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Abstract: Orderly power utilization (OPU) is an important measure to alleviate contradiction between
supply and demand in a power system peak load period. As a load management system becomes
smarter, it is necessary to fully explore the interactive ability among users and make schemes for OPU
more applicable. Therefore, an intelligent multi-agent apanage management system that includes
a mutual aid mechanism (MAM) is proposed. In the decision-making scheme, users’ participation
patterns and the potential of peak shifting and willingness are considered, as well as the interests
of both power consumers and power grid are comprehensively considered. For residential users,
the charging time for their electric vehicles (EVs) is managed to consume the locally distributed
power generation. To fully exploit user response potential, the algorithm for improved clustering
by fast search and find of density peaks (I-CFSFDP), i.e., clusters the power load curve, is proposed.
To conduct electrical mutual aid among users and adjust the schemes reasonably, a multi-objective
optimization model (M2OM) is established based on the cluster load curves. The objectives include
the OPU control cost, the user’s electricity cost, and the consumption of distributed photovoltaic (PV).
Our results of a case study show that the above method is effective and economical for improving
interactive ability among users. Agents can coordinate their apanage power resources optimally.
Experiments and examples verify the practicability and effectiveness of the improved algorithm
proposed in this study.

Keywords: demand-side response; orderly power utilization; improved clustering by fast search and
find of density peaks (I-CFSFDP); multi-agent system; multi-objective optimization

1. Introduction

The smart grid plays an important role in improving the efficiency and quality of power supply.
The peak clipping mode is widely used by power companies [1], but there are problems, such as severe
peak power consumption and power shortage [2]. These problems can be solved by demand-side
management (DSM), which mitigates power imbalance during peak load. The orderly power utilization
(OPU) with the characteristic of “interaction” becomes the latest development direction of DSM [3].

DSM can improve patterns and efficiency of power consumption by stimulating demand-side
resources (DSR) [4]. DSR includes electric vehicles (EVs), air conditioners, factories and companies,
and other public places. The battery of an EV has energy storage characteristics that make it different
from the conventional power load [5]. In the background of peak and valley electricity price, an
effective guidance scheme can be developed through the load forecasting mechanism to make the
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EV respond to the discharge mechanism during the power consumption peak hours of daytime, and
evenly transfer the charging load during the low valley at night [6]. For residential users, it adjusts the
charging period of EVs to promote local consumption of distributed power.

In recent years, OPU has become an important part in a smart grid, and user initiative has
becomer more obvious [7]. To ensure the effectiveness of the schemes, we have higher requirements
for the management mode of OPU. Traditional non-OPU schemes rarely consider user willingness and
patterns of participation [8]. Therefore, the obtained schemes are unreasonable and different from the
actual situation, resulting in a waste of energy and investment [9]. To improve the accuracy of schemes,
the participation patterns, willingness of users, as well as the interests of both the power grid and
users should be fully considered. However, the users’ electricity consumption behavior is randomn
and uncertain, and therefore the multidimensional data, caused by uncertainty, makes calculations
difficult. Usually, the uncertainties in the planning process are simulated with random variables, using
chance-constrained programming [10]. Another approach is a clustering algorithm [11,12], however,
when there are many uncertainties, it is difficult to analyze mass data and improve computational
efficiency. Therefore, it is important to reduce redundant data while ensuring the accuracy of the model.

Clustering technology can reasonably transform the uncertain model into a deterministic model.
Traditional clustering algorithms include partition-based, hierarchy-based and density-based clustering
algorithms. Partition-based algorithms run fast, such as k-means, but the theory of the initial clustering
center and cluster number is not perfect [13]. The hierarchical algorithm has high space-time complexity
and cannot be used in large data environments [14]. The density-based algorithm has prolonged
data processing and it is hard to determine the key parameters [15]. In the case of large cluster shape
differences and high data dimensions, the clustering effect, stability and clustering speed of current
methods are unsatisfactory [16]. Therefore, it is urgent to establish a more effective clustering method.

To improve the accuracy and practicability of load curve clustering, we propose the improved
clustering by fast search and find of density peaks (I-CFSFDP) algorithm. The clustering by fast search
and find of density peaks (CFSFDP) algorithm can find clusters of arbitrary shapes and automatically
determine the number of clusters [17]. The algorithm can quickly cluster high-dimensional mass
data, and the clustering result is stable and effective [18]. Combined with the characteristics of
high-dimensional mass and large cluster size of power load curve, the algorithm is improved. The
algorithm refers to the idea of k-nearest neighbors (KNN) to make the algorithm more adaptive.
I-CFSFDP can effectively reduce computational difficulties.

In the process of executing the OPU scheme, temporary adjustments sometime occur. If the user
is not given the right to negotiate mutual aid, the user does not have enough time to cope with the
unexpected situation and reduce the satisfaction of power consumption [19], which leads to inefficient
execution and communication congestion [20]. Meanwhile, the fairness of the scheme needs to be
improved. The intelligent multi-agent system (IMAS) is the main part in the field of distributed artificial
intelligence [21]. The IMAS coordinates a group of intelligent agents with decentralized information
and, then, negotiates to solve the problem in a short period of time [22]. This system is widely used in
many fields of a power system, such as power system dispatch and topology analysis [23,24].

