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Abstract: The multi-frequency Passivity-Based Control (PBC) has been successfully applied
in L-filtered power converters. For an LC-filtered stand-alone voltage source inverter (VSI),
the mathematical model is second-order, where two state variables are used in modeling and
control in conventional multi-frequency PBC controller, complicating the controller design and
increasing the occupied resources both in hardware and software. In order to simplify the controller
design and save the resources as well as the cost, a control scheme called multi-frequency single-loop
PBC is proposed for the LC-filtered stand-alone VSI in this paper. The feasibility of the proposed
control strategy is verified through the experimental results on a 3-phase/110 V/6 kW prototype.
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1. Introduction

Whether in traditional or modern applications, grid-tied inverters are widely utilized in industry [1].
Furthermore, stand-alone voltage source inverters (VSIs) as an another power converter are also widely
adopted in various industrial situations, such as uninterrupted power supply (UPS) systems [2–4],
AC power supply system [5–7], grid simulator systems [8,9], power electronic transformer systems [10,11]
and etc. Therefore, to promote the performance of VSI is of great importance for the above applications.
The output voltage waveform of a high-performance VSI must be sinusoidal, with specified frequency
and amplitude, low total harmonic distortion (THD), especially under the condition of nonlinear
loads [4]. In addition to above requirements, a VSI system must have good disturbance rejection,
excellent voltage regulation, and fast dynamic response.

To improve the aforementioned performance indexes, a number of control algorithms, such
as deadbeat control [12,13], repetitive control [14,15], proportional-resonant with damping control
method [1,16–18], sliding mode control [3,19,20], hysteresis control [21], predictive control [22,23],
adaptive control [24], optimal control [25], and passivity-based control (PBC) [26], have been proposed
for VSIs. Among these control techniques, the PBC is a hybrid control scheme combined with the
instruction predicting feedforward control, the disturbance feedforward control, the decoupling control,
and the negative feedback control. The emergence of the PBC technique has generated a new idea of
the controller design for nonlinear systems [27,28], which has attracted the attention of many scholars,
and the application of PBC on power electronics can be found in [27–39].

Essentially, the PBC controller is designed from the perspective of system structure and energy.
For example, as introduced in [29], the ac-side currents of the converter were well controlled by the
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inner loop of the PBC together with the outer loop of the PI regulator to control dc-side voltage.
The dynamic damping injection for the PBC had been studied in [34] and [35], respectively. In [36]
and [37], the model of a Port-Controlled Hamiltonian system with Dissipation (PCHD) for converters
with different structures was established, and the PBC controller design of the model was realized
through interconnection and damping distribution.

Although the aforementioned research had proven that the application of PBC controllers in
nonlinear systems is feasible and the advantages of better dynamic performance and stronger robustness
can be achieved, the Conventional PBC (C-PBC) controller for the second-order system like LC-filtered
stand-alone VSI is a double-loop controller, where two state variables have to be adopted. Therefore,
more sensors and software resource must be occupied to realize the control scheme and more control
parameters must be selected.

In view of the demerit of C-PBC controller, a modified multi-frequency single loop PBC controller
is proposed for LC-filtered VSI, where the double-loop controller can be simplified as a single loop
controller (only one control parameter), which saves a lot of calculation time, as well as the sensor costs.
Note that zero steady-state error can be also achieved by using an inserted dynamic dissipation term.

The paper is organized as follows. In Section 2, the mathematical model and C-PBC controller are
presented, and the disadvantages of this method are studied. Then, a modified multi-frequency single
loop based PBC controller is proposed in Section 3. The experimental results are shown in Section 4 to
prove that the proposed control strategy is feasible. Finally, there is a conclusion in Section 5.

2. Mathematical Model and Conventional PBC of LC-Filtered VSI

2.1. Mathematical Model of LC-Filtered VSI

Typical structure of stand-alone VSI with nonlinear loads is shown in Figure 1, where the inverter
is a three-level neutral point clamped (NPC) inverter. In Figure 1, C1 and C2 at DC side are the DC
support capacitors. uk is the three-phase voltage output from the converter; Lk is the filter inductor; Rk

is the line impedance; ik is the inductor current; Ck is the filter capacitor; Rkd is the equivalent parallel
resistance of the filter capacitor and the filter damping resistance; ikc is the filter capacitor current; uko

is the filter capacitor voltage; and iko is the load current. k = phase-a, b, and c. It can be obtained from
Figure 1,  Lk

dik
dt + Rkik = uk − uko

Ck
duko

dt +
uko
Rkd

= ikc = ik − iko
(1)

where uk = f k(Sa, Sb, Sc, udc1, udc2), the function f k can be calculated by using a modulation strategy,
such as SPWM and SVPWM, and Sa, Sb, and Sc are the switch functions.
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Figure 1. Typical structure of the stand-alone Voltage Source Inverter(VSI). 
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decomposition of the AC mathematical model of the series converter, which is convenient for the 

Figure 1. Typical structure of the stand-alone Voltage Source Inverter(VSI).

