0.0986) 3.5624 (2.52, 4.783) 
Ng et al. 0.1245 (0.032, 0.3254) 12.354 (8.43, 15.851) 
Mahle 0.1154 (0.042, 0.2921) 4.8132 (2.65, 7.123) 

Table 3. Optimal isotherm employing model selection criteria for n = 1000 bootstrap samples for 
K4-700/N2 and BIDC-1-700/Ar pair. 

Model Error Mean AIC BIC AICc mAIC AIC3 CAIC ABIC 
K4-700/N2 pair 

Using RMSD error mean 
Tόth 0.0745 -223.16 −214.78 −222.43 −199.16 −219.16 −210.78 −227.36 
D–A 0.0838 −218.08 −211.79 −217.65 −206.08 −215.08 −208.79 −221.23 

Mod. BET 0.0638 −234.48 −228.20 −234.06 −222.48 −231.48 −225.20 −237.64 
Ng et al. 0.1066 −195.68 −181.02 −193.53 −111.68 −188.68 −174.02 −203.04 
Mahle 0.1019 −204.38 −196.00 −203.65 −180.38 −200.38 −192.00 −208.58 

Using HYBRID error mean 
Tόth 1.884 −29.33 −20.96 −28.61 −5.33 −25.33 −16.96 −33.54 
D–A 1.912 −30.47 −24.19 −30.05 −18.47 −27.47 −21.19 −33.63 

Mod. BET 1.871 −31.78 −25.49 −31.35 −19.78 −28.78 −22.49 −34.93 
Ng et al. 1.913 −22.44 −7.78 −20.29 61.56 −15.44 −0.78 −29.80 
Mahle 4.146 17.96 26.34 18.69 41.96 21.96 30.34 13.76 

BIDC-1-700/Ar pair 
Using RMSD error mean 

Tόth 0.1047 −69.02 −63.69 −67.28 −45.02 −65.02 −59.69 −76.12 
D–A 0.0936 −74.15 −70.16 −73.15 −62.15 −71.15 −67.16 −79.48 

Mod. BET 0.0872 −76.14 −72.14 −75.14 −64.14 −73.14 −69.14 −81.47 
Ng et al. 0.1245 −58.17 −48.84 −52.57 25.83 −51.17 −41.84 −70.60 
Mahle 0.1154 −66.29 −60.96 −64.55 −42.29 −62.29 −56.96 −73.40 

Using HYBRID error mean 
Tόth 3.6648 30.54 35.86 32.27 54.54 34.54 39.86 23.43 
D–A 8.9234 53.45 57.45 54.45 65.45 56.45 60.45 48.12 

Mod. BET 3.5624 27.74 31.74 28.74 39.74 30.74 34.74 22.41 
Ng et al. 12.354 70.56 79.89 76.16 154.56 77.56 86.89 58.12 
Mahle 4.8132 38.17 43.50 39.91 62.17 42.17 47.50 31.06 

* The shaded cells indicate lowest value for a particular information criterion. 
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Figure 3. Probability/rate of selecting models for K4-700/N2 and BDIC-1-700/Ar of Type-I(a) 
adsorption isotherms using both RMSD and HYBRID errors depicted in (a) and (b), respectively. 

5.1.2. Overall and Pairwise Proportion Tests 

The p-values of overall and pairwise tests for the equality of minimum information criteria for 
carbon K4-700/N2 and BIDC-1-700/Ar pairs considering three more important models are expressed 
in Table 4. Here, the p-value of two tests are given, (i) equality of overall (all models) proportion test 
and (ii) equality of pairwise proportion test. For K4-700/N2 pairs, Table 4 shows that p-value is very 
small, which is close to zero and less than 0.01. Thus, it indicates that the overall and pairwise 
proportion tests are highly statistically significant at 1% level of significance. It states that the Mod. 
BET model has significantly less information loss compare to other probable models. For 
BIDC-1-700/Ar pairs, Table 4 shows that p-value is very small, which is close to zero and less than 
0.01 except pairwise test between modified BET and Tόth model. Thus, it indicates that the overall 
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and pairwise (Mod. BET vs. D–A) proportion tests are statistically significant at 1% level of 
significance, but modified BET and Tόth is insignificant. It states that the Mod. BET and Tόth model 
are equally important for Type-I(a). 

Table 4. p-value of the overall and pairwise test of equality of the values of minimum information 
criteria (Values outside and inside of parentheses represent HYBRID and RMSD errors, respectively) 
for carbon K4-700/N2 and BIDC-1-700/Ar pairs. 

Test AIC BIC AICc mAIC AIC3 CAIC ABIC 
Carbon K4-700/N2 

Overall 
2.0 × 10–15 
(2.3 × 10–

14) 

2.1 × 10– 
(2.1 × 10–

13) 

2.2 × 10–15 
(2.0 × 10–

14) 

2.0 × 10–13 
(2.2 × 10–

12) 

2.1 × 10–15 
(2.2 × 10–

13) 

2.0 × 10–14 
(2.2 × 10–

14) 

2.1 × 10–15 
(2.2 × 10–

13) 
Mod. 

