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Abstract: Solar energy is considered to be one of most promising renewable energy sources because of
its availability and cleanliness. The phenomenon of dust deposition on solar mirrors greatly reduces
the power generation of solar power plants. In this work, the motion behaviors and deposition
mechanics of dust particles are analyzed by the discrete element method (DEM). The effects of
environmental and solar mirror conditions and particle self-factors on dust deposition weight are
systematically studied here. The research results show that dust particles, after particle collision,
immediately adhere to the mirror or rebound and finally flow away from the mirror, or they otherwise
may remain stationary after making some relative motion. Alternatively, they may glide for some
distance and finally come to rest on the mirror or leave from the system. Different motion behaviors
after particle collision depend on different leading forces. Here, the leading forces are the liquid bridge
force (Fc) and the contact force (Fb). When the leading forces are Fc, or Fc, and Fb, the dust particles
will be deposited on the solar mirror. Besides, the force Fc cannot be negligible when studying the
motion processes of dust particles. The dust deposition weight on solar mirrors can be controlled by
altering the environmental and solar mirror conditions, and particle self-factors. In essence, dust
deposition weight on solar mirrors decreases when decreasing the leading force Fc or increasing the
leading force Fb. The research results give theoretical guidance for the prevention and removal of
dust deposition on solar mirrors.
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Highlights

1. The effects of the environmental conditions, solar mirror conditions, and particle self-factors on
dust deposition weight have been systematic studied.

2. The leading forces during the motion process of dust particles are Fc or Fb based on Equations
(14)–(16). When the leading forces are Fc, or Fc and Fb, the dust particles will be deposited on the
solar mirror.

1. Introduction

Solar energy is considered to be one of most promising renewable energy sources for its availability
(it is natural, abundant, and free) and cleanliness (it is free from emission and noise) [1]. The phenomenon
of dust deposition on solar mirrors seriously affects reflectivity and transmittance, thus reducing
the power generation of solar power plants [2–5]. Therefore, dust deposition on solar mirrors has
attracted a great deal interest from many researchers. Many of these authors have stated that dust
accumulation on solar cells reduces solar thermal efficiency [6–8]. Yadav et al. [9] have carried out
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many simulations and experiments that investigate the motion behaviors of dust particles on heliostats.
In their work, they found that the dust deposition distribution on a single heliostat was uniform.
Kaldellis et al. [10] have studied the effect of dust particle deposition on mirror surface output. In their
work, they found that dust deposition caused a significant reduction in the conversion efficiency of
solar energy. Imad et al., [11] have performed a number of experiments investigating the influence of
regular cleaning on the output power of solar mirrors. In their work, they found that dust deposition
caused a reduction in power generation at a solar power plant. Nikni et al. [12] have studied the
thermal performances of a parabolic trough collector, including the thickness and weight of dust
particles deposited on the mirrors. They found that dust deposition on the mirrors greatly influences
the reflectivity of the mirror and sharply decreases the performance and overall efficiency of the
collector. Kaldellis et al. [13] have studied dust particle deposition on photovoltaic-assisted water
pumping systems. They found that the performance of the photovoltaic mirror decreased due to dust
deposition. Thus, dust deposition on solar mirrors can significantly reduce the conversion performance
of solar mirrors. In this regard, it is meaningful to investigate the motion processes and deposition
mechanics of dust particles.

At present, most studies have numerically investigated the effects of wind speed, particle size,
and inclination angle on the flow characteristics of air and dust deposition states. Sayyah et al. [14]
have investigated the effects of the inclination angle and particle size on energy yield loss and the
dust deposition state. Many researchers have studied the effect of the inclination angle of solar
mirrors on the dust deposition state [15–19]. Lu and Zhang [20] have studied the dust deposition state
for a building-integrated photovoltaic system at different roof inclinations and wind speeds using a
computational fluid dynamics (CFD) model. Besides, they have simulated dust particle behaviors using
a shear-stress transport (SST) k-ω turbulence model and a discrete particle model (DPM). The results
showed that dust deposition rate increased with the decrease of wind speed. Lu and Hajimirza [21]
have studied the effect of the inclination angle on the maximum optical efficiency for removing dust
accumulation on solar cell surfaces. Lu et al. [22] have studied dust deposition characteristics on the
solar mirrors using CFD method. Their result show that the peak deposition rates on solar mirrors
reached a maximum value when the dust particles were medium in size. Boddupalli et al. [23] have
investigated the air motion characteristics behind a heliostat via Reynolds-averaged Navier-Stokes
(RANS) equations and large eddy simulation (LES). In their works, they found that an instantaneous
stream-wise vorticity contour could cause non-uniform dust deposition on a heliostat, recommending
a wake-based distance parameter as the minimum distance between any two consecutive heliostats.