The fast Fourier transform (FFT) method is utilized to achieve a better control performance,
and the main advantages of this modeling method include: (1) it can realize the frequency spectral
decomposition of the AC mathematical model of the series converter, which is convenient for the
control at selected frequencies; and (2) it can realize the transformation from the AC model to the
DC model, which is convenient for DC signal control. In addition, this method can overcome some
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shortcomings of the conventional modeling method (modelling in d-q axis). For example, [40] had
pointed out that it is only suitable for the modeling of three-phase systems, and the phase-to-phase
coupling occurs during the modeling process, which is inconvenient to achieve individual phase
control. During the modeling, the parameters of each phase of the three-phase system, such as output
filter inductance, capacitance, and line resistance, are assumed to be symmetric.

Here, Γn
k−kp

q
is denoted as the positive Fourier transform matrix of phase-k of the system, and

Γn
kp

q−k
as the inverse Fourier transform matrix, as shown in Equation (2),where, k = a, b, c, and λ = 0, -1,

1, respectively. x(t) is any finite bandwidth periodic signal, whose period is T, and the bandwidth is
from the fundamental angle frequency ω to Nmω,

Γn
k−kp

q
=

[
Xp

Xq

]
= 2

T


∫ T

0 x(t) sin(nωt + 2λ
3 π)dt∫ T

0 x(t) cos(nωt + 2λ
3 π)dt


Γn

kp
q−k

=
[

sin(nωt + 2λ
3 π) cos(nωt + 2λ

3 π)
] (2)

Note that, Equation (1) can be also decomposed into the sum of nth order harmonic components
as follows, 

Lk
n=Nm∑

n=1

dink
dt + Rk

n=Nm∑
n=1

ink =
n=Nm∑

n=1
(un

k − un
ko)

Ck
n=Nm∑

n=1

dun
ko

dt + 1
Rkd

n=Nm∑
n=1

un
ko =

n=Nm∑
n=1

(ink − inko)

(3)

where n = 1, 2, . . . , Nm, and Nm are the maximum harmonic order; ikn is the nth harmonic component
of the inductive current; uk

n is the nth harmonic component of the PWM voltage output from the
converter; uko

n is the nth harmonic component of the filter capacitor voltage, and iko
n is the nth

harmonic component of the output current (or load current). The Fourier transform process from the
nth harmonic AC to DC model of each phase can be represented by the transfer function block diagram
shown in Figure 2.
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For the nth harmonic system, Equation (3) can be rewritten using FFT transformation as,

Lk
dIn

kp
dt + RkIn

kp −ωLkIn
kq = Un

kp −Un
kop

Lk
dIn

kq
dt + RkIn

kq +ωLkIn
kq = Un

kq −Un
koq

Ck
dUn

kop
dt +

Un
kop

Rkd
−ωCkUn

koq = In
kp − In

kop

Ck
dUn

koq
dt +

Un
koq

Rkd
+ωCkUn

kop = In
kq − In

koq

(4)

The Euler Lagrange (EL) model is adopted to describe the system, and Equation (4) can be
rewritten in EL form as,

M
.
x + Jx + Rx = u (5)

where M =


Lk 0 0 0
0 Lk 0 0
0 0 Ck 0
0 0 0 Ck

, R =


Rk 0 0 0
0 Rk 0 0
0 0 1

Rkd
0

0 0 0 1
Rkd

, J =


0 −nωLk 1 0

nωLk 0 0 1
−1 0 0 −nωCk
0 −1 nωCk 0

,

x =


In
kp

In
kq

Un
kop

Un
koq

, and u =


Un

kp −Un
kop

Un
kq −Un

koq
In
kp − In

kop
In
kq − In

koq

.

2.2. C-PBC Controller for LC-Filtered VSI

The passivity of the LC-filtered grid-tied inverter (GTI) is proven in [39], so it is omitted here.
Define the reference vector as x* = (Ikp

n* Ikq
n* Ukop

n* Ukoq
n*)T, the error vector is xe = x* − x, then the

error EL model can be obtained as

M
.
xe + Jxe + Rxe = M

.
x∗ + Jx∗ + Rx∗ − u (6)

In steady state, xe equals to zero. In order to accelerate the speed of convergence, a dissipation
matrix rd is added to the error system. The dissipation matrix and new dissipation matrix is obtained as

rd = diag
(

r2 r2 r1 r1
)
, Rnew = R + rd (7)

So, the new error EL equation is obtained as

M
.
xe + Jxe + Rnewxe = M

.
x∗ + Jx∗ + Rx∗ + rdxe − u (8)

When xe is equal to zero, the conventional PBC control law u can be obtained,

u = M
.
x∗ + Jx∗ + Rx∗ + rdxe (9)

According to Equation (9), the C-PBC control structure is depicted in Figure 3.
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Figure 3. Conventional Passivity-Based Control (C-PBC) control structure.