BET vs. 
Tόth  

2.0 × 10–4 
(2.1 × 10–5) 

2.1 × 10–5 
(2.0 × 10–4) 

2.2 × 10–3 
(2.1 × 10–4) 

1.4 × 10– 
(1.2 × 10–3) 

1.8 × 10–4 
(2.1 × 10–3) 

1.9 × 10–3 
(2.1 × 10–3) 

2.1 × 10–4 
(2.2 × 10–3) 

Mod. 
BET vs. 

D–A 

1.5 × 10–8 
(1.9 × 10–8) 

2.1 × 10–9 
(2.0 × 10–7) 

1.1 × 10–8 
(2.1 × 10–8) 

2.0 × 10–7 
(2.0 × 10–7) 

2.0 × 10–8 
(1.9 × 10–7) 

1.7 × 10–9 
(2.2 × 10–9) 

2.1 × 10–11 
(1.9 × 10–

12) 
BIDC-1-700/Ar pair 

Overall 
2.0 × 10–4 

(2.3 × 10–3) 
2.2 × 10–3 

(2.1 × 10–3) 
2.1 × 10–4 

(2.3 × 10–3) 
2.4 × 10–3 

(2.1 × 10–4) 
2.1 × 10–4 

(2.3 × 10–5) 
2.5 × 10–3 

(2.1 × 10–4) 
2.2 × 10–4 

(2.3 × 10–3) 
Mod. 

BET vs. 
Tόth  

0.0235 
(0.0351) 

0.0351 
(0.0421) 

0.2363 
(0.5324) 

0.0425 
(0.0354) 

0.0573 
(0.0784) 

0.2381 
(0.1465) 

0.0715 
(0.0471) 

Mod. 
BET vs. 

D–A 

1.6× 10–3 
(1.7× 10–4) 

1.1 × 10–4 
(2.4 × 10–3) 

1.5 × 10–3 
(2.3 × 10–3) 

1.4 × 10–4 
(2.2 × 10–3) 

2.2 × 10–3 
(1.5 × 10–4) 

1.9 × 10–4 
(2.1 × 10–3) 

2.2 × 10–3 
(1.44) 

5.2. Type-I(b) Adsorption Isotherm 

The Type-I(b) IUPAC [15,41] classified adsorption isotherm is mainly characterized by 
monolayer adsorption. The uptake continuously increases with pressure and reaches a plateau at 
saturation pressure. The maximum absorption is determined by the available micropore volume. 

5.2.1. Bootstrap Error Analysis and Model Selection Using Information Criteria 

Pal et al. [22] assessed the adsorption isotherms for adsorption of carbon-based composites onto 
carbon dioxide gas. They considered temperatures 30 °C, 50 °C and 70 °C. The isotherms are fitted 
with Tόth and modified D–A, Langmuir, Freundlich, D–A, and Hill model in the current study and 
presented in Figure 4. Applying bootstrap error analysis, for each type of isotherm, RMSD, HYBRID 
error mean, and CI of errors are measured. The results are presented in Table 5. It shows the mean 
RMSD and HYBRID errors as well as 95% confidence interval of the two, corresponding to all the 
isotherm models. It is observed that the Tόth model provides the minimum error and minimum 95% 
CI of the bootstrap sample compared to the other models. 
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Figure 4. Type-I(b) adsorption isotherm of carbon-based composite/CO2 pair (data are fitted with the 
Tόth, modified D–A, Langmuir, Freundlich, and Hill models using RMSD and HYBRID error 
evaluation function, depicted in (a) and (b), respectively). 
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D–A 0.05624 (0.0457, 0.0650) 0.4893 (0.3432, 0.6382) 

Mod. D–A 0.01532 (0.0125, 0.0179) 0.1096 (0.0745, 0.1438) 
Tόth 0.01435 (0.0122, 0.0165) 0.0373 (0.0276, 0.0473) 

Freundlich 0.05178 (0.0451, 0.0583) 0.4353 (0.3282, 0.5444) 
Langmuir 0.01839 (0.0157, 0.0209) 0.0724 (0.0516, 0.0960) 

Hill 0.04871 (0.0451, 0.0583) 0.3816  (0.2740, 0.4965) 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8

A
ds

or
pt

io
n 

up
ta

ke
 [k

g/
kg

]

Pressure [MPa]

Experimental data
Tόth model
Modified D-A
Langmuir model
Freundlich model
D-A model
Hill model

30 °C

50 °C

70 °C

(a) Carbon-based composite/CO2 pair using RMSD 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8

A
ds

or
pt

io
n 

up
ta

ke
 [k

g/
kg

]

Pressure [MPa]