In recent years, the discrete element method (DEM) has become a popular and reliable numerical
tool to investigate the motion characteristics of fluids and particles, where the results are based on
particle collisions [24–27]. In their work, based on the DEM, the simulated results, such as particle
residence time, particle motion characteristics, and minimum fluidization velocity, were in good
agreement with the experimental results and actual multiphase transport phenomena. The DEM was
chosen in this paper to investigate the deposition mechanics of dust particles on solar mirrors.

However, up until now, little detailed information has been available on the deposition mechanics
of dust particles on the solar mirror. Besides, few articles are available that systematically study the
effects of the environmental and solar mirror conditions and particle self-factors on dust deposition
weight. Given that the deposition mechanics of dust particles play an important role in investigating the
prevention and removal of dust deposition on solar mirrors, investigation of the deposition mechanics
of dust particles and a systematic study on the effects of the aforementioned factors on the dust
deposition weight are of great theoretical significance and engineering value.

In view of the aforementioned considerations, the purpose of the present work is to study the
deposition mechanics of dust particles and to investigate the effects of the environmental and solar
mirror conditions and particle self-factors on dust deposition weight. The organization of the rest of the
paper is as follows. Section 2 gives a brief introduction to the background and theoretical foundation
of dust particle motions via the Engineering Discrete Element Method (EDEM) tool. Section 3 gives a
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detailed analysis and discussion of the deposition mechanics of dust particles, revealing the leading
force during the motion process and studying the effects of the environmental and solar mirror
conditions and particle self-factors on dust deposition weight. Section 4 summarizes the research work
and conclusions of this paper and presents specific topics to approach in the future.

2. Model Description

2.1. Particle Motion Balance

Based on Newton’s second law, the discrete element model (DEM) was chosen to investigate the
process of dust particle deposition. In the dust deposition process, dust particles are acted on by the
force of gravity, Van Der Waals force, electrostatic force, contact force, buoyant force, liquid bridge
force, and other forces. Therefore, the particle motion balance can be calculated as follows:

m
d
→
u

dt
=
→

F g +
→

F a +
→

F b +
→

F c +
→

F e +
→

Fd +
→

Fx (1)

where Fg is the force of gravity, Fa denotes the Van Der Waals force (shown in Figure 1), Fb is the contact
force, including the dust particle-dust particle and dust particle-solar mirror forces, Fc represents the
liquid bridge force of the dust particle, Fe is the electrostatic force, Fd is the buoyant force, Fx represents
the other forces acting on the dust particle, such as, the thermal swimming force, the pressure gradient
force, the Saffman force and the added mass force. Since the size of the dust particle is not within
the microscopic molecular size range, the pressure gradient force, the added mass force, the thermal
swimming force, the Saffman force, and the other forces can be neglected in this work [28].
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The expressions of Fg and Fa are given in Equations (2) and (3) [29], respectively:
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where $ is the Lifshitz constant, r represents the dust particle radius, l0 is the average distance between
molecules, m denotes the dust particle mass, and g represents acceleration due to gravity.

Based on the soft-sphere model, the software EDEM was used as a simulation tool to study the
contact force Fb in this paper. The expression of Fb is shown in Equation (4). It can be seen from
Equation (4) that Fb can be divided into two components, namely, the normal component force (Fbn)
and the tangential component force (Fbt).

→

F b =
→

F bn +
→

F bt (4)
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Due to the dust particle deposition on the solar mirror, the Hertz-Mindlin and Johnson Kendall
Roberts (JKR) models were chosen to investigate the aforementioned two components in this paper [30].
The expression of Fbnij and Fbtij between particles “i” and “j”, or between the dust particle and solar
mirror are correspondingly shown in Equations (5)–(7):

→

F bnij =
(
−knα

1.5
− cn

→
v i j ·

→
n
)
→
n (5)

→

F bti j = −kt
→

δ − ct
→
v ct∣∣∣∣∣→F bti j

∣∣∣∣∣ ≤ µs

∣∣∣∣∣→F bnij

∣∣∣∣∣ (6)

→

F bt = −µs

∣∣∣∣∣→F bnij

∣∣∣∣∣→n t∣∣∣∣∣→F bti j

∣∣∣∣∣ > µs

∣∣∣∣∣→F bnij

∣∣∣∣∣ (7)

where kt and kn represent the spring constant in the tangential and normal directions, respectively,
δ and α denote the tangential displacement and normal displacement, respectively, ct and cn are the
damping coefficients in the tangential and normal directions, respectively, µs denotes the friction
coefficient, vij is the relative velocity between particles “i” and “j”, n is the unit vector from particle “i”
to particle “j”, nt represents the tangential unit vector, and vct denotes the sliding velocity vector.