In comparison to the traditional OPU method, this study develops a personalized power
consumption scheme based on user’s participation willingness [22]. We discuss the architecture of IMAS
including using a mutual aid mechanism, MAM, which includes a multilayer power grid. The physical
structure of the grid is divided into three layers, i.e., system, node, and user (system-node-user), and
the index allocation mechanism from top to bottom is formulated. Considering the uncertainty, we
argue that clustering technology can reasonably transform the uncertain model into a deterministic
model, and effectively reduce the difficulty of modeling and solving. The uncertainty model can fully
consider the time series. The I-CFSFDP method causes less damage to data characteristics and can
accurately describe the data changes of the original scene. On the basis of the the load characteristic
curve obtained by the I-CFSFDP, a multi-objective model is established. It considers the participation
patterns, willingness of users, as well as the interests of both the power grid and users. The goal
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of the model is to minimize the total cost of both OPU control and users’ electricity consumption
and maximize the local consumption of the distributed photovoltaic (PV). The forbearing stratified
sequencing (FSS) method is used to solve the model [25]. We fully consider the user’s willingness,
participation patterns and user’s interests as compared with other decision-making methods. The
focus is on the user’s active features. Through a large number of comparative analysis, we show that
the IMAS’s OPU scheme can reduce peak power consumption, improve execution efficiency, and fully
exploit the potential of user interaction.

Considering the above issues, we proposes an IMAS with a MAM for OPU in a multilayer power
grid. The major contributions are summarized as follows:

(1) The initiative IMAS can achieve coordinated optimization within the jurisdiction, make decisions
and adjustments to the power usage plan, and improve the efficiency of information transmission;

(2) The proposed MAM can participate in the adjustment of the OPU plan, realize the mutual
coordination between users, improve the user’s interactive ability and establish a aid order table
to ensure the fairness of electricity consumption;

(3) The proposed I-CFSFDP algorithm can effectively reduce the difficulty of modeling and solving,
and can fully consider its time based on uncertain modeling of electricity consumption behavior;

(4) The established multi-objective OPU decision model comprehensively considers the interests of
both users and the grid, users’ willingness and taps the potential of users. FSS is used to solve
the proposed model. It is verified by the load data from the Open Energy Information (Open EI)
website of the U.S. Department of Energy [26]. The results show that the model is reasonable and
the algorithm is effective. Definition of nomenclature are showed in Table 1.

2. IMAS for OPU

2.1. System Architecture

According to the physical structure, a power grid is divided into three layers, “system-node-user”.
The node contains multiple users, while the system includes all nodes in the power grid. Then, the
IMAS is established for the system, node and user to create the mathematical model. Finally, through
interactions among agents, the allocation of the OPU gap indicators is completed. The structure is
shown in Figure 1.

Energies 2019, 12, x FOR PEER REVIEW 3 of 20 

 

considers the participation patterns, willingness of users, as well as the interests of both the power 
grid and users. The goal of the model is to minimize the total cost of both OPU control and users’ 
electricity consumption and maximize the local consumption of the distributed photovoltaic (PV). 
The forbearing stratified sequencing (FSS) method is used to solve the model [25]. We fully consider 
the user’s willingness, participation patterns and user’s interests as compared with other decision-
making methods. The focus is on the user’s active features. Through a large number of comparative 
analysis, we show that the IMAS’s OPU scheme can reduce peak power consumption, improve 
execution efficiency, and fully exploit the potential of user interaction. 

Considering the above issues, we proposes an IMAS with a MAM for OPU in a multilayer power 
grid. The major contributions are summarized as follows: 

(1) The initiative IMAS can achieve coordinated optimization within the jurisdiction, make 
decisions and adjustments to the power usage plan, and improve the efficiency of information 
transmission; 

(2) The proposed MAM can participate in the adjustment of the OPU plan, realize the mutual 
coordination between users, improve the user’s interactive ability and establish a aid order table 
to ensure the fairness of electricity consumption; 

(3) The proposed I-CFSFDP algorithm can effectively reduce the difficulty of modeling and solving, 
and can fully consider its time based on uncertain modeling of electricity consumption behavior; 

(4) The established multi-objective OPU decision model comprehensively considers the interests of 
both users and the grid, users’ willingness and taps the potential of users. FSS is used to solve 
the proposed model. It is verified by the load data from the Open Energy Information (Open EI) 
website of the U.S. Department of Energy [26]. The results show that the model is reasonable 
and the algorithm is effective. Definition of nomenclature are showed in Table 1. 

2. IMAS for OPU  

2.1. System Architecture 

According to the physical structure, a power grid is divided into three layers, “system-node-
user”. The node contains multiple users, while the system includes all nodes in the power grid. Then, 
the IMAS is established for the system, node and user to create the mathematical model. Finally, 
through interactions among agents, the allocation of the OPU gap indicators is completed. The 
structure is shown in Figure 1. 

System 
agent

Node 
agent1

Node 
agent n

User 
agent1

User 
agent2

 

 
Negotiation 
interaction 

module  
Figure 1. Intelligent multi-agent system (IMAS) for orderly power utilization (OPU). 

The functions of different levels of agents are designed as follows: 

(1) The system agent is responsible for calculating the system gap index. First, it collects the energy-
saving characteristics of the subordinate nodes (including energy-saving potential and energy-
saving loss coefficient) from each node agent. Then, according to the energy-saving 

Figure 1. Intelligent multi-agent system (IMAS) for orderly power utilization (OPU).

The functions of different levels of agents are designed as follows:

(1) The system agent is responsible for calculating the system gap index. First, it collects the
energy-saving characteristics of the subordinate nodes (including energy-saving potential and
energy-saving loss coefficient) from each node agent. Then, according to the energy-saving
characteristics, it calls the orderly allocation algorithm of the power gap index. Finally, the gap
index is allocated to each node agent.
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(2) First, the node agent reports energy-saving characteristics to the system agent. Secondly,
after getting the allocated gap indicators from the system agent, the node agent collects the
energy-saving characteristics from the subordinate user agents and then, assigns the gap indicators
to the user agents.