Experimental data

Tόth model

Modified D-A

Langmuir model

Freundlich model

D-A model

Hill Model

30 °C

50 °C

70 °C

(b) Carbon-based composite/CO2 pair using HYBRID



Energies 2019, 12, 4565 19 of 36 

 

From Table 6, it is observed that for the composite/CO2 adsorption pair, the values of all 
information criteria for Tóth model are small compared to other probable models, considering 
HYBRID error mean; this implies that considering all IC, the Tóth model’s information loss is less 
when compared to other models. The results are similar in the case of RMSD error mean; i.e., the 
values of all information criteria that correspond to the Tóth model are small compared to other 
probable models, except with the case of mAIC, which attains the minimum value in Langmuir 
model. Thus the analysis shows that, for this type of isotherm, the Tóth model’s information loss is 
less compared to other models. The probability of the possible model for Type-I(b) is graphically 
presented in Figure 5. This bar diagram shows the selection probability of the models for each of the 
model selection criteria. It is evident that the selection rate/probability of the Tόth model is highest 
among all the models considering all criteria. According to AIC, using the RMSD error function, the 
selection probability of Tόth model is approximately 70%. On the other hand, if we use the HYBRID 
error function, the selection probability of the Tόth model is about 80%. 

Table 6. Optimal isotherm employing model selection criteria for n = 1000 bootstrap samples. 

Model Error Mean AIC BIC AICc mAIC AIC3 CAIC ABIC 
Using HYBRID error mean 

D–A 0.4893 −56.61 −51.70 −55.90 −44.61 −53.61 −48.70 −61.08 
Mod.  D–A 0.1096 −114.43 −107.88 −113.22 −90.43 −110.43 −103.88 −120.38 

Tόth 0.0373 −157.53 −150.98 −156.32 −133.53 −153.53 −146.98 −163.49 
Freundlich 0.4353 −63.29 −60.01 −62.95 −59.29 −61.29 −58.01 −66.27 
Langmuir 0.0724 −133.03 −128.11 −132.32 −121.03 −130.03 −125.11 −137.50 

Hill 0.3815 −66.56 −61.65 −65.85 −54.56 −63.56 −58.65 −71.03 
Using RMSD error mean 

D–A 0.0562 −143.15 −138.24 −142.44 −131.15 −140.15 −135.24 −147.62 
Mod.  D–A 0.0153 −193.17 −186.62 −191.96 −169.17 −189.17 −182.62 −199.12 

Tóth 0.0143 −195.78 −189.23 −194.57 −171.78 −191.78 −185.23 −201.74 
Freundlich 0.0517 −148.45 −145.18 −148.11 −144.45 −146.45 −143.18 −151.43 
Langmuir 0.0183 −187.86 −182.95 −187.16 −175.86 −184.86 −179.95 −192.33 

Hill 0.0487 −148.90 −143.99 −148.19 −136.90 −145.90 −140.99 −153.37 
* The shaded cells indicate lowest value for a particular information criterion. 
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Figure 5. Probability/rate of selecting models for Type-I(b) adsorption isotherms using both RMSD 
and HYBRID errors. 

5.2.2. Overall and Pairwise Proportion Tests 

p-value of overall and pairwise test for the equality of minimum information criteria 
considering Tόth, modified D–A, and Langmuir models are expressed in Table 7. Here, the p-value 
of two tests are given, (i) equality of overall (all models) proportion test and (ii) equality of pairwise 
proportion test. The above table shows that p-value is very small, which is close to zero and less than 
0.01. Thus, it indicates that the overall and pairwise proportion tests are highly statistically 
significant at 1% level of significance. It states that the Tόth model has significantly less information 
loss compared to other probable models. 

Table 7. p-value of the overall and pairwise test of equality of the values of minimum information 
criteria (values outside and inside of parentheses represent HYBRID and RMSD errors, respectively). 

Test AIC BIC AICc mAIC AIC3 CAIC ABIC 

Overall 

2.1 × 10–

16 
(2.2 × 10–

12) 

2.1 × 10–

15 (2.2 × 
10–13) 

2.1 × 10–16 
(2.2 × 10–

14) 

2.2 × 10–14 
(2.2 × 10–

13) 

2.2 × 10–16 
(2.2 × 10–

14) 

2.0 × 10–13 
(2.2 × 10–

16) 

2.2 × 10–16 
(2.2 × 10–

15) 

Tόth vs. Mod. 
D–A 

2.0 × 10–

12 (2.0 × 
10–16) 

2.0 × 10–

11 (2.0 × 
10–16) 

2.0 × 10–11 
(2.0 × 10–

16) 

1.0 × 10–10 
(1.0 × 10–

10) 

2.0 × 10–13 
(2.0 × 10–

16) 

2.1 × 10–12 
(2.0 × 10–

16) 

2.0 × 10–13 
(2.0 × 10–

16) 

Mod.D–A vs. 
Langmuir 

1.9 × 10–

15 (2.0 × 
10–16) 