From Figure 3, it can be seen that there are two control loops to track two state variables in
the C-PBC controller. Therefore, at least six sensors (current and voltage) must be adopted in the
three-phase system to achieve the control scheme and more software resource must be occupied.
In order to simplify the controller and save costs, a multi-frequency single loop controller is proposed,
which is described in detail in the next section. Note that, the inertia term 1

Tωs+1 in Figure 2 represents
the time delay caused by FFT.

3. Modified Multi-Frequency Single Loop PBC Controller

3.1. Multi-Frequency Single Loop PBC Control Law

Equation (4) also can be rewritten as{
MLk

.
xn

Ik + JLkxn
Ik + Rkxn

Ik = Un
k − xn

Uk
MCk

.
xn

Uk + JCkxn
Uk + Rkdxn

Uk = xn
Ik − In

ko
(10)

As can be seen from (10), the system variables including xn
Ik and xn

Uk, while xn
Ik is a temporary

variable and In
ko is a disturbance variable. Therefore, the two equations in Equation (9) can be combined

to a new EL equation as

Mk
..
xn

k +
(
J1k

.
xn

k + J2kxn
k

)
+ Dk

.
xn

k + Kn
kxn

k + Nn
k = un

k (11)

where, Mk =

(
LkCk 0

0 LkCk

)
, J1k =

(
0 −2nωLkCk

2nωLkCk 0

)
,

J2k =

 0 −(nωRkCk +
nωLk
Rkd

)

nωRkCk +
nωLk
Rkd

0

, Dk =

 RkCk +
Lk

Rkd
0

0 RkCk +
Lk

Rkd

,

Kn
k =

 1− (nω)2LkCk +
Rk
Rkd

0

0 1− (nω)2LkCk +
Rk
Rkd

,

Nn
k =

(
Lk 0
0 Lk

) d
dt In

kop
d
dt In

koq

+ (
Rk −nωLk

nωLk Rk

) In
kop

In
koq

, xn
k =

 Un
kop

Un
koq

, and un
k =

 Un
kp

Un
kq

.

It can be seen from Equation (11) that the EL equation of the system becomes a higher-order
equation. Here, select a stored (Lyapunov) function

Hn
k =

1
2
(

.
xn

k)
T

Mk
.
xn

k +
1
2
(xn

k)
TKkxn

k (12)
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Taking the time derivative of (12), it yields

.
H

n
k = (

.
xn

k)
T

un
k − (

.
xn

k)
T

Dk
.
xn

k − (
.
xn

k)
T

Nn
k < (

.
xn

k)
T
(un

k −Nn
k) (13)

According to the passive condition, it can be seen from (13), the system at harmonic high-order is
strictly passive. Therefore, the PBC can be designed on high-order nth harmonic system.

Redefine the reference vector and error vector of the nth harmonic voltage of the filter capacitor as

xn∗
k = [ Un∗

kop Un∗
koq ]

T
, xn

ke = xn∗
k − xn

k (14)

If the Equation (14) is taken into Equation (11), the higher-order EL equation of the nth harmonic
error system of the series converter can be obtained.

Mk
..
xn

ke + (Jn
1k

.
xn

ke + Jn
2kxn

ke) + Dk
.
xn

ke + Kn
kxn

ke
= Mk

..
xn∗

k + (Jn
1k

.
xn∗

k + Jn
2kxn∗

k ) + Dk
.
xn∗

k + Kn
kxn∗

k + Nn
k − un

k
(15)

Similarly, an additional dissipation term should be added on both sides of (15), note that, the
dissipation term in conventional PBC is static, where the steady-state error will occur if the parameters
drift [38]. In order to achieve zero steady-state error, a modified dissipation term named dynamic
dissipation term is adopted and it can be written as

rnew = rn
kdxn

ke + kn
ki

∫ Ti

0
xn

kedt (16)

where, rn
kd = diag(rn

kd > 0, rn
kd > 0), kn

ki = diag(kn
i > 0, kn

i > 0). And (16) should be satisfied

1− (nω)2LkCk + (Rk/Rkd) + rn
kd > 0 (17)

Then, the new error EL model can be obtained,

Mk
..
xn

ke + (Jn
1k

.
xn

ke + Jn
2kxn

ke) + Dk
.
xn

ke + (Kn
k + rn

kd)x
n
ke + kn

ki

∫ Ti
0 xn

kedt

= Mk
..
xn∗

k + (Jn
1k

.
xn∗

k + Jn
2kxn∗

k ) + Dk
.
xn∗

k + Kn
kxn∗

k + rn
kdxn

ke + kn
ki

∫ Ti
0 xn

kedt + Nn
k − un

k

(18)

If the right side of (18) is set to zero, the error dynamics can be stabilized as

