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Abstract: In this work, a thermodynamic model of CO2-H2O-NaCl-MgCO3 systems is developed.
The new model is applicable for 0–200 ◦C, 1–1000 bar and halite concentration up to saturation. The
Pitzer model is used to calculate aqueous species activity coefficients and the Peng–Robinson model
is used to calculate fugacity coefficients of gaseous phase species. Non-linear equations of chemical
potentials, mass conservation, and charge conservation are solved by successive substitution method
to achieve phase existence, species molality, pH of water, etc., at equilibrium conditions. From the
calculated results of CO2-H2O-NaCl-MgCO3 systems with the new model, it can be concluded that
(1) temperature effects are different for different MgCO3 minerals; landfordite solubility increases
with temperature; with temperature increasing, nesquehonite solubility decreases first and then
increases at given pressure; (2) CO2 dissolution in water can significantly enhance the dissolution of
MgCO3 minerals, while MgCO3 influences on CO2 solubility can be ignored; (3) MgCO3 dissolution
in water will buffer the pH reduction due to CO2 dissolution.

Keywords: thermodynamic modeling; CO2 storage; MgCO3 minerals; phase behaviors; mineral
solubility; CO2 solubility

1. Introduction

CO2 geological storage has been proved as an important option to reduce carbon emission and
a clean way of using fossil energy resources [1]. When CO2 is injected into underground reservoirs,
the reactions of CO2, water and various minerals are activated [2]. Magnesium carbonates are
commonly found minerals in geological reservoirs. A reliable thermodynamic model of CO2, brine,
and magnesium carbonate minerals is essential to understand phase behavior, water property changes,
and mineral participation and dissolution [3]. Further, it will help us to understand the reservoir
property (porosity and permeability) change after CO2 injected. Numerical dynamic simulation of
the fluid migration process is usually an important tool to analyze the whole procedure and helps
the decision making of a real CO2 storage project [4]. The thermodynamic model is one of the basic
components in a simulation framework.

Both magnesium and carbon are commonly found underground in terms of various kinds of
minerals. Researchers started experimental work on the H2O-MgCO3 system in 1867 [5]. Wagner [5]
measured magnesite solubility at 5 ◦C and with CO2 partial pressure from 1 to 6 atm. The followers
conducted magnesite solubility measurements with temperature up to 91 ◦C and CO2 partial pressure up
to about 10 atm [5–12]. Cameron and Seidel [12] measured magnesite solubility in NaCl solutions with
NaCl molality up to 6.5 molal. Nesquehonite solubility in water was first measured by Engel et al. [13].
The most recent measurements were carried out by Konigsberger et al. [14]. The temperature range of
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the experiments is from 0–90 ◦C and CO2 partial pressure ranges from about 0 to 56 atm [7,10,14–18].
Lansfordite solubility experiment work is less than magnesite and nesquehonite. The available
literatures are Takahashi et al. [19], Ponizonvskii et al. [20], and Yanat’eva and Rassonskaya [21]. The
temperature of the experiments is less than 15 ◦C and pressure is less than 10 atm. Numerical modeling
of CO2-brine-salts-minerals was started in the 1980s. The pioneer work is from Harvie and Weare [22]
and Harvie et al. [23]. They developed series thermodynamic models of sea water components based on
the Pitzer model [24–27]. The models are able to accurately predict mineral precipitation and dissolution.
The temperature and pressure are at standard condition (25 ◦C and 1 atm). Moller [28], Moller and
Greenberg [29], and Christov and Moller [30] modeled temperature effects on the system. Duan and
co-workers focused on the pressure effects and developed models on CO2-H2O-NaCl-CaCO3-CaSO4
systems from standard condition to high temperatures and pressures [31–34]. Thermodynamic models
have been implemented in research or commercial software on reactive transport. The most famous
reactive transport software packages are PhreeqC [35], TOUGHREACT [36], MIN3P [37], and EQ3/6 [38].
They have shown success in real project applications [39–41]. Some commercial reservoir simulators
have coupled the reactive transport module (such as CMG-GEM [42] and MoReS-PhreeqC [43]) and
were successfully applied in enhanced oil recovery research or real projects [44,45].