2.0 × 10–

16 (2.0 × 
10–16) 

2.1 × 10–15 
(2.0 × 10–

16) 

2.0 × 10–16 
(2.0 × 10–

16) 

2.0 × 10–16 
(2.0 × 10–

16) 

2.0 × 10–16 
(2.0 × 10–

16) 

2.0 × 10–16 
(2.0 × 10–

16) 

5.3. Type-II Adsorption Isotherm 

The Type-II isotherm is characterized by multilayer adsorption [15] and nearly analogous to the 
Type-I(b) shape; the only difference between the two is the absence of the plateau in Type-II, which 
is observed in Type-I(b) isotherms. The uptake continuously increases even when the pressure ratio 
is close to unity. This type of behavior is found for microporous adsorbents. Two isotherm data, for 
Type-II, are analyzed in the current study, they are isotherms of (i) water adsorption onto alumina at 
22 °C and (ii) water onto poorly crystalline boehmite at 20 °C. A previous study [21] on analysis of 
the sum of normalized error (SNE) showed that the HYBRID error function is appropriate to use for 
parameter optimization for almost all isotherm models. That is why the HYBRID error is used in the 
current study for the analysis of all types of onwards. 

Naono et al. [31] determined the adsorption isotherms for adsorption of water onto alumina at 
20 °C. Wang et al. [32] use water adsorption onto poorly crystalline boehmite at 22 °C. Both of these 
adsorption isotherms exhibit Type-II characteristics and are considered in the current study. The 
isotherm first fitted with modified BET, Ng et al., D–A, Tόth, Langmuir, and Redlich–Peterson 
models, and the fitted isotherms are represented in Figure 6. Bootstrap error analysis is performed, 
and the results of bootstrap error mean, and 95% CI are presented in Table 8. 

Based on the bootstrap mean and CIs of the HYBRID errors, we observe that on average, the 
modified BET model has smaller errors and a minimum 95% confidence interval of bootstrap sample 
than the other models. The ICs of all the models is also determined in the current study and 
presented in Table 9. It is observed that all the information criteria corresponding to the modified 
BET model are smaller than the same corresponding to other isotherm models, and this statement is 
valid for both the adsorbate/adsorbent pairs. This signifies that the information loss in the case of the 
modified BET model is less than that corresponding to other isotherm models. 
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Figure 6. Type-II adsorption isotherms; (a) alumina/water pair and (b) poorly crystalline 
boehmite/water pair. Data are fitted with the modified BET, Ng et al., D–A, Tòth, Langmuir, and 
Redlich–Peterson models using the HYBRID error evaluation function. 

Table 8. Mean error and confidence interval of HYBRID error for n = 1000 bootstrap samples. 
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Table 9. Optimal isotherm employing model selection criteria using HYBRID error mean of n = 1000 
bootstrap samples. 

Model Mean Error AIC BIC AICc mAIC AIC3 CAIC ABIC 
Adsorption of water onto alumina 

Mod. BET 0.2739 −41.32 −37.44 −40.28 −29.32 −38.32 −34.44 −46.76 
Ng et al. 0.8420 −3.00 6.07 2.89 81.00 4.00 13.07 −15.68 

D–A 1.0182 −5.87 −1.98 −4.82 6.13 −2.87 1.02 −11.30 
Tόth 1.9345 13.46 18.65 15.28 37.46 17.46 22.65 6.22 

Redlich–Peterson 1.6072 8.46 13.64 10.28 32.46 12.46 17.64 1.21 
Adsorption of water onto poorly crystalline boehmite 

Mod. BET 0.0079 −70.43 −68.11 −68.43 −58.43 −67.43 −65.11 −77.30 
Ng et al. 0.0311 −40.48 −35.07 −26.48 43.52 −33.48 −28.07 −56.50 

D–A 0.0356 −46.31 −44.00 −44.31 −34.31 −43.31 −41.00 −53.18 
Tόth 0.6532 2.24 5.33 5.87 26.24 6.24 9.33 −6.91 

Langmuir 1.4359 12.84 15.16 14.84 24.84 15.84 18.16 5.98 
* The shaded cells indicate lowest value for a particular information criterion. 

5.4. Type-III Adsorption Isotherm 

The shape of the Type-III adsorption isotherm is convex [15,41]. At low pressures, the uptake is 
low, but it increases sharply at the high pressures. Maroulis et al. [33] fitted the GAB model for the 
adsorption of moisture on the dried fruits. They considered temperatures of 15 °C, 30 °C, 45 °C and 
60 °C. In the current study, these isotherms are fitted with GAB, modified BET, Ng et al., modified 
Langmuir, Sun and Chakraborty, and D–A models and the results are shown in Figure 7. To 
investigate the model selection bootstrap error mean, 95% CI of n = 1000 bootstrap sample and 
model selection criteria are determined and presented in Table 10. It is evident that considering all 
information criteria, the GAB model’s information loss is less compared to all other models. Mean 
error and 95% confidence interval of bootstrap samples are also small when the GAB model is 
considered in the fitting. 