Mk
..
xn

ke + (Jn
1k

.
xn

ke + Jn
2kxn

ke) + Dk
.
xn

ke + (Kn
k + rn

kd)x
n
ke + kn

ki

∫ Ti

0
xn

kedt + Nn
k − un

k = 0 (19)

Therefore, the high-order PBC control law is

un
k = Mk

..
xn∗

k + (Jn
1k

.
xn∗

k + Jn
2kxn∗

k ) + Dk
.
xn∗

k + Kn
kxn∗

k + rn
kdxn

ke + kn
ki

∫ Ti

0
xn

kedt + Nn
k (20)

In order to analyze the global stability of the modified error system, a storage function is selected as

Hn
ke =

1
2
(

.
xn

ke)
T

Mk
.
xn

ke +
1
2
(xn

ke)
T(Kn

k + rn
kd)x

n
ke +

1
2
(xn

ke)
Tkn

ki

∫ Ti

0
xn

kedt (21)

Taking the time derivative of (21), it yields

.
H

n
ke = −(

.
xn

ke)
T

Dk
.
xn

ke < 0 (22)

Since Hn
ke > 0 and

.
H

n
ke < 0, the error vector can asymptotically converge into zero, according to

the Lyapunov stability criterion. In summary, Equation (20) is the modified multi-frequency single
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loop PBC control law. The modified control structure diagram is shown in Figure 4, where Ti is a
newly added controller parameter called the coefficient of dynamic dissipation term. 1/(Tωs+1) is a
delay term exited in the control system, which causes a fixed dominant pole p = 1/Tω. According to
the principle of pole-zero cancellation, let z = 1/Ti = p = 1/Tω, so Ti and Tω can be obtained as
Ti = Tω = 0.02.

From Figure 4, it can be seen that the PBC controller becomes a single loop controller. Therefore,
only one control parameter (damping gain) should be selected, which will simplify the controller
design. Furthermore, less hardware and software resources are needed, which can save the costs and
reduce the failure rate of hardware.
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3.2. Control Parameter Selection for the Multi-Frequency Single Loop PBC Controller

Note that the minimum value of designed control parameter can be obtained from (17). Since the
control system shown in Figure 4 is a MIMO high-order system, a feasible selection principle about the
control parameter is similar to the method introduced in [38], which can be summarized as follows:

Firstly, according to the root trajectory of the open-loop transfer function of the system shown in
Figure 4, find the maximum value of the control parameter rkd

n at selected frequencies.
Secondly, select the appropriate control parameter rkd

n, according to the step response of the
closed-loop transfer function (Equation (23)) of this system, where it is appropriate here to set the
control parameter rkd

n = 0.2. Un
kop(s)

Un
koq(s)

 =
 Gn

Upp Gn
Upq

Gn
Uqp Gn

Uqq


 Un∗

kop(s)

Un∗
koq(s)

+
 Gn

Ipp Gn
Ipq

Gn
Iqp Gn

Iqq


 In

kop(s)

In
koq(s)

 (23)

3.3. Performance Analysis for the Propsoed PBC Controller

Unit step responses of the modified control system are shown in Figure 5. Let the parameters
L , LE, R , RE, C , CE and Rd , RdE, where the variation ranges of these parameters are both ± 50%,
and the simulation parameters are as shown in Table 1. The frequencies n = 1, 9, 17, and 25 are selected
to simulate the system under on-load condition when parameters drift. It can be seen from Figure 5
that, although L , LE, R , RE, C , CE and Rd , RdE, the unit step responses of the forward channel of
the modified control system equals are equal to 1 in the steady-state, the unit step responses of the
coupled channel are equal to 0 in the steady-state, and the satisfied dynamic performance also can
be obtained.
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Table 1. Simulation parameters.

Parameter Value Parameter Value Parameter Value

R 0.1 Ω LE 0.9 mH Ω 100 πrad/s
L 0.9 mH RdE 200 Ω rd 0.2

Rd 200 Ω CE 10.0 uF Ti 0.02 s
C 10.0 uF Tω 0.02 s

RE 0.1 Ω Ts 100 us
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4. Experimental Verification

The whole converter structure shown in Figure 1 is adopted for the experimental platform.
The nonlinear load current is realized by using a three-phase uncontrolled rectifier bridge with a
resistor (11 Ω) and inductor (0.5 mH) load. The overall control scheme is shown in Figure 6, where the
fundamental frequency peak reference voltage ukp

1* = 110.0
√

2 V and ukq
1* = 0.0 V; harmonic frequency

peak command voltage ukp
n* = 0.0 V and ukq

n* = 0.0 V; and the DC link capacitor voltage udc = udc1 +

udc2 = 400.0 V with C1 = C2 = 5.44 mF. Processor TMS320F28335DSP is used and the sampling and
switching frequency are both 7.5 kHz. The execution time of the main programs is shown in Table 2
and the experimental setup is shown in Figure 7. Note that, the execution time of control algorithm at
every selected frequency of the proposed PBC is 16 us, while it is 20 us in the conventional PBC (not
shown in Table 2). Therefore, about 25 percent of time reduction is obtained.
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Table 2. The execution time of the main programs.