The Mikami model was used to calculate force Fc in this paper [31]. The expression of Fc is shown
as follows:

→

F c = πrγ(e
Ah∗

2r+B + C) (8)

In the above equations, γ is the liquid surface tension, and symbols A, B, and C are the
corresponding functions of the dimensionless liquid bridge volume (V*) and solid-liquid contact
angle [31].

The expression of Fe is given in Equation (9):

→

F e =
→

F ee +
→

F el +
→

F es (9)

It can be known from Equation (9) that Fe is determined by three electrostatic component forces,
namely, Fee, Fel, and Fes [32,33]. Fee is the electrostatic image force and the expression of Fee is shown in
Equation (10). Fes is the electrostatic image force, and the expression of Fes is shown in Equation (11).
Fel is the electrical double layer force, and the expression of Fel is shown in Equation (12).

→

F ee =
σQ
ε0

(10)

→

F es =
Q2

4εε0(2r + l0)
2 (11)

→

F el =
πεε0rU2

r + l0
(12)

In the above equations, ε denotes the dielectric constant between dielectrics, Q is the electric
charge of dust particle, σ is the surface charge density of the solar mirror, U represents the contact
potential difference, and ε0 is the absolute dielectric constant.

The expression of Fd is given in Equation (13).

→

Fd = ρairVg (13)

where V is the dust particle volume and ρair is the air density.
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2.2. Model Assumptions and Simulation Conditions

A three-dimensional computational domain was chosen to investigate and analyze the motion
characteristics and deposition process of dust particles in this work. Figure 2 shows the geometric
model and computational domain of the solar mirror. The solar mirror was flat and inclined, 60 mm in
both length and width, and 3 mm in thickness, as shown in Figure 2. The left side of the computational
domain could generate dust particles in this work. Meanwhile, all dust particles were uniformly
spherical and did not have any change in shape during particle motion process.
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Figure 2. Geometric model and computational domain of the solar mirror.

It can be known from the previous study that numerous dust particles are deposited on the solar
mirror [1–13]. As a result, the performance and overall efficiency of the solar power plants will sharply
decrease. Few papers have investigated the motion characteristics and deposition process of dust
particles. Although almost always solar power plants are located at a high altitude, high temperature,
and intense radiation zone, the effect of the moisture content of dust particles on the deposition process
cannot be neglected. It can be learned from the meteorological report of the solar power plant in
Qinghai province, China, that the relative moisture content of dust particles is 0.01–0.26% [34]. This
paper studies the effect of the relative moisture content of dust particles on the motion characteristics
of said dust particles and assesses the effect of the liquid bridge force (Fc) on the deposition process
of dust particles. The dimensionless liquid bridge volume (V*) parameter was chosen to study the
effect of the relative moisture content of dust particles on the dust deposition process in this work.
Under the role of each force, this paper tries to find the leading force affecting the deposition process.
Meanwhile, this works systematically studies the effects of the environmental conditions (such as wind
speed and air humidity), solar mirror conditions (such as geometric properties, clear or dusty mirror),
and particle self-factors (such as diameter and moisture content of dust particles) on the deposition
process. Optimizing the aforementioned factors, this paper attempts to find the conditions resulting in
the least amount of dust deposition. Thus, the results will be meaningful for providing theoretical
guidance and engineering values for the future removal of dust particles.

Table 1 shows the parameters of the properties of the dust particles and solar mirror, and all the
simulation conditions of this work. Besides, the Hertz-Mindlin and JKR models were used to calculate
the contact forces between interparticles and those between the dust particle and solar mirror in this
work. Meanwhile, to verify the accuracy of the Mikami model, the EDEM results and theoretical data
are compared in Figure 3. It can be learned from Figure 3 that the relative error of the liquid bridge
force of dust particles between the EDEM results and theoretical data is less than 3.0%. Thus, the
EDEM results based on the Mikami model can be adopted in this paper.
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Table 1. Simulation conditions.