Figure 8 shows the selection probability of three models for each criterion. The bar diagram 
indicates that the selection rate/probability of the GAB model for adsorption of moisture/dried raisin 
pair is more than 80%, whereas the modified BET model has a selection probability of 10% 
approximately for most of the information criteria except BIC and mAIC.  

The overall and pairwise proportion tests are also conducted, and the results are presented in 
Table 11. It is observed that the p-value is very small and much less than 0.01. This result indicates 
that the overall and pairwise proportion tests are highly statistically significant. It also reconfirms 
that the GAB model has significantly less information loss compared to other models taken into 
consideration. 
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Figure 7. Type-III adsorption isotherms for dried raisins/moisture pair; experimental data are fitted 
with the GAB, modified BET, Ng et al., modified Langmuir, Sun and Chakraborty and D–A models 
using HYBRID error evaluation function. 

Table 10. Optimal isotherm employing model selection criteria using HYBRID error mean of n = 1000 
bootstrap samples. 

Model Mean 
Error 

95% CI of 
Error AIC BIC AICc mAIC AIC3 CAIC ABIC 

GAB model 0.2932 
(0.1720, 
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−73.10 −64.66 −71.34 −33.10 −68.10 −59.66 −80.30 

Mod. BET 0.8758 
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Ng et al. 1.0613 
(0.6907, 
1.4828) 
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Mod. Langmuir 0.7541 
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* The shaded cells indicate lowest value for a particular information criterion. 
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Figure 8. Probability of selecting models of Type-III adsorption isotherms for different information 
criteria using HYBRID errors. 

Table 11. p-value of an overall and pairwise test of equality of the value of minimum IC using 
HYBRID error of n = 1000 bootstrap samples. 
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5.5. Type-IV(a) Adsorption Isotherm 

The Type-IV(a) IUPAC classified adsorption isotherm is described by multilayer adsorption, 
which is a combination of Type-I(b) and Type-II isotherms. This type is characterized by its 
hysteresis loop, caused by the filling of mesopores. In the present investigation, two isotherms data 
are considered; (i) water adsorption onto polyvinylidene chloride (PVDC-600 °C) at 35 °C and (ii) 
water onto tripolis (dispersed silica) at 21 °C. Do et al. [34] presented a model that can describe the 
behavior of water adsorption onto highly oxidized carbon at 35 °C. Rakitskaya et al. [35] fitted the 
BET model to describe the adsorption of water onto tripolis. In the current study, these isotherms are 
fitted with the Ng et al., Yahia et al., modified BET, Mahle, Sun and Chakraborty, and Do et al. 
models. Figure 9 shows the fitting of isotherm data for PVDC/water pair and Tripolis/water pair 
with different isotherm models using the HYBRID error evaluation function.  

Mean HYBRID error and 95% confidence interval of errors are given in Table 12 for adsorption 
of water onto PVDC and water onto Tripolis pairs. The results indicate that mean error and 95% CI 
of the bootstrap samples are small for the Ng et al. model, as compared to other models. This 
statement is also checked by determining various information criteria, as presented in Table 13. It is 
observed that the values of all information criteria, except mAIC, of the Ng et al. model, are small 
compared to other probable models, for the adsorption of PVDC/water pair. Since the Ng et al. 
model is selected by the majority of the information criterion, so it signifies that considering IC the 
Ng et al. model’s information loss is less when compared to other models, and the method mAIC is 
not appropriate in this case. A similar finding is obtained in the case of the adsorption of water onto 
tripolis. 
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Figure 9. Type-IV(a) adsorption isotherms for (a) PVDC/water pair and (b) Tripolis/water pair. 
Experimental data are fitted with the Ng et al., Yahia et al., BET, modified BET, and Do et al. models. 

Table 12. Average and 95% confidence interval of HYBRID error for n = 1000 bootstrap samples. 
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Table 13. Optimal isotherm employing model selection criteria using HYBRID error mean of n = 1000 
bootstrap samples. 

Model Mean Error AIC BIC AICc mAIC AIC3 CAIC ABIC 
Adsorption of water onto PVDC 

Ng et al. 0.08324 −5.50 5.96 −1.77 78.50 1.50 12.96 −15.93 
Yahia et al. 2.69468 31.27 44.37 36.24 143.27 39.27 52.37 19.36 
Mod BET 0.51836 4.79 9.70 5.49 16.79 7.79 12.70 0.32 

Mahle 0.92660 12.59 19.15 13.81 36.59 16.59 23.15 6.64 
Sun and Chakraborty 1.12546 14.54 21.09 15.75 38.54 18.54 25.09 8.58 
Adsorption of water onto Tripolis 

Ng et al. 0.0127 −34.11 −22.64 −30.37 49.89 −27.11 −15.64 −44.53 
Yahia et al. 0.0903 −8.62 4.48 −3.65 103.38 −0.62 12.48 −20.53 

BET 0.2576 −8.03 −4.76 −7.69 −4.03 −6.03 −2.76 −11.01 
Mod BET 0.1471 −12.76 −7.85 −12.05 −0.76 −9.76 −4.85 −17.23 

* The shaded cells indicate lowest value for a particular information criterion. 