In this work, a new thermodynamic model of CO2-H2O-NaCl-MgCO3 systems is developed.
The model is based on the existing experimental data and the consistency checking. The MgCO3

minerals of magnesite, nesquehonite, and lansfordite are considered in the system. In Section 2, the
methodology of the thermodynamic modeling is introduced. In Section 3, model validations are made
by comparing the model results and available experimental data of the systems. In Section 4, the model
is used to predict MgCO3 mineral solubility, aqueous solution properties (such as pH and various
carbon ion concentrations) at various conditions. The influences of CO2 and MgCO3 on the speciation
in the solutions are evaluated by the model.

2. Phenomenological Description and Geochemical Modeling

When a system of CO2-H2O-NaCl-MgCO3 approaches equilibrium at given temperature and
pressure, phases of solids, vapor, and brine (aqueous phase) can appear. Minerals of magnesite (MgCO3),
nesquehonite (MgCO3·3H2O), and lansfordite (MgCO3·5H2O) are considered in this modeling work.
The salt of sodium chloride (NaCl) can be precipitated when NaCl becomes saturated in the aqueous
phase. In the vapor phase, the possible components are CO2 and H2O. In the aqueous phase, various
cations, anions, and neutral particles can be dissolved. The following reversible reactions are considered
for the modeling:

H2O(aq)
↔ H2O(g), (1)

CO2
(aq)
↔ CO2

(g), (2)

CO2
(aq) + H2O(aq)

↔ CO3
2− + 2H+, (3)

H2O↔ H+ + OH−, (4)

HCO3
−
↔ CO3

2− + H+, (5)

NaCl(s) ↔ Na+ + Cl−, (6)

MgCO3
(s,Magnesite)

↔ CO3
2− + Mg2+, (7)

MgCO3 · 3H2O(s,Nesquehonite)
↔Mg2+ + CO3

2− + 3H2O, (8)

MgCO3·5H2O(s,Lans f ordite)
↔Mg2+ + CO3

2− + 5H2O, (9)

MgCO3
(aq)
↔Mg2+ + CO3

2−, (10)

Mg2+ + H2O = MgOH+ + H+, (11)
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where (aq) denotes aqueous species; (s) denotes solid phase; (g) denotes gaseous phase species. When
the whole system reaches equilibrium state, each of the above reactions will have:∑

r
νriµri = 0, (12)

where µri is the chemical potential for reaction r and species i; νri is the stoichiometric coefficient of
species i in reaction r.

For aqueous species,
µi = µ0

i + RT ln(miγi). (13)

For gaseous species,
µi = µ0

i + RT ln(xiPϕi), (14)

where µ0
i is standard chemical potential at the reference state; mi is the molality of aqueous species i; γi

is the activity coefficient of aqueous species i; xi is mole fraction of gaseous species i; ϕi is fugacity
coefficient of gaseous species i; P is total gas pressure; R is gas constant; T is temperature. More
details about the parameter definition can be found from Duan and Li [32] and Li and Duan [34]. With
Equations (12)–(14), equilibrium constant is usually defined for each chemical reaction as follows:

ln Kr = −

∑
i
νriµ

0
ri

RT
. (15)

Combined with definition of chemical potential, we have:

Kr = Πari
νri (16)

Here, ari is activity for aqueous species (mriγri) and fugacity for gaseous phase (xriPϕri). The
thermodynamic modeling of the system is to determine the equilibrium constants, activity, and fugacity
of each reaction. We follow the model from our previous work from Li et al. [46] for reactions (1) and
(2), and from Li and Duan [34] for reactions (3) to (6).