Parameters Discrete Element Method (DEM)

Poisson’s ratio (dust particle/solar mirror) 0.4/0.23
Shear modulus (dust particle/solar mirror) 2 × 106/2 × 1010

Density of the dust particle (ρp) 1400 kg/m3

Density of the solar mirror 2458
Coefficient of recovery (dust particle/solar mirror) 0.5/0.4

Rolling friction coefficient (dust particle/solar mirror) 0.5/0.7
Static friction coefficient (dust particle/solar mirror) 0.1/0.5

Liquid surface tension 0.07275 N/m
Liquid viscosity 0.03 Pa·s

Solid-liquid contact angle 0
Surface conditions of solar mirror Clear or dusty solar mirror
Incline angle of solar mirror (θ) 10◦–60◦

Wind speed (u0) 2–10 m/s
Dimensionless liquid bridge volume (V*) 0.001–2.64

Diameter of dust particle (dp) 1.0 × 10−5
−1 × 10−4 m

Initial concentration of dust particle (cp) 7.85 × 10−11
−7.85 × 10−10 kg/s
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3. Results and Discussion

3.1. Motion Characteristics of Dust Particle

3.1.1. Motion Behaviors of Dust Particle

From the work of previous studies [1], it can be learned that studying the motion process of
dust particles is helpful to reveal their deposition mechanism. Figure 4 shows the motion process of
dust particles on a clear solar mirror, with or without the liquid bridge force (Fc). It can be seen from
Figure 4 that dust particles are initially accelerated by the air that collides with the solar mirror or
adjacent dust particles, then interacting with the mirror and adjacent dust particles, finally staying on
the solar mirror or flowing away from the solar mirror. It can be observed from Figure 4 that although
many dust particles after particle collisions leave the mirror, there are still a considerable number of
dust particles that remain on the mirror. By comparison with the results of Figure 4f–j, the results of
Figure 4a–e show that due to the force Fc, the particle concentration of Figure 4e is greater than that
of Figure 4j. This is because some dust particles, after particle collision, adhere on the solar mirror
or agglomerate with other dust particles deposited on solar mirror, due to the effect of the force Fc.
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Without consideration of the force Fc, the dust deposition weight of the solar mirror will be greatly
underestimated. Thus, the phenomenon that a considerable number of dust particles are deposited on
solar mirrors can be discovered in this work. Besides, the liquid bridge force should not be ignored
during the motion process of dust particles.
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Dusty solar mirrors are more common than clear solar mirrors in the studied solar power plant.
Studying the motion process of dust particles on the solar mirror can give theoretical guidance to
investigate the deposition mechanics of dust particles. Meanwhile, it is very important to study and
assess the motion behaviors of dust particles during the motion process of dust on dusty solar mirrors.
Figure 5 shows the motion behaviors of dust particles on dusty solar mirrors. It can be seen from the
comparison of Figure 4e with Figure 5a that due to the dusty solar mirror having more dust particles
deposited on the mirror, the particle concentration of Figure 5a is greater than that of Figure 4e. The
motion process of dust particles on dusty solar mirrors is basically similar to that of clear solar mirrors.
It can be seen from Figure 5 that because of the force Fc, the particle concentration of Figure 5a is
larger than that of Figure 5b on the dusty solar mirror in question. This is because some dust particles
after collision immediately adhere to the mirror due to the effect of the force Fc. Alternatively, they
may remain stationary after making relative motion with the dust particles or the mirror, or glide for
some distance and finally come to rest on the mirror. Without consideration of the force Fc, the dust
deposition weight of the solar mirror will be found to be a smaller value than on the dusty solar mirror.
Thus, the phenomenon of numerous dust particles deposited on the dusty solar mirror can be also
found in this study. Meanwhile, the force Fc cannot be negligible when studying the motion process of
dust particles on dusty solar mirrors.
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3.1.2. Analysis of Forces Acting on Dust Particle

According to the results of Figures 4 and 5, it can be known that the liquid bridge force (Fc) plays
an important role in motion process of dust particles in the solar mirror field. In order to investigate
and reveal the deposition mechanics on the solar mirror in question, it is very necessary to analyze the
forces acting on a dust particle when the dust particles collide with the mirror or adjacent dust particles.
Figure 6 shows an analysis of the forces acting on the dust particle on the solar mirror. It can be known
from Figure 6 that the forces acting on the dust particle include the force of gravity (Fg), Van Der Waals
force (Fa), contact force (Fb), liquid bridge force (Fc), electrostatic force (Fe), and buoyant force (Fd).
Through theoretical analysis and the calculation of Equations (2)–(12), the magnitudes of Fg, Fa, Fe,