5.6. Type-IV(b) Adsorption Isotherm 

Depending on the pore width, the Type-IV isotherm is divided into two types, one with 
hysteresis and another without hysteresis, i.e., Type-IV(a) (pore width greater than 4 nm) and 
Type-IV(b) (pore width smaller than 4 nm), respectively [14]. Type-IV(b) is observed for the 
adsorbent having cylindrical and conical mesopores with a smaller width, which are entirely 
reversible and closed at the tapered end. Type-IV(b) adsorption isotherms are observed for the 
adsorption of argon at 87 K and nitrogen at 77 K onto IRMOF-74-V-hex having pore width less than 
4 nm [36]. In this study, the Ng et al., modified Langmuir, Mahle, modified BET, and Tόth models 
are fitted with the experimental data of both pairs and presented in Figure 10.  

The HYBRID error means and 95% CIs of errors are presented in Table 14 for adsorption of 
argon onto IRMOF-74-V-hex and nitrogen onto IRMOF-74-V-hex pairs. The Ng et al. model has a 
small amount of error, also confidence interval as compared to other models. This statement is also 
checked by determining various information criteria, as presented in Table 15. It is also observed 
that all methods except mAIC select the Ng et al. model as an optimal for argon adsorption, but 
nitrogen adsorption, and all ICs select the Ng et al. model. Since the majority of the ICs select the 
Ng et al. model, it signifies that information loss of the Ng et al. model is less when compared to 
other models for Type-IV(b) isotherm.  
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Figure 10. Type-IV(b) adsorption isotherms for (a) IRMOF-74-V-hex/argon pair and (b) 
IRMOF-74-V-hex/nitrogen pair. Experimental data are fitted with the Ng et al., modified BET, Mahle, 
modified Langmuir, and Tόth models. 
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Table 14. Average and 95% confidence interval of HYBRID error for n = 1000 bootstrap samples. 

IRMOF-74-V-hex/argon 
Mean 
Error 

95% CI 
of Error 

IRMOF-74-V-hex/nitrogen 
Mean 
Error 

95% CI 
of Error 

Ng et al. 0.95400 
(0.8126, 
0.9967) 

Ng et al. 0.18451 
(0.1124, 
0.2435) 

Mod. BET 2.71755 
(1.9571, 
3.1684) 

Mod. BET 1.19510 
(0.5642, 
2.9856) 

Mahle 4.24836 (3.2145, 
6.2541) 

Mahle 1.18360 (0.4265, 
3.2113) 

Mod. Langmuir 2.68435 
(1.2563, 
4.1256) Mod. Langmuir 0.53406 

(0.0613, 
2.1560) 

Tόth 4.34000 (3.5671, 
5.3461) 

Tόth 1.65845 (0.4125, 
2.6571) 

Table 15. Optimal isotherm employing model selection criteria using HYBRID error mean of n = 1000 
bootstrap samples. 

Model Mean Error AIC BIC AICc mAIC AIC3 CAIC ABIC 
Adsorption of argon onto IRMOF-74-A-hex 

Ng et al. 0.95400 −48.49 −37.03 −44.76 35.51 −41.49 −30.03 −58.92 
Mod. BET  2.71755 −1.01 3.90 −0.31 10.99 1.99 6.90 −5.48 

Mahle 4.24836 24.67 31.22 25.88 48.67 28.67 35.22 18.71 
Mod. Langmuir 2.68435 6.34 17.80 10.07 90.34 13.34 24.80 −4.09 

Tόth 4.34000 25.80 32.35 27.01 49.80 29.80 36.35 19.84 
Adsorption of N2 onto IRMOF-74-A-hex 

Ng et al. 0.18451 −135.57 −124.1 −131.84 −51.57 −128.5 −117.1 −145.9 
Mod. BET 1.19510 −44.55 −39.64 −43.84 −32.55 −41.55 −36.64 −49.02 

Mahle 1.18360 −19.79 −13.24 −18.58 4.21 −15.79 −9.24 −25.75 
Mod. Langmuir 0.53406 −79.24 −67.78 −75.51 4.76 −72.24 −60.78 −89.66 

Tόth 1.65845 −25.18 −18.63 −23.97 −1.18 −21.18 −14.63 −31.14 
* The shaded cells indicate lowest value for a particular information criterion. 