Procedural Content Execution Time

Sampling period 133.33 us
Control algorithm at every selected frequency 16 us

ADC 8 us
Protection and communication 8 us
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As the nonlinear load used in the experiment mainly produces 6 m ± 1 order harmonic currents,
where m = 1, 2, 3, . . . , its influence on the voltage is also concentrated at these harmonic frequencies.
However, the harmonic current after the 19th order is already low, so its influence on the voltage
formation at the point of common coupling (PCC) is weak. Therefore, in this experiment, the
fundamental frequency and the 5th, 7th, 11th, 13th, 17th, and 19th frequencies are selected as the
main control object for the experimental verification of the proposed multi-frequency single loop
passivity-based control scheme.

Experiments are carried out to verify whether the reference voltage tracking (the fundamental
wave voltage output and the harmonic voltage suppression) can be achieved, especially when the
accurate mathematical model of the control object cannot be obtained. The experiments include five
cases as following,

Case (1) Set the default estimation values LE, RE, CE, and RdE in the controller to the nominal
values (L, R, C, and Rd) of the actual device, namely, let LE = L= 0.9 mH, RE = R = 0.1 Ω, CE = C = 10 uF,
and RdE = Rd = 200 Ω; Case (2) Reduce LE artificially by 50% to let LE = 0.45 mH , L, and keep other
model parameters unchanged; Case (3) Increase RE artificially by 50% to let RE = 0.15 Ω , R, and keep
other model parameters unchanged; Case (4) Reduce CE artificially by 50% to let CE = 5.0 uF , C, and
keep other model parameters unchanged; Case (5) Increase RdE artificially by 50% to let RdE = 300 Ω ,
Rd, and keep other model parameters unchanged.

The results of the five-group experimental data are shown in Figure 8a–e. Each group of figures
contains the filter capacitor line voltage and load current waveforms, as well as the histogram of the
corresponding harmonic voltage content at 6 m ± 1 order.

The experimental data are organized in Table 3. The phase-ab line voltage uoab of filter capacitor
is taken as an example for analysis. THD represents the total harmonic distortion rate of uoab, uoab1

represents the fundamental frequency content of uoab which can be obtained from the histogram, and
nt represents the percentage of each harmonic content to the fundamental frequency content.

As seen from Table 3, the line voltage fundamental values of the five-group experiments are
between 190.4 V and 190.6 V, and the error among the command values is between −0.05% and +0.05%,
the maximum THD is ≤1.6%, the maximum percentage of other selected harmonics content is ≤0.2%.

It can be concluded that, the modified multi-frequency single loop PBC controller can track the
command signal accurately at selected frequencies with less sensors.

Besides, the second group of experimental parameters are used to verify the dynamic performance
of the modified multi-frequency single loop PBC controller (because the change in inductance exerts
the greatest impact on the system). The step dynamic response of the voltage command under no-load
condition is shown in Figure 9a, and the current disturbance under the condition of step load changes
is shown in Figure 9b. And the dynamic response using conventional PI control is shown in Figure 10.
It can be seen that the modified multi-frequency single loop PBC controller has satisfactory dynamic
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performance under both no-load (where the regulation time is 0.02 s) and on-load (where the regulation
time is 0.05 s) conditions, and the response time is faster than conventional PI control (where the
regulation time is 0.07 s).
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(a) Case (1), (b) Case (2), (c) Case (3), (d) Case (4), (e) Case (5).

Table 3. Experimental results from Figure 7.

Group THD uoab1 5th 7th 11th 13th 17th 19th

Ref. \ 190.5 0.0 0.0 0.0 0.0 0.0 0.0
1-MPBC 1.6 190.6 0.1 0.1 0.1 0.1 0.1 0.1
2-MPBC 1.5 190.5 0.1 0.1 0.1 0.1 0.1 0.1
3-MPBC 1.6 190.4 0.1 0.1 0.1 0.1 0.1 0.1
4-MPBC 1.6 190.6 0.1 0.1 0.1 0.1 0.2 0.2
5-MPBC 1.6 190.6 0.1 0.1 0.1 0.1 0.1 0.1
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5. Conclusions

In this paper, a multi-frequency single-loop passivity-based control strategy is proposed in the
frequency domain for the LC-filtered stand-alone VSI, where the FFT transformation and dynamic
dissipation term are adopted to achieve the frequency spectral decomposition and zero steady-state
error. The advantages of the proposed control strategy include:

(1) Less control variables, less hardware and software resources are occupied, thereby the calculation
time can be saved a lot.

(2) Zero steady-state error can be obtained by using the dynamic dissipation term, while a satisfactory
dynamic performance can be gotten under both no-load and on-load conditions.