(3) The user agents are the lowest layers in a IMAS. It abstracts the user and collects the user’s
energy-saving features and reports them to the node agent.

(4) In the interactive module, the negotiation agent first collects the aid willingness of users to form
a list. When a user is unable to perform the tasks as planned, the user agent can issue an aid
request on the interactive platform. After querying the request, the negotiation agent quickly
adjusts the OPU plan according to the user’s aid willingness table. Then the agent updates the
table according to the aid situation to ensure the fairness of electricity consumption.

2.2. Indicator Distribution Mechanism

The OPU scheme adjusts at any time based on the user’s electricity consumption behavior.
The scale of the distribution network is huge, and communication is hindered if it is repeatedly
adjusted [21]. Insufficient interaction between users leads to a waste of energy and investment.
Therefore, a user MAM that encourages mutual assistance is proposed. It reduces the pressure of
system communication, improves the efficiency of solving large-scale planning problems, and ensures
real-time information updates as follows:

(1) Each layer of agent reports the energy-saving feature to the upper layer agent, and the upper
layer agent summarizes the equivalent energy-saving characteristics;

(2) After obtaining the energy-saving characteristics of the lower layer agent, the upper layer agent
completes the gap index assignment task from the upper level to the lower level according to the
allocated OPU gap indicator.

The key to MAM is that each user submits real energy-savings potential, then encourages users to
respond to the aid requests of other users. With respect to prompting users to submit the real potential
of energy-savings, it establishes an aid scoring mechanism for users. The user’s aid score is set as the
total contribution in the historical aid task. The scores of users who contribute more are high. MAM is
shown in Figure 2.
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The receiving assistance user i submits Qi to the negotiation agent, and ranks the recipient users
according to Wi. According to this order, Qi = [Q1, Q2, Q3 . . .Qm] is obtained. Users with high scores
get aid first, so Q1 gets aid first, followed by Q2, and finally Qm.

Table 1. Definition of nomenclature.

Nomenclature

di j
distance between sample i and j

(Euclidean distance) ξclip control cost coefficient of
peak clipping

dc truncation distance Mi,k peak clipping grade
τ whole data set ηDG PV conversion rate

Qi recipient capacity SDG
contact area of the battery

plate
Wi historical aid score. KDG light radiation intensity

Qi = [Q1, Q2 . . .Qm] recipient capacity matrix nDG number of the battery plates

m number of recipient users θt
out

external environment
temperature.

Si = [S1, S2 . . . Sn] aid capacity matrix PEV(t)
charging power of the EV in

t-period
n number of aid users PEV rated charging power

ρi local density of each sample SEV(t)
charging state, and 1 means

charging

δ local distance of each sample Qt
charging state of the battery

in t-period
KNN (i) KNN sample set of sample i Qmax charging state of the battery

xt loads at the time t Pmax
G,k

maximum power supply on
the k-day

x′t
values at the time t after

normalization of the load curve h1max, h2max, maximum/minimum
tolerable hours

N total number of users Y aid user set

N2 total number of residents f (t) price of different periods in a
day

xmax, xmin daily maximum/minimum load Pi,k(t)
a load of users in the k-day

t-period after OPU

N1
number of users with weekly

rest λi value score of i-user

3. I-CFSFDP

3.1. CFSFDP Algorithm

The idea of CFSFDP is based on the following two points: (1) the local density of each clustering
center is higher than the density of its domain sample points and (2) the distance between the
clustering center and the sample point with a higher density is relatively large. The point is defined as
Equation (1) [27].

ρi =


∑
j
(di j − dc), x < 0

0, x ≥ 0
(1)

In Equation (1), dc has a great impact on the clustering effect. If dc is too small, it can cause a
cluster to be forced to split into several parts; if dc is too large, several clusters can be merged into one
class. In the dc range of the average sample point, dc should make the ratio of the sample size to the
data set τ (τ = 1–2%) [17]. To reduce the influence of truncation distance on clustering results, we
propose to improve ρi by using the Gauss kernel function.

ρi =
∑
j,i

exp

−d2
i j

dc

 (2)
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The minimum distance between each sample point and a point with a higher density is defined
as follows:

δi = min
j:ρ j>ρi

(
di j

)
(3)

In Equation (3), for the sample i whose density is the highest, δi = max j
(
di j

)
.

The CFSFDP algorithm does not consider the local structure of datasets when calculating ρ. When
the density difference among different clusters of datasets is large, it will lead to wrong clustering
(merging of several clusters or splitting of one cluster). If the dataset size is n, the internal memory
consumption of the CFSFDP algorithm is mainly used to store a distance matrix of size n × n. The
execution time is mainly used to calculate the distance matrix, dc, ρ and δ. The ratio of calculating the
distance matrix is the largest, especially when the data scale and dimension are large. The internal
memory consumption and execution time of the CFSFDP algorithm will increase rapidly with an
increase of data size. Therefore, application of the CFSFDP algorithm is limited by data size, and it is
not appropriate for high-dimensional massive load curve clustering analysis.

3.2. I-CFSFDP Algorithm

3.2.1. KNN Algorithms and Their k-d Tree Implementation

The KNN algorithm is a simple and practical supervised learning classification method, which
is widely used in clustering analysis, prediction analysis, and pattern recognition [28]. There are
two ways to implement the KNN algorithm which include: (1) Linear scan, which calculates the
distance among each sample to be classified and all training samples. However, it takes a lot of time to
implement a large number of high-dimensional training sets [29] and (2) store training data through
special structures to reduce the number of calculated distances. One of the efficient classical methods
is k-d tree [30]. The k-d tree is a kind of tree data structure that stores instance points in k-dimensional
space for fast retrieval. The k-d tree is used to divide the k-dimensional search space, and the KNN
samples can be obtained by a correlative search in the neighborhood space of the sample, thus avoiding
exhaustive search calculations and greatly reducing the number of search calculations.