5.7. Type-V Adsorption Isotherm 

Type-V is distinguished by its characteristic S-shaped isotherm, and it also demonstrates a 
hysteresis loop. Water adsorption onto different types of zeolites exhibits Type-V characteristics. In 
the present investigation, an AQSOA-Z01/water pair is considered for the analysis of the Type-V 
isotherm model. Kayal et al. [37] utilized D–A, modified Langmuir, and Sun and Chakraborty 
models for the adsorption of water onto AQSOA-Z01 at temperatures 25 °C, 40 °C, and 65 °C. The 
isotherms are fitted in the current study with Sun and Chakraborty, modified Langmuir, Mahle, D–
A, and Ng et al. models presented in Figure 11. 

The results of bootstrap mean HYBRID error, 95% CI, and IC values are presented in Table 16. 
The results show that the mean HYBRID error, 95% CI of errors, as well as values of all information 
criteria are small for Sun and Chakraborty model, as compared to all other models. This indicates 
that the Sun and Chakraborty model incurs the lowest information loss as compared to all other 
models taken into consideration. 

The selection probabilities of two possible models, namely, the Sun and Chakraborty model 
and modified Langmuir model, are depicted in Figure 12. It is again evident from the figure that for 
the adsorption pair in concern, the selection probability of the Sun and Chakraborty model is much 
higher than that of the modified Langmuir model. The overall and pairwise proportion tests (as 
presented in Table 17) reveal that the Sun and Chakraborty model has significantly less information 
loss as compared to a modified Langmuir model. 
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Figure 11. Type-V adsorption isotherm of FAM-Z01/water pair; experimental data are fitted with the 
Sun and Chakraborty, modified Langmuir, Mahle, D–A, and Ng et al. models using the HYBRID 
error evaluation function. 

Table 16. Optimal isotherm employing model selection criteria using a HYBRID error mean of n = 
1000 bootstrap samples. 

Model Mean 
Error 

CI of 
HYBRID 

AIC BIC AICc mAIC AIC3 CAIC ABIC 

D–A 0.5370 
(0.3538, 
0.7506) 

−43.21 −38.46 −42.46 −31.21 −40.21 −35.46 −47.83 

Mahle 0.9121 
(0.4822, 
1.4353) 

−22.14 −15.81 −20.85 1.86 −18.14 −11.81 −28.30 

modified 
Langmuir 

0.2172 
(0.1225, 
0.3370) 

−67.79 −56.71 −63.79 16.21 −60.79 −49.71 −78.58 

GAB 2.6254 
(1.9507, 
3.3515) 

13.92 18.67 14.67 25.92 16.92 21.67 9.30 

Sun and 
Chakraborty 

0.1453 
(0.0741, 
0.2364) 

−88.27 −81.94 −86.98 −64.27 −84.27 −77.94 −94.44 

* The shaded cells indicate lowest value for a particular information criterion. 
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Figure 12. Probability of selecting models for Type-V adsorption isotherms considering different 
information criteria using HYBRID errors. 

Table 17. p-value of the overall and pairwise test of equality of the values of minimum IC using 
HYBRID error for n = 1000 bootstrap samples. 

Test AIC BIC AICc mAIC AIC3 CAIC ABIC 

Overall 
2.2 × 
10–16 

2.2 × 
10–16 

2.2 × 
10–16 

2.2 × 10–

16 
2.2 × 
10–16 

2.2 × 
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2.2 × 
10–16 

Sun and Chakraborty vs. 
Mod. Langmuir 

2.0 × 
10–16 

2.0 × 
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2.0 × 
10–16 

2.0 × 10–

16 
2.0 × 
10–16 

2.0 × 
10–16 

2.0 × 
10–16 

5.8. Type-VI Adsorption Isotherm 

In Type-VI, the adsorption occurs in steps. Two isotherm data are considered in the current 
study; (i) methane adsorption onto MgO at 87.4 K investigated by Gay et al. [76] and (ii) methane 
onto graphite at 77.3 K examined by Bienfait et al. [77]. These isotherm data are fitted with the 
Yahia et al., Ng et al., D–A, modified Langmuir, and Mahle models, and the results are depicted in 
Figure 13. 

To further investigate the models, mean HYBRID error and 95% confidence interval are 
determined, and the results are presented in Table 18. According to the results, the Yahia et al. model 
is the preferred model to describe the Type-VI isotherm, as it has the lowest mean error and 95% CI. 

The information criteria are determined for all the models, and results are presented in Table 19. 
It is observed from the table that, except for mAIC, the values of all IC corresponding to Yahia et al. 
model are smaller than the other models, and this is true for both the adsorption pairs. Hence, it can 
be said that the information loss of the Yahia et al. model is less compared to other models. 
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Figure 13. Type-VI adsorption isotherms exhibited by (a) MgO/methane pair at 87.4 K and (b) 
graphite/methane pair at 77.3 K. Experimental data are fitted with the Yahia et al., Ng et al., D–A, 
modified Langmuir, and Mahle models using the HYBRID error evaluation function. 