The experimental results on a 3-phase/110 V/6 kW prototype has verified the proposed control
scheme, which making it efficient to extend the multi-frequency passivity-based control to engineering
practice, even for higher-order systems.

Author Contributions: Conceptualization, X.M. and W.W.; methodology, X.M., G.C., and X.W.; software, X.M.
and J.Z.; validation, X.M. and G.C.; formal analysis, X.M. and W.W.; investigation, G.C.; resources, G.C. and
W.W.; data curation, X.W.; writing—original draft preparation, X.M. and J.Z.; writing—review and editing, X.M.,
W.W., G.C, J.X., and F.B.; visualization, X.M.; supervision, W.W.; project administration, G.C. and W.W.; funding
acquisition, W.W.



Energies 2019, 12, 4548 14 of 15

Funding: This work was supported in part by NSFC under Grant 51577114 and in part by the Shanghai Science
and Technology Commission under Grant 17040501500.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wu, W.; He, Y.; Blaabjerg, F. An LLCL Power Filter for Single-Phase Grid-Tied Inverter. IEEE Trans.
Power Electron. 2012, 27, 782–789. [CrossRef]

2. Aamir, M.; Mekhilef, S. An Online Transformerless Uninterruptible Power Supply (UPS) System with a
Smaller Battery Bank for Low-Power Applications. IEEE Trans. Power Electron. 2017, 32, 233–247. [CrossRef]

3. Pichan, M.; Rastegar, H. Sliding-Mode Control of Four-Leg Inverter with Fixed Switching Frequency for
Uninterruptible Power. IEEE Trans. Ind. Electron. 2017, 64, 6805–6814. [CrossRef]

4. Tamyurek, B. A High-Performance SPWM Controller for Three-Phase UPS Systems Operating Under Highly
Nonlinear Loads. IEEE Trans. Power Electron. 2013, 28, 3689–3701. [CrossRef]

5. Michal, V. Three-Level PWM Floating H-Bridge Sinewave Power Inverter for High-Voltage and
High-Efficiency Applications. IEEE Trans. Power Electron. 2016, 31, 4065–4074. [CrossRef]

6. Zheng, L.; Jiang, F.; Song, J.; Gao, Y.; Tian, M. A Discrete Time Repetitive Sliding Mode Control for Voltage
Source Inverters. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1553–1566. [CrossRef]

7. Zhang, Z.; Wu, W.; Shuai, Z.; Wang, X.; Luo, A.; Chung, H.S.H.; Blaabjerg, F. Principle and Robust
Impedance-Based Design of Grid-tied Inverter with LLCL-Filter under Wide Variation of Grid-Reactance.
IEEE Trans. Power Electron. 2019, 34, 4362–4374. [CrossRef]

8. Zou, Z.; Zhou, K.; Wang, Z.; Cheng, M. Fractional-order repetitive control of programmable ac power sources.
IET Power Electron. 2014, 7, 431–438. [CrossRef]

9. Liu, T.; Wang, D.; Zhou, K. High-Performance Grid Simulator Using Parallel Structure Fractional Repetitive
Control Parallel. IEEE Trans. Power Electron. 2016, 31, 2669–2679. [CrossRef]

10. Wang, D.; Tian, J.; Mao, C.; Lu, J.; Duan, Y.; Qiu, J.; Cai, H. A 10kV_400V_500kVA Electronic Power
Transformer. IEEE Trans. Ind. Electron. 2016, 63, 6653–6663. [CrossRef]

11. She, X.; Huang, A.Q.; Burgos, R. Review of solid-state transformer technologies and their application in
power distribution systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 186–198. [CrossRef]

12. Pichan, M.; Rastegar, H.; Monfared, M. Deadbeat Control of the Stand-Alone Four-Leg Inverter Considering
the Effect of the Neutral Line Inductor. IEEE Trans. Ind. Electron. 2017, 64, 2592–2601. [CrossRef]

13. Lidozzi, A.; Ji, C.; Solero, L.; Zanchetta, P.; Crescimbini, F. Digital Deadbeat and Repetitive Combined Control
for a Stand-Alone Four-Leg VSI. IEEE Trans. Ind. Appl. 2017, 53, 5624–5633. [CrossRef]

14. Liu, T.; Wang, D. Parallel Structure Fractional Repetitive Control for PWM Inverters. IEEE Trans. Ind. Electron.
2015, 62, 5045–5054. [CrossRef]

15. Lidozzi, A.; Solero, L.; Bifaretti, S.; Crescimbini, F. Sinusoidal voltage shaping of inverter-equipped stand-alone
generating units. IEEE Trans. Ind. Electron. 2015, 62, 3557–3568. [CrossRef]

16. Wu, W.; Liu, Y.; He, Y.; Chung, H.S.H.; Liserre, M.; Blaabjerg, F. Damping methods for resonances caused by
LCL-filter-based current-controlled grid-tied power inverters: An Overview. IEEE Trans. Ind. Electron. 2017,
64, 7402–7413. [CrossRef]