3.2.2. Principal Component Analysis for Dimension Reduction

Dimension reduction technology is mainly divided into feature selection and feature extraction.
The feature selection selects feature subsets that contain most of the information of the dataset from the
original redundant feature set [31]. However, the existing original feature subset cannot fully reflect the
time characteristics of the load curve. The selected feature subset loses more information on the load
curve [32]. Through transformation, feature extraction transforms the original high-dimensional feature
space into a new low-dimensional feature space. Compared with other dimensionality reduction
methods, principal component analysis (PCA) has the highest clustering accuracy and efficiency [33].
PCA is an important linear dimension reduction method. Its basic idea is to transform p original
variables into m new orthogonal variables (m� p) after linear transformation [34].

3.3. Improvement of the CFSFDP Algorithm

According to the literature [17,27,35], these study have mainly improved the internal memory
consumption and execution time of the original algorithm. The PCA is used to reduce the dimension
of the normalized load curve set. To speed up the follow-up operation, we first calculate the Euclidean
distance. Then the KNN matrix is generated by a fast KNN search for dimension reduced data using
the k-d tree algorithm. Finally, the KNN matrix is used to replace the distance matrix of the original
algorithm as the input data. On the basis of the improved KNN criterion for calculating local density
and distance of samples, the load curve is clustered by CFSFDP.
1. Improvement of internal memory consumption in the CFSFDP algorithm
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CFSFDP cannot consider the local structure of the dataset when calculating the local density of
the sample [36]. Therefore, the local density calculation standard introduces the idea of KNN and ρi is
defined as follows:

ρi =
∑

j∈KNN(i)

exp (−d2
i j) (4)

In the formula, Equation (4) shows that ρi decreases with the increase of the distance from sample
i to k- nearest neighbors. The new ρi only considers the KNN sample, which reflects mostly the local
structure of sample i. To reduce the internal memory consumption of the CFSFDP algorithm, we use
KNN to improve the calculation criterion of sample distance. Except for some sample points (such as
cluster centers), there is at least one nearest neighbor sample with a density higher than the density of
the sample point i, the minimum distance δi of the sample point i and the point at which the density
is higher is to be found from the k neighbor samples. Therefore, the improved δi based on KNN is
defined as follows:

δi =



min
{ j∈KNN(i)}∧{ρ j>ρi}

(
di j

)
i f∃ j s.t.

{
j ∈ KNN(i)

}
∧

{
ρ j > ρi

}
min

j:ρ j>ρi

(
di j

)
otherwise

(5)

For the sample point i with the highest local density in the whole world,

δi = max
j,i

(δi) (6)

k is obtained by Equation (7). Theρ and δ of the samples are calculated based on the KNN algorithm.

K = p× n (7)

Equation (7) shows that the proportion of KNN sample to the whole data scale is p, p is generally
minimal, then i < n. The improved procedure for calculating sample distance δ is as follows:

(1) The local sample density of the dataset is sorted in descending order and set to ρ′ = (ρ′1, ρ′2 . . . ρ
′
n),

so that i = 2.
(2) Calculate the distance ρ′i of density δ′i according to Equation (5), i = i + 1.

(3) If i ≤ n, return to step (2); otherwise, i = 1. The distance δ′i corresponding to the density ρ′i is
calculated according to Equation (6).

2. Improvement of CFSFDP algorithm execution time

It is very time-consuming to use the linear scanning method to build the KNN matrix on large-scale
datasets, and the classical k-d tree algorithm can realize a fast KNN search to create KNN matrix [37].
Because the KNN search efficiency is high when the size of the training set is much larger than the
spatial dimension (n ≥ k). The dimension increment causes a deviation of similarity measure and
reduces the clustering effect [38]. To reduce the execution time of the CFSFDP algorithm, we first
reduce the dimension of the dataset by PCA, then, use the k-d tree algorithm to establish the KNN
matrix, and then, use Equations (4)–(7) to calculate the samples’ ρ and distance δ.

3.4. I-CFSFDP Algorithm Step

The input of the load curve dataset is X, and the output of KNN proportional parameter p is a
clustering result. The whole process of the I-CFSFDP algorithm is as follows:
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(1) The dataset X is normalized. This treatment fully reflects the morphological characteristics of
each load curve, avoiding the influence of dimension and amplitude difference on the load
curve clustering.

x′t =
xt − xmin

xmax − xmin
(8)

(2) The normalized dataset is dimensionally reduced by PCA to X∗;
(3) The KNN matrix of X∗ is established by the k-d tree algorithm.
(4) Calculate the ρ and δ of samples according to Equations (4)–(7);
(5) Since the difference between the order of magnitude ρ and δ makes the weights of the two

different, the first ρ and δ are normalized, and the resulting decision curve avoids this problem.
The larger γ point is selected as the cluster center.

(6) The remaining samples are assigned, and each sample belongs to the same category as the denser
and closest sample.

4. OPU Model Considering DSM

4.1. Establishment of Objective Function Model

From the perspective of the power grid, the objective is to minimize the total cost of OPU control.

min
∑
i∈N

λi

Crotate
i +

7∑
k=1

(Cshi f t
i,k + Cclip

i,k + Cstag
i,k )

 (9)

From the user’s point of view, the goal is to minimize the total electricity cost of the user and
promote the local consumption of PV power generation.

min
7∑

k=1

∑
i∈N

∑
t∈T

f (t)Pi,k(t) +
7∑

k=1

∑
i∈N

∑
t∈T

g(t)Zi,k(t) (10)

In the formula, k is the number of days; Crotate
i is the control cost of sequential rest; Cstag

i,k , Cshi f t
i,k and

Cclip
i,k are the control costs of peak staggering, peak shifting, and peak clipping, respectively; Zi,k(t) is

the power injected into grid when the output power of PV is higher than the user’s consumption; and
g(t) is the price of PV grid-connected.