and Fd are less than 2 × 10−9 N, but the magnitude of Fc and Fb are larger than 1 × 10−6 N. Therefore,
based on Figure 6 and Equations (2)–(12), the forces Fc or Fb can be the leading forces when compared
with forces Fg, Fa, and Fe during the particle motion process. When Fc > Fby, the leading force is Fc,
and the dust particles, after collision, will adhere on the mirror or adhere to dust particles deposited
on the mirror. When Fby is much greater than Fc, the leading force is Fb, and the dust particles, after
collision, will rebound and then flow away from the solar mirror. When Fc < Fby, the leading force is
Fb, or Fc and Fb, and the particle motion process will be complex, and the dust particles, after collision,
will remain stationary after making some relative motion with the dust particles or the mirror, or else
they will glide for some distance and finally come to rest on the mirror or else leave. Thus, the leading
force of dust particles during the motion process is the contact force (Fb) or liquid bridge force (Fc).
Whether dust particles are deposited on the solar mirror or not depends on the leading force. Different
leading forces can make different motion behaviors after particle collision in the motion process of
dust particles.
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3.2. Dust Deposition Weight on Solar Mirror

The environmental and solar mirror conditions and particle self-factors have great impact on
the motion characteristics and deposition weight of dust particles on the solar mirror. Besides, the
dust deposition weight greatly influences the conversion performance of the solar mirror [12]. The
conversion performance of the solar mirror gets better when the dust deposition weight decreases
sharply. Thus, it is valuable to investigate the effects of the environmental condition, solar mirror
conditions, and particle self-factors on the dust deposition weight on the solar mirror.

3.2.1. Environmental Condition (EC)

The wind speed parameter (u0) is used to be described the effect of environmental condition (EC)
on the dust deposition weight on the solar mirror. Figure 7 shows effect of u0 on dust deposition
weight on the solar mirror. It can be observed from Figure 7 that when 0.5 m/s < u0 < 1.2 m/s, the dust
deposition weight has no change with an increase of u0. When 1.2 m/s < u0 < 3.0 m/s, dust deposition
weight decreases with the increase of u0. When 3.0 m/s < u0 < 12 m/s, the dust deposition weight
trends to zero with the increase of u0, which is similar to the fluid with high velocity scouring the
mirror. This is because when 0.5 m/s < u0 < 1.2 m/s, the weak wind speed results in a weak contact
force (Fb), making almost all dust particles stay on the solar mirror because of the effect of the leading
force Fc. Meanwhile, when 3.0 m/s < u0 < 12 m/s, the kinetic energy of dust particles is a high value
after particle collision, making almost all dust particles rebound and flow away due to the effect of
leading force Fb. On the other hand, when 1.2 m/s < u0 < 3.0 m/s, the kinetic energy of dust particles
increases with the increase of u0 after particle collision, making some particles finally adhere on the
mirror with the great effect of forces Fb and Fc. Thus, the parameter u0 greatly influences the motion
behaviors of dust particles during the motion process. Dust deposition weight on the solar mirror
decreases with the increase of the parameter u0.

3.2.2. Solar Mirror Conditions (SMC)

The inclination angle of solar mirror (θ) and surface condition parameters were used to describe
the effect of the solar mirror conditions (SMC) on the dust deposition weight on the solar mirror.
Figure 8 shows the effect of θ on the dust deposition weight on the solar mirror. It can be seen from
Figure 8 that the dust deposition weight on the solar mirror reaches a maximum value at approximately
θ = 45◦. This is because the motion energy of dust particles increases with an increase of θ after particle
collision, making more particles leave the mirror. However, Fby decreases with the increase of θ after
particle collision, resulting in more dust particles staying on the mirror. Therefore, dust deposition
weight reaches a maximum value at approximately θ = 45◦ for both u0 = 2.0 m/s and u0 = 2.2 m/s.
Meanwhile, it can be seen from Figure 8 that the dust deposition weight on the solar mirror decreases
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with the increase of u0 at same value of θ, which is in accordance with the result of Figure 7. Thus,
the parameter θ greatly influences the motion characteristics of dust particle. Dust deposition weight
on the solar mirror reaches a maximum value at approximately θ = 45◦, and reasonably setting the
parameter θ of the solar mirror can reduce dust deposition weight.Energies 2019, 12, x FOR PEER REVIEW 10 of 18 
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Figure 9 shows the effect of the surface conditions on the dust deposition weight on the solar
mirror. The surface conditions of the solar mirror can be classed into two kinds of solar mirror, namely,
a clear solar mirror and dusty solar mirror. It can be seen from Figure 9 that the dust deposition
weight of the dusty solar mirror is larger than that of the clear solar mirror. This is because the dusty
solar mirror shortens the magnitude of the force Fb compared with clear solar mirror, making more
dust particles deposit on the solar mirror. As a result, the dust deposition weight on the solar mirror
increases when the degree of dust on solar mirror increases. Meanwhile, whatever the solar mirror is
clear or dusty, dust deposition weight rises with the increase of the diameter of dust particle (dp). This
is because according to Equation (8), the liquid bridge (Fc) increases when the parameter dp rises. Thus,
surface conditions play a great impact on dust deposition weight on the solar mirror. Dust deposition
weight on the solar mirror decreases with a decrease in the degree of dust on the solar mirror.
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3.2.3. Particle Self-Factors (PSF)