17. Lidozzi, A.; Di Benedetto, M.; Bifaretti, S.; Solero, L.; Crescimbini, F. Resonant controllers with three degrees
of freedom for AC power electronic converters. IEEE Trans. Ind. Appl. 2015, 51, 4595–4604. [CrossRef]

18. Liu, Y.; Wu, W.; He, Y.; Lin, Z.; Blaabjerg, F.; Chung, H.S.H. An efficient and robust hybrid damper for
LCL- or LLCL-based grid-tied inverter with strong grid-side harmonic voltage effect rejection. IEEE Trans.
Ind. Electron. 2016, 63, 926–936. [CrossRef]

19. Sebaaly, F.; Vahedi, H.; Kanaan, H.Y.; Moubayed, N.; Al-Haddad, K. Sliding Mode Fixed Frequency Current
Controller Design for Grid-Connected NPC Inverter. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4,
1397–1405. [CrossRef]

20. Gudey, S.K.; Gupta, R. Reduced state feedback sliding-mode current control for voltage source inverter-based
higher-order circuit. IET Power Electron. 2015, 8, 1367–1376. [CrossRef]

21. Wang, L.; Lam, C.S.; Wong, M.C.; Dai, N.Y.; Lao, K.W.; Wong, C.K. Non-linear adaptive hysteresis band
pulse-width modulation control for hybrid active power filters to reduce switching loss. IET Power Electron.
2015, 8, 2156–2167. [CrossRef]

http://dx.doi.org/10.1109/TPEL.2011.2161337
http://dx.doi.org/10.1109/TPEL.2016.2537834
http://dx.doi.org/10.1109/TIE.2017.2686346
http://dx.doi.org/10.1109/TPEL.2012.2227817
http://dx.doi.org/10.1109/TPEL.2015.2477246
http://dx.doi.org/10.1109/JESTPE.2017.2781701
http://dx.doi.org/10.1109/TPEL.2018.2864775
http://dx.doi.org/10.1049/iet-pel.2013.0429
http://dx.doi.org/10.1109/TPEL.2015.2441732
http://dx.doi.org/10.1109/TIE.2016.2586440
http://dx.doi.org/10.1109/JESTPE.2013.2277917
http://dx.doi.org/10.1109/TIE.2016.2631459
http://dx.doi.org/10.1109/TIA.2017.2734049
http://dx.doi.org/10.1109/TIE.2015.2402117
http://dx.doi.org/10.1109/TIE.2014.2370939
http://dx.doi.org/10.1109/TIE.2017.2714143
http://dx.doi.org/10.1109/TIA.2015.2448057
http://dx.doi.org/10.1109/TIE.2015.2478738
http://dx.doi.org/10.1109/JESTPE.2016.2586378
http://dx.doi.org/10.1049/iet-pel.2014.0707
http://dx.doi.org/10.1049/iet-pel.2014.0824


Energies 2019, 12, 4548 15 of 15

22. Yaramasu, V.; Rivera, M.; Narimani, M.; Wu, B.; Rodriguez, J. Model Predictive Approach for a Simple and
Effective Load Voltage Control of Four-Leg Inverter with an Output LC Filter. IEEE Trans. Ind. Electron. 2014,
61, 5259–5270. [CrossRef]

23. Rohten, J.A.; Espinoza, J.R.; Muñoz, J.A.; Pérez, M.A.; Melin, P.E.; Silva, J.J.; Rivera, M.E. Model Predictive
Control for Power Converters in a Distorted Three-Phase Power Supply. IEEE Trans. Ind. Electron. 2016, 63,
5838–5848. [CrossRef]

24. Do, T.D.; Leu, V.Q.; Choi, Y.S.; Choi, H.H.; Jung, J.W. An adaptive voltage control strategy of three-phase
inverter for stand-alone distributed generation systems. IEEE Trans. Ind. Electron. 2013, 60, 5660–5672.
[CrossRef]

25. Kim, E.K.; Mwasilu, F.; Choi, H.H.; Jung, J.W. An Observer-Based Optimal Voltage Control Scheme for
Three-Phase UPS Systems. IEEE Trans. Ind. Electron. 2015, 62, 2073–2081. [CrossRef]

26. Komurcugil, H. Improved passivity-based control method and its robustness analysis for single-phase
uninterruptible power supply inverters. IET Power Electron. 2015, 8, 1558–1570. [CrossRef]

27. Ortega, R.; Perez, J.A.L.; Nicklasson, P.J.; Sira-Ramirez, H.J. Passivity-Based Control of Euler-Lagrange Systems:
Mechanical Electrical and Electromechanical Application; Springer: London, UK, 1998.