4.2. Load Regulation Model

1. Peak staggering means that the user avoids load peak periods by delaying or by delaying the
power consumption time of one day.

Cstag
i,k = ustag

i,k |hi|ξ
stag (11)

∆Pstag
i,k (t) = ustag

i,k ∆Pstag
i (t) (12)

where i ∈ N; hi is the number of hours of peak staggering in a time interval; hi is a positive number
indicating the number of hours of peak staggering, and the negative number indicating the number of
delays; utrans

i,k is 0–1 variable, and 1 is the number of peak staggering in a time; ξstag is the correction

amount of peak staggering in a time interval of t for i-user; ∆Pstag
i (t) is the number of peak staggering

correction in a time interval of t-period for i-user; and ∆Pstag
i,k (t) is the correction of peak staggering for

i-user at t-period on k-day.
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2. Peak shifting and valley filling mean that the user shifts part of the load during peak hours
to the valley period.Users need to submit the type and period of participation in peak shifting and
valley filling.

Cshi f t
i,k =

βmax∑
β=1

1
2

ushi f t
i,k,β

T∑
t=1

∣∣∣∣∆Pshi f t
i,β (t)

∣∣∣∣ξshi f t
β

 (13)

∆Pshi f t
i,k (t) =

βmax∑
β=1

(ushi f t
i,k,β ∆Pshi f t

i,β (t)) (14)

where i ∈ N; β is the type of peak shifting valley filling; βmax is the total number of peak shifting
valley filling classes; ξshi f t

β is the control cost coefficient of peak shifting valley filling; ushi f t
i,k,β is 0–1

variable, taking 1 as a variable to participate in the peak shifting valley filling of β class; ∆Pshi f t
i,β (t)

is the correction of i- user participating in the t- period of peak shifting valley filling of β class; and
∆Pshi f t

i,k (t) is the total amount of peak shifting for i-user at t-period on k-day.
3. Peak clipping summit brings irreparable power loss to users, only when the power supply gap

cannot be eliminated by the first three means. The user states the peak clipping, the single-stage peak
clipping and the period of the maximum tolerable peak clipping level.

Cclip
i,k = ξclipMi,k

T∑
t=1

∆Pclip
i (t) (15)

∆Pclip
i,k (t) = Mi,k∆Pclip

i (t) (16)

where i ∈ N; ∆Pclip
i (t) is the single-stage peak clipping correction of i-user in t-period; ∆Pclip

i,k (t) is the
total peak clipping correction of i-user in k-day t-period.

4. Peak rotating is suitable for users with weekly-off. By changing working days and rest days,
the peak load of the system can be avoided.

Crotate
i = uwork

i,6 (1− uwork
i,7 )ξrotate

1 + uwork
i,7 (1− uwork

i,6 )ξrotate
1 + uwork

i,6 uwork
i,7 ξrotate

2 (i ∈ N1) (17)

Pi,k(t) =

 uwork
i,k Pwork

i (t) + (1− uwork
i,k )Prest

i (t)(i ∈ N1)

President
i,k (t)(i ∈ N2)

(18)

where k is the number of days; u is a variable of 0-1, 0 is the rest day, and 1 is the control cost coefficient
of a working day, ξrotate

1 and ξrotate
2 are for one day and two days, respectively; Pwork

i (t) is a load of a
working day with weekly rest i-user in t-period; Prest

i (t) is a load of a rest day with weekly rest i-user in
t-period; President

i,k (t) is a load of resident i-user in the k-day t-period; and Pi,k(t) is a load of resident
i-user in the k-day t-period after rotate days off.

4.3. Modeling of Household PV Generation Devices

Household PV devices can directly supply power to users. The PV output power has strong
nonlinear characteristics as a function of light intensity and temperature, and in cloudy weather,
its output power will change rapidly for a short time [39].Its output power PDC,k(t) is affected by
environmental factors [40]. The mathematical model is as follows:

PDG,k(t) = ηDGSDGKDGnDG
(
1− 0.005

(
θt

out − 25
))

(19)
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4.4. Modeling of EV

In the OPU scheme, the charging time can be adjusted to achieve the purpose of peak shifting and
valley filling. The EV real power profile is not constant and strongly depends on the type of EV and
the type of EV supply equipment [5,39,40]. Users need to declare the number of EVs available for a call
and the adjustable charging time. The mathematical model of EV charging is as follows:

PEV(t) = PEVSEV(t) (20)

SEV(t) =

{
0, (Qt ≥ Qmax)

1, (Qt < Qmax)
(21)

4.5. User Load Curve after OPU

After implementing the ordered power consumption strategy, the user’s power load curve is:

Pi,k(t) = ε
(
Pi,k(t) − ∆Pi,k(t) − PDG,k(t)

)
(22)

∆Pi,k(t) = ∆Ptrans
i,k (t) + ∆Pshi f t

i,k (t)+∆Pclip
i,k (t) (23)

Zi,k(t) =

{
0(PDG,k(t) < Pi,k(t))

PDG,k(t) − Pi,k(t)(PDG,k(t) > Pi,k(t))
(24)

In the formula, Pi,k(t) is the load of the user in the first k-day t-period after OPU, and the positive
part of PV output is subtracted. When the value of Pi,k(t) − ∆Pi,k(t) − PDG,k(t) > 0, ∆Pi,k(t) is the total
OPU correction of the user in the t-period on the first day.