The dimensionless liquid bridge volume (V*), diameter of dust particle (dp) and initial concentration
of dust particle (cp) parameters were chosen to be describe the effect of particle self-factors (PSF) on
the dust deposition weight of dust particles on the solar mirror. Figure 10 shows the effect of the
dimensionless liquid bridge volume (V*) on the dust deposition weight on the solar mirror. It can be
observed from Figure 10 that the dust deposition weight on the solar mirror increases when V* goes up.
This is because the liquid bridge (Fc) goes up when the parameter V* increases, based on Equation (8).
Besides, it can be seen from Figure 10 that although at low V* and high u0 values, there are still many
dust particles that are deposited on the solar mirror because of the great effect of the force Fc. When
the parameter V* is high, the dust deposition weight on the solar mirror increases with the increase of
V*, as the force Fc is the leading force during the motion process, making more dust particles stay on
the mirror. On the other hand, it can also be seen from Figure 10 that the dust deposition weight on the
solar mirror decreases when u0 increases to be the same value as V*. This is because increasing u0 can
make the force Fb rise and cause more dust particles to flow away from the mirror. Thus, the force Fc

cannot be neglected in studying the motion characteristics of dust particles, and even at some value of
u0, many dust particles with a low V* still adhere on the mirror, as the leading force is the force Fc.
Decreasing the parameter V* can make the dust deposition weight on the solar mirror go down.Energies 2019, 12, x FOR PEER REVIEW 12 of 18 
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Figure 11 shows the effect of the diameter of the dust particles (dp) on the dust deposition weight
on the solar mirror. It can be observed from Figure 11 that the dust deposition weight on the solar
mirror increases when dp goes up. This is because the liquid bridge (Fc) goes up when the parameter
dp increases, based on Equation (8). Therefore, decreasing the diameter of incoming dust particles can
make the dust deposition weight on the solar mirror go down.
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Figure 12 shows the effect of the initial concentration of dust particles (cp) on the dust deposition
weight on the solar mirror. It can be observed from Figure 12 that the dust deposition weight on the
solar mirror increases when cp goes up. This is because the increasing particle concentration makes the
particle collisions occur more frequently. Therefore, the contact force (Fb) gradually decreases with
every particle collision, causing more dust particles to stay on the solar mirror. Therefore, decreasing
the parameter cp can make the dust deposition weight on the solar mirror go down.Energies 2019, 12, x FOR PEER REVIEW 13 of 18 
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3.3. Comparison of Dust Deposition Weight Among EC, SMC, and PSF

Based on the previous analysis and results, it can be known that the environmental condition (EC),
solar mirror conditions (SMC), and particle self-factors (PSF) greatly influence the dust deposition
weight on the solar mirror. Figure 13 shows an analysis chart of the factors affecting the dust deposition
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weight of dust particles. It can be learned from Figure 13 that the dust deposition weight is a function
of u0, θ, degree of dust, V*, dp and cp, is a function of the EC, SMC and PSF, is also a function of Fb and
Fc. Besides, the parameters u0, θ, the degree of dust, V* and cp alter the value of the contact force Fb,
and the parameters V* and dp alter the value of the liquid bridge force Fc. The force Fc should not be
ignored, and the forces Fb and Fc are the leading forces of dust particles during the motion process.
Decreasing the dust deposition weight on the solar mirror can be helpful for the good performance
of the solar power plant. Some measures can be taken to control the dust deposition weight on the
solar mirror. Increasing the parameter u0 and decreasing the degree of dust, V*, dp, and cp can make
more dust particles flow away from the solar mirror. Meanwhile, reasonable design of the geometric
dimensions (the parameter θ) and surface conditions can greatly reduce the dust deposition weight
on the solar mirror. Thus, the dust deposition weight on solar mirror can be reduced by altering the
environmental condition, solar mirror conditions, and particle self-factors. In essence, decreasing dust
deposition weight on solar mirror by decreasing the force Fc or increasing the force Fb.
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The leading forces (such as the forces Fb or Fc) play an important role in the motion behaviors of
dust particles during the motion process. Whether dust particles are deposited on the solar mirror or
not depends on the leading force. It is of great theoretical significance and engineering value to ensure
the leading force when the environmental condition, solar mirror conditions, and particle self-factors
vary. A large number of simulations were undertaken at θ = 30◦, dp = 7 × 10−5 m, cp = 4.32 × 10−10 kg/s,
and ρp = 1400 kg/m3 for the clear solar mirror. The simulated results are shown in Equations (14)–(16).
It can be known from Equations (14)–(16) that for different ranges of wind speed (u0), the leading force
is also different at different ranges of the dimensionless liquid bridge volume (V*). It can be seen from
Equation (14) that the leading force is uniquely the liquid bridge force Fc, when 0 < u0 ≤ 0.1 m/s, V* ≥
0.01, 0.1< u0 ≤0.53 m/s, and V* ≥ 0.56, etc. This is because Fc is greatly larger than Fb. The lower limit
value of V* can be found at a different range of u0 with the force Fc as the leading force. Therefore, the
liquid bridge force is of great importance, even with a very low value of V*. The liquid bridge force
can uniquely be the leading force, based on Equation (14), for the motion process of dust particles.