2.1. Equilibrium Constant

The equilibrium constant can be further expressed as [33,34]:

Ki = K(T, Pre f ) exp

Vm,i(P− Pre f )

RT

, (17)

where K(T, Pre f ) is equilibrium constant at reference pressure Pre f ; the reference pressure is usually 1
bar at temperature under 373.15 K, and vapor pressure of water above 373.15 K; Vm,i is molar volume
of aqueous species i. For K(T, Pre f ), we follow the empirical equation from Appelo [47]:

log(KH(T, Pre f )) = A0 + A1T +
A2

T
+ A3 log(T) +

A4

T2 + A5T2. (18)

For reactions (7) to (9), we regressed the parameters in Equation (17) and Vm,i from the related
mineral solubility in water or brine. Vm,i is calculated as follows:

Vm,i = 41.84
(
0.1a1,i +

100a2,i

2600 + P
+

a3,i

(T − 288)
+

104a4,i

(2600 + P)(T − 288)
−ωi ×QBrn

)
, (19)

where a1,i–a4,i and ωi are the parameters found in Appelo [47], and QBrn is the Born function, which
can be found in Helgson et al. [48]. For magnesium carbonate dissolution reactions (7–9), we assume
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Vm,i is set as a constant value. For reactions (10) and (11), Vm,i is calculated following Helgson et al. [48].
Table 1 shows the parameters used in this model.

Table 1. Parameters of equilibrium constants for magnesium carbonate dissolution reactions.

Reaction A0 A1 A2 A3 A4 A5 Vm

(7) 7.267 −0.033918 −1476.604 0 0 0 28.3
(8) −6.008 −0.00688 873.4 0 0 0 74.789
(9) −4.85 0 0 0 0 0 100.81
(10) −0.5837 −9.2067 −2.3984 −0.03 0 0 Helgson et al. [48]

(11) a
−11.809 0 0 0 0 0 0

a From Appelo [47].

2.2. Activity Model and Fugacity Model

From Equation (13), the activity coefficient describes the deviation of an aqueous species in a
real solution from that in ideal solution. Pitzer [24] proposed an accurate model framework that can
accurately estimate the activity coefficients of aqueous species and osmotic coefficients of H2O in
solutions to high salinity. Science 1980s, the Pitzer model [24] framework began to be used to model
water–salt–mineral equilibria with various kinds of aqueous species (Harvie and Weare [22]; Harvie et
al. [23]; Greenburg et al. [29]; Moller [28]; Christov and Moller [30]; Li and Duan [33]) and shows its
success in applications. Li and Duan [34] and many other literatures [29–33] provided the expressions
of the model in details. In this work, we use the Pitzer model to calculate the activity coefficients. The
Pitzer parameters includes cation and anion binary interaction parameters β(0)c,a , β(1)c,a , Cϕc,a, cation and
cation binary interaction parameters θc,c, anion and anion interaction parameters θa,a, triple particle
interaction parameters Ψc,c,a, Ψc,a,a, and neutral-ion interaction parameters λn−a, λn−c. The selection of
the Pitzer parameters can be found from Table 2.

Table 2. The Pitzer parameters of the system.

β
(0)
CO2−

3 ,Na+
, β(0)HCO−3 ,Na+ , β(0)Cl−,Na+ , β(1)Cl−,Na+ , β(1)

CO2−
3 ,Na+

, β(1)HCO−3 ,Na+ , β(0)OH−,Na+ ,

β
(1)
OH−,Na+ , Cϕ

CO2−
3 ,Na+

, CϕHCO−3 ,Na+ , CϕCl−,Na+ , CϕOH−,Na+ , ΨCl−,HCO−3 ,Na+ ,

ΨCl−,OH−,Na+ , ΨCl−,H+ ,Na+

Li and Duan [33], Duan and Li [32]

β
(0)
CO2−

3 ,Mg2+ , β(0)
HCO−3 ,Mg2+ , β(0)

Cl−,Mg2+ , β(1)
Cl−,Mg2+ , β(1)

CO2−
3 ,Mg2+ , β(1)

HCO−3 ,Mg2+ ,

β
(0)
OH−,Mg2+ , β(1)

OH−,Mg2+ , Cϕ
CO2−

3 ,Mg2+ , Cϕ
HCO−3 ,Mg2+ , Cϕ

Cl−,Mg2+ , Cϕ
OH−,Mg2+ ,

ΨCl−,HCO−3 ,Mg2+ , ΨCl−,OH−,Mg2+ , ΨCl−,H+ ,Mg2+

Greenburg et al. [29]; Moller 1988
[28] Christov and Moller [30];