Table 18. Mean HYBRID error and confidence interval of error for n = 1000 bootstrap samples. 

MgO/methane 
Mean 
Error 

95% CI of 
Error 

Graphite/Methane 
Mean 
Error 

95% CI of 
Error 

Yahia et al. 0.1237 (0.0699,0.1835) Yahia et al. 0.562948 (0.3545,0.7757) 
Ng et al. 0.6007 (0.4107,0.7994) Ng et al. 7.848831 (3.4595,13.359) 
D–A 6.6061 (3.4087,10.022) D–A 15.06557 (9.0459,22.345) 
Mod. 
Langmuir 

21.165 (12.654,30.267) Mod. Langmuir 21.242790 (12.848,30.937) 

Mahle 11.430 (6.3491, 17.249) Mahle 12.461560 (7.7736,17.705) 

Table 19. Optimal isotherm employing model selection criteria using HYBRID mean error 
considering n = 1000 bootstrap samples. 

Model Mean error AIC BIC AICc mAIC AIC3 CAIC ABIC 
Adsorption of methane onto MgO 

Yahia et al. 0.1237 −89.70 −69.73 −77.70 174.30 −77.70 −57.73 −107.27 
Ng et al. 0.6007 −26.06 −4.43 −11.50 285.94 −13.06 8.57 −45.10 

D–A 6.6061 47.45 52.44 48.13 59.45 50.45 55.44 43.05 
Mod. Langmuir 21.1652 100.86 112.50 104.47 184.86 107.86 119.50 90.60 

Mahle 11.4302 70.83 77.48 72.00 94.83 74.83 81.48 64.97 
Adsorption of methane onto graphite 

Yahia et al. 56.29480 159.73 181.14 169.79 423.73 171.73 193.14 143.53 
Ng et al. 784.88310 277.66 300.86 289.80 589.66 290.66 313.86 260.12 

D–A 1506.55700 286.35 291.71 286.95 298.35 289.35 294.71 282.31 
Mod. Langmuir 2124.27900 309.47 321.96 312.58 393.47 316.47 328.96 300.03 

Mahle 1246.15600 280.00 287.14 281.03 304.00 284.00 291.14 274.61 
* The shaded cells indicate lowest value for a particular information criterion. 
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6. Conclusions 

In this study, relevant adsorption pairs for all of the IUPAC-classified adsorption isotherms are 
analyzed. The experimental isotherm data are fitted with 15 different isotherm models through 
generalized reduced gradient (GRG) non-linear optimization methods. Selected adsorption pairs 
have the same properties and curve patterns as their corresponding types. Here, one relevant 
adsorption pair data with more than one temperatures is considered for Type-I(b), Type-III, and 
Type-V; and two different relevant adsorption pairs with single temperature are considered for 
Type-I(a), Type-II, Type-IV(a), Type-IV(b), and Type-VI isotherms. The result of this study gives a 
clear insight into which model is suitable for a particular adsorption isotherm type. From the 
rigorous analysis of information criteria using bootstrap mean error, the present study confirms that 
the modified BET is suitable for Type-I(a) and Type-II; the Tóth model for Type-I(b); the GAB model 
for Type-III; the Ng et al. for Type-IV(a) and Type IV(b); the Sun and Chakraborty model for Type-V; 
and the Yahia et al. model for Type-VI, are the optimal models for the viewpoint of information 
losses. This study reveals that the 95% confidence intervals of the optimal isotherm models are 
smaller, and selection probabilities of the optimal isotherm models are more significant compared to 
the other isotherm models. The negligible p-value (close to zero) for overall and pairwise proportion 
test corresponding to each IUPAC-classified adsorption isotherm confirms that the models stated 
above as optimal are significantly favorable from the statistical standpoint, and the optimal model 
could also be applicable for other examples of a particular type. Therefore, the present study 
provides a universal approach for selecting the optimal model for any types of experimental data on 
adsorption isotherms. Researchers can use this approach to select the optimal isotherm model after 
plotting and matching their raw data with any of the eight types of IUPAC-classified isotherms. This 
will reduce the working hours as well as enhance the reliability of their analysis. 
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ABIC adjusted bayesian information criterion 

ACF activated carbon fiber 

ACP activated carbon powder 

AHT adsorption heat transformation 

AIC akaike information criterion 

AICc corrected akaike information criterion 
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BIC bayesian information criterion 

BIDC benzimidazole-derived carbons 

CI confidence interval 

D-A dubinin-astakhov 
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GRG generalized reduced gradient 

IC information criterion 

IRMOF isoreticular metal-organic framework 

IUPAC international union of pure and applied chemistry 

M-AC mangrove based activated carbon 

mAIC modified akaike information criterion 
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PBA polymer based adsorbent 
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PVDC polyvinylidene chloride 

RMSD root-mean-square deviation 

RSS residual sum of squares 

WPT waste palm trunk 
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