4.6. Constraints Condition

(1) Maximum output constraints of the system

N∑
i=1

Pi,k(t) ≤ Pmax
G,k (25)

(2) Constraints of peak shifting and peak clipping

h1 max ≤ hi ≤ h2 max (26)

Mi,k ≤ Mmax (27)

The number of hours of the peak staggering should not exceed h1max and h2max and the peak
clipping level should not exceed the maximum tolerable level Mmax.

(3) Peak avoidance constraint

Each user uses at most one peak avoidance method one day.

ustag
i,k + (1− ushi f t

i,k,0 ) + (1− uwork
i,k ) + uclip

i,k ≤ 1 (i ∈ Ni) (28)

In the formula, ustag
i,k takes 1 to indicate that i-user participates in peak shifting on k-day; ushi f t

i,k,0 takes

0 to indicate i-user participates in peak shifting and valley filling on k-day; uclip
i,k takes 1 to indicate

i-user participates in peak clipping on k-day; uwork
i,k takes 0 to indicate that i-user participates in

peak shifting on k-day as a rest day.
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(4) The constraint of peak rotating
7∑

k=1

uwork
i,k = Di(i ∈ N1) (29)

Di denotes the number of working days one week for the user. The above formula means that the
total number of working days per user a week is fixed. Usually, Di = 5.

(5) Daily participation restriction.

ustag
i,k + (1− ushi f t

i,k,0 ) + uclip
i,k ≤ 1(I ∈ N2) (30)

The meaning of the Formula (30) is that each user can only participate in one peak avoidance
mode every day.

4.7. Solution Algorithm

The FSS can transform the multi-objective optimization problem into a single-objective solution,
which sorts all the objectives according to the importance degree, first finds the optimal solution of the
most critical objective, and then finds the next important objective [25,41]. It works the premise of
guaranteeing the optimal solution of the former objective until the last one is obtained [42].

Solving m objects at the same time makes calculation difficult. First, the objects are ranked
according to the importance of each object. The order of arrangement is:

h1(x), h2(x), h3(x), · · · hm(x) (31)

First, solve the first object h1(x) and find the set R1 of the optimal solution; then, in R1, solve the
optimal solution R2 of the second object h2(x); in R2, solve the optimal solution R3 of the third object
h3(x). This continues until the optimal solution Rm of the mth object hm(x) is obtained.

f1
(
x0

)
= maxR

x∈R1
f1(x) (32)

f2
(
x0

)
= maxR1

x∈R2
f2(x) (33)

f3
(
x0

)
= maxR2

x∈R3
f3(x) (34)

...

fm
(
x0

)
= maxRm−1

x∈Rm
fm(x) (35)

In the study, it can be considered that the object of to minimize the total cost of OPU control is
more important, and the constraint is appropriately relaxed to solve the second object after solving
the first object.After solving the objective Formula (9), the constraints should be relaxed to solve the
objective Formula (10).

The OPU scheme in this study takes one week as the time unit, and combines it with the relevant
parameters declared by users, preferentially calls low power value score users. The order of users’
load management mode calls is peak staggering, peak rotating, peak shifting and peak clipping. This
process is equivalent to peak shifting and valley filling. For other users, the load of an EV has been
considered in its peak shifting and valley filling load. The mathematical optimization solver CPLEX
12.4 is used to optimize the solution in Matlab.

4.8. Adjustment of OPU Scheme

First, the user is ranked according to the degree of aid willingness to form a ranking table. When
a user requests aid, the negotiation agent identifies the set of users that are preferentially responded to
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in the ranking order. If the set is not feasible, and the current adjustment capability is insufficient, the
negotiation agent adds more users to the aid model one-by-one according to the sequence table. We
can ensure that the adjustment cost is minimized based on the user’s willingness. The process of OPU
adjustment is shown in Figure 3.
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1. The negotiation agent inquires on the user interaction platform whether the user has issued an
aid request, and if so, enters step 2.

2. Query the ranking table of user support intention, judge whether the user participates in the
adjustment, construct the support user set, and add the corresponding constraints to the support model.

3. Make adjustments based on the original OPU scheme. The goal is to minimize the adjustment
cost of the scheme as follows:

min
∑
i∈Y

λi

Crotate
i +

7∑
k=1

(Ctrans
i,k + Cshi f t

i,k + Cclip
i,k )

 (36)

4. Determine whether the power supply gap can be eliminated or not, if satisfied, update the user
aid willingness ranking table and rank the users participating at the end of the ranking table in turn; if
not, enter step 5.

5. Based on the original aid user set, add users one-by-one according to the sequence table, and
update the aid model to step 3 until the sequence table is traversed.

5. Examples and Analysis of Planning Results

This study uses the commercial user load data published by the Open EI website of the U.S.
Department of Energy. Each user includes 24 data every day.

The whole data includes 1600 summer workday load curves of 16 industry categories. The
I-CFSFDP algorithm is used to clustering the sample set, as shown in Figure 4.
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In Figure 4a,b,d, categories 1, 2, and 4 are single peak loads, which include office buildings
(companies), schools and hospitals. These loads are mainly characterized by large daytime power
consumption, a smooth load curve, and slight microwave fluctuation due to users’ rest load around
13:00. In the peak period, the duration of these three categories of load patterns is also slightly different.
For example, the peak period of category 1 load is about from 7:00 to 17:00, which includes hospitals;
the peak period of category 2 load is about from 9:00 to 16:00, which only includes warehouses; and
the peak period of category 4 load is about from 9:00 to 17:00, which includes office buildings, schools
and supermarkets. In Figure 4e, f, category 5 and 6 of loads have three peaks, which include hotels
and restaurants. Among them, the difference in load forms of the categories 3 and 4 is shown in the
time and duration of the peak period. In Figure 4c, the load peak appears at 7:00, 12:00, 18:00 and lasts
about two hours. This category of load includes full-service restaurants, fast-service restaurants and
small hotels. For example, category 5 of the load peak appears at 7:00, 18:00, 21:00 and lasts for a short
time, which only includes large hotels. Category 6 of load is bimodal, which only includes apartments.
The peak occurs at 8:00 and 19:00, and the peak period lasts about 2 h.