Fleading f orce = Fc



u0 ≤ 0.1 m/s V∗ ≥ 0.01
0.1 m/s < u0 ≤ 0.53 m/s V∗ ≥ 0.56

0.53 m/s < u0 ≤ 1.26 m/s V∗ ≥ 2.03
1.26 m/s < u0 ≤ 1.98 m/s V∗ ≥ 3.74
1.98 m/s < u0 ≤ 2.55 m/s V∗ ≥ 4.96

u0 ≥ 2.55 m/s V∗ ≥ 8.32

(14)

Fleading f orce = Fb



u0 ≤ 0.1 m/s V∗ ≤ 0.001
0.1 m/s < u0 ≤ 0.53 m/s V∗ ≤ 0.06

0.53 m/s < u0 ≤ 1.26 m/s V∗ ≤ 0.19
1.26 m/s < u0 ≤ 1.98 m/s V∗ ≤ 0.82
1.98 m/s < u0 ≤ 2.55 m/s V∗ ≤ 1.51

u0 ≥ 2.55 m/s V∗ ≤ 1.73

(15)
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On the other hand, it can be seen from Equation (15) that the leading force is uniquely the contact
force Fb, when 0 < u0 ≤ 0.1 m/s and V* ≤ 0.001, or 0.1 < u0 ≤ 0.53 m/s and V* ≤ 0.06, etc. This is because
Fb is greatly larger than Fc. The upper limit value of V* can be found at different ranges of u0 when the
force Fb is the leading force. Therefore, the contact force can uniquely be the leading force based on
Equation (15) during the motion process of dust particles. Besides, it can be seen from Equation (16)
that the leading force is both the forces Fb and Fc when 0 < u0 ≤ 0.1 m/s and 0.001 < V* < 0.01, or 0.1 <

u0 ≤ 0.53 m/s and 0.06 < V* < 0.56, etc. This is because both Fb and Fc can greatly influence the dust
deposition mechanics. The range of V* can be found at a corresponding range of u0 when both Fb and
Fc are the leading forces. Therefore, both the liquid bridge force and contact force can be the leading
forces, based on Equation (16), concerning the motion process of dust particles. On the whole, the
leading forces can be different at different range of u0 and V*. The lower and upper limit values of V*
can be found at corresponding ranges of u0 when the unique leading force is Fc or Fb.

Fleading f orce = Fc and Fb



u0 ≤ 0.1m/s 0.001 < V∗ < 0.01
0.1m/s < u0 ≤ 0.53m/s 0.06 < V∗ < 0.56

0.53m/s < u0 ≤ 1.26m/s 0.19 < V∗ < 2.03
1.26m/s < u0 ≤ 1.98m/s 0.82 < V∗ < 3.74
1.98m/s < u0 ≤ 2.55m/s 1.51 < V∗ < 4.96

u0 ≥ 2.55m/s 1.73 < V∗ < 8.32

(16)

Table 2 shows the final motion state of dust particles at different leading force values. It can
be seen from Table 2 that when the leading forces are Fc, or Fc and Fb, the final motion state of dust
particles is adhering on the solar mirror. This is because dust particles after particle collision do not
have enough kinetic energy to leave the mirror, and the force Fc greatly influences the motion behavior
here. Even at low a V* value, the force Fc can be the leading force during the motion process of the
dust particles. On the other hand, when the leading force is justly Fb, the final motion state of dust
particles is off the solar mirror. This is because dust particles, after particle collision, still have a great
enough kinetic energy to flow away from the mirror, and the force Fc is greatly smaller than the force
Fb. Based on Equations (14)–(16), the leading force distribution at different ranges of u0 and V* can be
obtained, shown in Figure 14. Thus, when the leading forces are Fc or Fc and Fb, the dust particles will
be deposited on the solar mirror. Besides, the information of motion characteristics and deposition
mechanics of dust particles will be more accurate and comprehensive with consideration of the liquid
bridge force Fc.