28. Lee, T.S. Lagrangian modeling and passivity-based control of three phase AC/DC voltage-source converters.
IEEE Trans. Ind. Electron. 2004, 51, 892–902. [CrossRef]

29. Mehrasa, M.; Adabi, M.E.; Pouresmaeil, E.; Adabi, J. Passivity-based control technique for integration of DG
resources into the power grid. Int. J. Electr. Power Energy Syst. 2014, 58, 281–290. [CrossRef]

30. Yang, B.; Jiang, L.; Yu, T.; Shu, H.C.; Zhang, C.K.; Yao, W.; Wu, Q.H. Passive control design for multi-terminal
VSC-HVDC systems via energy shaping. Int. J. Electr. Power Energy Syst. 2018, 98, 496–508. [CrossRef]

31. Xu, R.; Yu, Y.; Yang, R.; Wang, G.; Xu, D.; Li, B.; Sui, S. A Novel Control Method for Transformerless H-Bridge
Cascaded STATCOM with Star Configuration. IEEE Trans. Power Electron. 2015, 30, 1189–1202. [CrossRef]

32. Chen, Y.; Wen, M.; Lei, E.; Yin, X.; Lai, J.; Wang, Z. Passivity-based control of cascaded multilevel converter
based D-STATCOM integrated with distribution transformer. Electr. Power Syst. Res. 2018, 154, 1–12.
[CrossRef]

33. Del Puerto-Flores, D.; Scherpen, J.M.; Liserre, M.; de Vries, M.M.; Kransse, M.J.; Monopoli, V.G. Passivity-based
control by series/parallel damping of single-phase PWM voltage source converter. IEEE Trans. Control
Syst. Technol. 2014, 22, 1310–1322. [CrossRef]

34. Gui, Y.; Kim, W.; Chung, C.C. Passivity-based control with nonlinear damping for type 2 STATCOM systems.
IEEE Trans. Power Syst. 2016, 31, 2824–2833. [CrossRef]

35. Serra, F.M.; Angelo, C.H.D.; Forchetti, D.G. Interconnection and damping assignment control of a three-phase
front end converter. Int. J. Electr. Power Energy Syst. 2014, 60, 317–324. [CrossRef]

36. Fan, X.; Guan, L.; Xia, C.; Ji, T. IDA-PB control design for VSC-HVDC transmission based on PCHD model.
Int. Trans. Electr. Energy Syst. 2015, 25, 2133–2143. [CrossRef]

37. Tiantian, Q.; Shihong, M.; Ziwen, L. Passive Control and Auxiliary Sliding Mode Control Strategy for
VSC-HVDC System Based on PCHD Model. Trans. China Electrotech. Soc. 2016, 31, 138–144.

38. Mu, X.; Wang, J.; Wu, W.; Blaabjerg, F. A Modified Multifrequency Passivity-Based Control for Shunt Active
Power Filter with Model-Parameter-Adaptive Capability. IEEE Trans. Ind. Electron. 2018, 65, 760–769.
[CrossRef]

39. Wang, J.; Mu, X.; Li, Q. Study of Passivity-Based Decoupling Control of T-NPC PV Grid-Connected Inverter.
IEEE Trans. Ind. Electron. 2017, 64, 7542–7551. [CrossRef]

40. Akagi, H.; Kanazawa, Y.; Nabae, A. Instantaneous reactive power compensators comprising switching
devices without energy storage components. IEEE Trans. Ind. Appl. 1984, IA-20, 625–630. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIE.2013.2297291
http://dx.doi.org/10.1109/TIE.2016.2527732
http://dx.doi.org/10.1109/TIE.2012.2230603
http://dx.doi.org/10.1109/TIE.2014.2351777
http://dx.doi.org/10.1049/iet-pel.2014.0706
http://dx.doi.org/10.1109/TIE.2004.831753
http://dx.doi.org/10.1016/j.ijepes.2014.01.034
http://dx.doi.org/10.1016/j.ijepes.2017.12.028
http://dx.doi.org/10.1109/TPEL.2014.2320251
http://dx.doi.org/10.1016/j.epsr.2017.08.001
http://dx.doi.org/10.1109/TCST.2013.2278781
http://dx.doi.org/10.1109/TPWRS.2015.2482982
http://dx.doi.org/10.1016/j.ijepes.2014.03.033
http://dx.doi.org/10.1002/etep.1953
http://dx.doi.org/10.1109/TIE.2017.2733428
http://dx.doi.org/10.1109/TIE.2017.2677341
http://dx.doi.org/10.1109/TIA.1984.4504460
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematical Model and Conventional PBC of LC-Filtered VSI 
	Mathematical Model of LC-Filtered VSI 
	C-PBC Controller for LC-Filtered VSI 

	Modified Multi-Frequency Single Loop PBC Controller 
	Multi-Frequency Single Loop PBC Control Law 
	Control Parameter Selection for the Multi-Frequency Single Loop PBC Controller 
	Performance Analysis for the Propsoed PBC Controller 

	Experimental Verification 
	Conclusions 
	References