Categories 2 and 3 contain household PV devices and the rated capacity is about 4500 kW. The
price of PV during sunny weather is $0.0713/(kW·h). The resident users have 1000 EVs with a rated
charging power of 4 kW. They work during the day and charge after 18:00. It is assumed that 30% of
EVs can participate in OPU, and the charging period can be adjusted to the daytime. The total load
curve of the system in this region is the sum of all user load curves (except PV output). The peak load
of a working day is about 38 MW, and the electricity price of each period is shown in Table 2.
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Table 2. Electricity price.

Time (h) Electricity Price/($/(kW·h))

Valley time (0:00–7:00, 22:00–24:00) 0.051
Peak period (7:00–9:00, 14:00–16:00, 18:00–20:00) 0.13

Ordinary hours (9:00–14:00, 16:00–18:00, 20:00–22:00) 0.0977

5.1. Scenario 1: In the First Week, the Region Was Allocated to Eliminate 10% of the Power Supply Gap, and
the OPU Decision-Making Scheme in this Study Was Analyzed

If the traditional OPU is adopted (in the peak period, the user load is directly reduced regardless
of the user’s will), and the power gap is 10%, the users’ categories 1, 4, 5 and 6 are called because of
lower power value score. When each peak can be cut off, the peak clipping means of 11, 2, 16 and 5 are
taken, respectively, and the total power loss reaches 67 MW·h, which affects the average demand of
users. The decision results are shown in Table 3.

Table 3. OPU decision-making scheme in this week.

User Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 h 1 h – – rest rest –
2 rest – – – – rest –
3 1 h rest – – – – rest
4 −2 h – – −1 h rest – rest
5 – – – – – rest rest
6 – - rest – – rest –

From Monday to Friday, all the resident users’ callable EVs participate in the OPU decision-making.
Category 1, category 4, category 5 and category 6 take one day rotate days off, and category 1, category
4 and category 6 take the means of peak staggering periods for rotate days off. From the analysis of
profitability, for power companies, they tend to give priority to users with low power value scores
and use low-cost means. For users, they prefer the lowest total electricity cost if the load management
method is adopted.

After OPU, the total load does not exceed the maximum supply and the power supply gap
reduction. Figure 5 shows the total load curve of the system on Monday before and after OPU.Energies 2019, 12, x FOR PEER REVIEW 14 of 20 
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After using the peak staggering mode, the power curve of category 1 is advanced 1 h, which
reduces the peak load by 2621 kW at 16:00; the loss of electricity can be compensated in a day. In
Figure 6a, the peak load on Tuesday is reduced by 4563 kW after using the rotate days off mode, and
the loss of power can be compensated on Saturdays (Figure 6b).

EVs participate in peak shifting is shown in Figure 7.
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The analysis of category 6 shows that before OPU, the charging arrangement of EV set A (150
EVs) concentrates between 19:00 and 1:00 the next day. After OPU, according to the user’s wishes, it
transfers to between 9:00 and 15:00 for charging and EV set B (150 EVs) transfers to between 17:00 and
23:00 for charging. Charging is carried out from 7:00 to 8:00, 10:00 to 12:00, and 13:00 to 16:00. The
peak load can be reduced by 1200 kW by the peak shifting and valley filling method, and the loss of
electricity can be compensated for in a day. The condition of PV power plant consumption before and
after the OPU is shown in Figure 8.
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Figure 8. Condition of photovoltaic (PV) power plant consumption before and after the OPU.

Before OPU, the net load of residential users is less than 0 from 8:00 to 15:00 and the PV output
is not fully consumed. At 10:00, the waste of PV reaches a maximum, which is 1707 kW. As shown
in Figure 8, when the EV participates in the OPU, the day net load curve changed significantly. The
unabsorbed amount of 10:00 PV power decreased to 307 kW, and the total amount of PV power fed into
the power grid decreased showing that an adjustment of the charging period for an EV can effectively
promote the local consumption of distributed generation.

Electric quantity change after the OPU in this week is shown in Figure 9.
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As shown in Figure 9, all users’ power losses from Monday to Friday can be compensated for
on Saturdays and Sundays. The OPU mode ensures that the total power consumption of users will
remain unchanged within a week. Through calculation, the savings for total electricity cost of users
would be $1756.452 this week, and the grid could reduce the install capacity by approximately 3.8 MW.
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5.2. Scenario 2: In the Process of Implementation, the User Needs to be Aided

1. First aid

In the third week, the region needs to eliminate 16% of the power supply gap. If category 1 cannot
participate in OPU at this time to request aid, then, according to the user aid willingness list, add user 5
to the aid model and adjust the scheme. User 5 has made adjustments to Wednesday and Friday’s work
schedule. On Wednesday, there are two types of peak shifting and valley filling, and on Friday, there
are rotation breaks. According to the calculation, without OPU, user 1 wasted $272.494 of electricity
cost, while user 5 saved $112.08 of electricity cost because of OPU. Subsequently, the aid willingness
ranking table is updated to provide a reference for the next aid. The rotation situation is shown in
Table 4.

Table 4. User 1 and user 5 electrical modes before and after the adjustment.