Table 2. Final motion state of dust particles at different leading force.

Conditions Leading Force Final Motion State

Equation (14) Fc On the solar mirror
Equation (16) Fc and Fb On the solar mirror
Equation (15) Fb Off the solar mirror
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4. Conclusions

Many simulations were carried out to investigate the motion behaviors of dust particles by DEM
in this paper, studying the leading force and deposition mechanics of dust particles on the solar mirror
in the studied solar power plant. Meanwhile, the effects of the environmental condition, solar mirror
conditions, and particle self-factors on the dust deposition weight on the mirror were studied, and the
following conclusions have been drawn:

1. No matter whether the mirror is clear or dusty, the phenomenon that a considerable number of
dust particles are deposited on the solar mirror can be found. The dust deposition weight will be
underestimated without the consideration of the liquid bridge force (Fc).

2. Dust particles after particle collision either immediately adhere to the mirror, rebound and finally
flow away from the mirror, remain stationary after making some relative motion, or glide for
some distance and finally stay on the mirror or leave from the system. Whether dust particles are
deposited on the solar mirror or not depends on the leading force. The leading forces are the
force Fc or the contact force (Fb).

3. Dust deposition weight on solar mirror can be controlled by altering the environmental condition,
solar mirror conditions, and particle self-factors. The reasonable design of θ, increasing the
parameter u0, and decreasing the degree of dust, V*, dp, and cp, can make more dust particles
flow away from the solar mirror. Meanwhile, in essence, dust deposition weight on solar mirrors
decreases when decreasing the leading force Fc or increasing the leading force Fb.

4. The leading forces can be different at different ranges of u0 and V*, based on Equations (14)–(16).
The lower and upper limit value of V* can be found at a corresponding range of u0 when the
unique leading force is Fc or Fb. When the leading forces are Fc, or Fc and Fb, the dust particles
will be deposited on the solar mirror.

The study of the motion behaviors and deposition mechanics of dust particles on the solar mirror
presented in this work is expected to be of theoretical significance and engineering value. Studying
how to effectively remove dust particles from the solar mirror will be conducted in future work.
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Nomenclature

Symbol Comment Unit

Fa Van Der Waals force N
Fg Gravity force N
Fe Electrostatic force N
Fd Buoyant force N
Fc Liquid bridge force N
Fb Contact force N
r Radius of dust particle m
$ Lifshitz constant -
l0 Average distance between molecules m
m Dust particle mass kg
g Gravitational acceleration m2/s

V* Dimensionless liquid bridge volume -
θ Inclination angle of solar mirror ◦

Fchs Electrostatic image force N
Fchl Electrical double layer force N
Fche Electrostatic image force N
Q Electric charge of dust particle C
ε Dielectric constant between dielectrics -
ε0 Absolute dielectric constant -
Fbn The normal component of Fb N
Fbt The tangential component of Fb N

Fbnij Fbn between particles “i” and “j” N
Fbtij Fbt between particles “i” and “j” N
α Normal displacement m
δ Tangential displacement m
kn Spring constant in normal direction -
kt Spring constant in tangential direction -
cn Damping coefficient in normal direction -
ct Damping coefficient in tangential direction -
µs Friction coefficient -
n Vector from the particles “i” to the particles “j” -

vct Sliding velocity vector m/s
Fx Other forces acting on the dust particle N
u0 Wind speed m/s
vij Relative velocity between particles “i” and “j” m/s
U Contact potential difference V
σ Surface charge density of the solar mirror C
γ Liquid surface tension Pa
t Time s

dp Diameter of dust particle m
ρp Density of dust particle kg/m3

cp Initial concentration of dust particle kg/s
EC Environmental condition -

SMC Solar mirror conditions -
V Dust particle volume m3

ρair Air density kg/m3

PSF Particle self-factors -



Energies 2019, 12, 4550 17 of 18

References

1. Mekhilef, S.; Saidur, R.; Safari, A. A review on solar energy use in industries. Renew. Sustain. Energy Rev.
2011, 15, 1777–1790. [CrossRef]

2. Yaghoubi, M.; Niknia, I.; Kanaan, P.; Mahmoodpoor, A.R. Experimental study of dust deposition effect on
the performances of parabolic trough collectors. In Proceedings of the Solar PACES 2011: 17th Solar Paces
Conference, Granada, Spain, 20–23 September 2011.
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