Program User Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Before
adjustment

1 – – β12
1 – rest rest –

5 – – – – – rest rest

After
adjustment

1 – – – – – rest rest
5 – – β12 – rest – rest

1 In Table 4, β12 means participating in peak and valley shifting of the first and second categories.

2. Second aid

In the sixth week, the gap of power supply in this area is 8%, but user 3 cannot participate in
the OPU. According to the sequence table, user 4 joins aid. The results show that the model has no
solution, so it expands the available area of the aid user set, increases user 1 to aid model, and solves it
again. The updated user aid willingness list provides a reference for the next aid.

3. After 12 weeks of OPU

The traditional aid method is to give priority to users with a low-value score or strong regulation
ability, which lacks fairness. The aid method not only considers the willingness of users to aid
but also takes turns to participate in the scheme adjustment. This method ensures the fairness of
electricity consumption and realizes the coordination and autonomy of regional electric energy. The
total electricity expenditure would be reduced by $12,816.91 in the summer. The number of users
participating in aid is shown in Table 5.

Table 5. Users’ participation times of aid.

User Number of Aid for this Method Number of Aid from Traditional Methods

1 1 0
2 0 0
3 1 2
4 1 5
5 2 0
6 1 0

5.3. Comparison of Algorithm

Several traditional clustering algorithms and the I-CFSFDP algorithm are used for cluster analysis,
and the overall internal memory consumption and execution time of each algorithm are compared.
The experimental results are shown in Figure 10.
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In terms of overall execution time, the I-CFSFDP algorithm is only worse than the k-means
algorithm, which is better than the FCM algorithm and far better than other algorithms; in terms of
overall internal memory consumption, the I-CFSFDP and FCM algorithms can handle datasets larger
than 140,000. The rest of the algorithm has a memory overflow when the dataset size exceeds 8000,
indicating that the internal memory consumption of the I-CFSFDP algorithm is within a reasonable
range, which is much smaller than most clustering algorithms.

In summary, the internal memory consumption and execution time required by the I-CFSFDP
algorithm are not high, far better than most traditional clustering algorithms, which verifies the
applicability of the I-CFSFDP algorithm in high-dimensional massive load curve clustering analysis.
Although the k-means algorithm is far superior to the I-CFSFDP algorithm, its clustering effect is poor
and the results are unstable.

6. Conclusions

This study mainly focuses on OPU decision making under the mode of active user response.
The active response and the potential of user response should be fully tapped. On the basis of
IMAS technology, we propose an OPU scheme. The module divides the power grid into a three-tier
agent structure of “system-node-user”. It separates the original complex OPU metrics into several
simpler subtasks and encourages users to collaborate through proxy negotiation machines. The
system realizes the second allocation of negotiation among user agents. By using the multilevel,
adaptive and interactive allocation of the OPU gap index, when the first allocation of OPU index is
inaccurate, users can adjust the gap index by the second optimization of the negotiation mechanism.
Considering the user’s willingness and participation in peak avoidance, we analyzed the user’s
electricity usage behavior.

The I-CFSFDP clustering algorithm is used to transform the uncertain model into a deterministic
model. The clustering result is stable and productive. It also effectively reduces the internal memory
consumption and execution time of the original algorithm. It better achieves large-scale power
load curve clustering and assists load forecasting, price setting, and demand-side response in a big
data environment.

On the basis of the the load characteristic curve obtained by the clustering algorithm, an M2OM
is established. It aims to minimize the total cost of OPU control and the total cost of users’ power
consumption. The model also promotes the local absorption of household PV. With high calculation
efficiency, low-power score users’ wishes are respected. The model considers the interests of both users
and the grid, as well as taps the user’s potential.

We propose an orderly adjustment method of OPU, which is realized by the negotiation agent, to
achieve mutual coordination. In addition, we establishe an aid willingness ranking table to ensure
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fairness of power consumption. The OPU mode ensures that the total power consumption of users
remains unchanged within a week. Through calculations, the total electricity cost savings for users
in this region would be $1756.45 per week. In addition, the grid would reduce the installed capacity
by approximately 3.8 MW. In summer, calculations show that the total electricity expenditure in this
region would be reduced by $12,816.91. This study provides a reference for load management under
the new situation of the smart grid. Power companies could reduce the imbalance between power
supply and demand by implementing OPU decisions, alleviating the shortage of peak power and
slowing the expansion of power plants.

OPU is a hot topic of current research. Possible research directions in the future should include
charging load characteristics and orderly charging strategies for EVs, as well as optimal scheduling for
integrating the energy system with power user-side participation.

Author Contributions: All authors contributed to the research in the paper; W.S. conceived and designed the
model; D.Z. provided the data; X.Z. analyzed the data; R.J. wrote the paper.

Funding: This work is supported by the Shanghai Applied Undergraduate Pilot Program (Shanghai DianJi
University, Electrical Engineering and Automation)(grant no.g2-17-7201-008-005); National Natural Science
Foundation of China Youth Fund (grant no. 61803253); the National Natural Science Foundation of China (grant
no. 51477099); the Key Laboratory of Control of Power Transmission and Conversion (SJTU), and the Ministry of
Education (grant no. 2016AB14).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

OPU orderly power utilization KNN k-nearest neighbors
EV electric vehicle IMAS intelligent multi-agent system

CFSFDP
clustering by fast search and find of
density peaks

I-CFSFDP
improved clustering by fast search and
find of density peaks

FSS forbearing stratified sequencing MAM mutual aid mechanism
M2OM multi-objective optimization model Open EI Open Energy Information
PV photovoltaic PCA principal component analysis
DSM demand-side management DSR demand-side resources
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