ΨCl−,OH−,Mg(OH)+ , ΨCl−,H+ ,Mg(OH)+ , β(0)
Cl−,Mg(OH)+

, β(1)
Cl−,Mg(OH)+

,

β
(0)
HCO−3 ,Mg(OH)+

, β(1)
CO2−

3 ,Mg(OH)+

Set to 0.0

λCO2,Na+ , λCO2,Mg2+ , λCO2,CO32− , λCO2,HCO3
− Duan and Sun [31]; Duan et al. [49]

To calculate the fugacity coefficient of gaseous component (CO2 and H2O), the Peng–Robinson
(PR) model [50] is used. The details of the PR model and the methodology of the application are
discussed in our previous work [2,46]. The equation for PR model is as follows:

P =
RT

Vm − b
−

a(T)
Vm(Vm + b) + b(Vm − b)

(20)

where a(T) = a(Tc)α(Tr,ω); a(Tc) is the Van der Waals’ attraction factor at a critical temperature

defined as a(Tc) = 0.45724 R2T2
c

Pc
, where Pc is critical pressure; b = 0.07780 RTc

Pc
; Tr is reduced temperature
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Tr =
T
Tc

; Tc is critical temperature; ω is acentric factor; α(Tr,ω) is a dimensionless function of relative
temperature and acentric factor.

When gaseous phase has more than one component, the mixing rule is considered for parameters
“a” and “b”:

a =
∑

i

∑
j

yiy jai j, (21)

b =
∑

i

biyi, (22)

where ai j =
√aia j(1− δi j) and δi j is binary interaction coefficient of species i and j; yi is mole fraction of

species i in gaseous phase. The PR parameters are adopted from Li et al. [46].

2.3. Calculation Routine

The equilibrium of the whole system is described by equations of chemical potentials, charge and
mass conservation. The equations are non-linear. In this work, we use successive substitution method
(Li and Duan [34]; Michealson and Mollerup [51]). The calculation routine is as follows.

(1) Initialize the system with molality of each component and species at given pressure
and temperature.

(2) Calculate the equilibrium constant of each reaction.
(3) Calculate activity coefficient of each aqueous species and fugacity coefficient of each gaseous

species with current molality of each species of the system.
(4) Solve mass and charge conservation equations and linearized reaction equilibrium equations.

Update the molality and activity/fugacity coefficient of each species.
(5) Calculate the absolute relative difference of molality of each species and activity coefficient. If

both are smaller than tolerance, stop the calculation and output the final results. Otherwise, go to
step (3).

3. Results

3.1. Comparisons of MgCO3 Mineral Solubility: Model Calculations and Experiments

The experimental work of MgCO3 mineral solubility started very early by previous
researchers [5–8]. However, the reliable experimental data of this system is not sufficient for modeling.
To test the model behavior, we compared the model results with the existing experimental data of
MgCO3 mineral solubility. Visscher et al. [52] carefully compared the experimental data and checked
the reliability of the data. We defined average absolute deviation (AAD) to measure the difference
between model results and experimental work:

AAD% =
1
N

∑∣∣∣∣∣∣ scal − sexp

sexp

∣∣∣∣∣∣× 100%, (23)

where N denotes the number of data points; Scal denotes calculated solubility; Sexp denotes
experimental solubility.

Table 3 shows the experimental data of magnesite (MgCO3) in water and the average absolute
deviation of the calculated results from this model. The experimental data of magnesite are usually at
temperature from normal temperature to 91 ◦C and CO2 partial pressure to about 1 atm. More recent
work is from Benezeth et al. [3] who conducted experiments of magnesite solubility with temperature
from 120 to 200 ◦C and CO2 partial pressure from 12–30 bar. From the comparison, the AAD% is
usually less than 10% with some of them up to 13.17%. Figure 1 shows the magnesite solubility trend
with temperature at various CO2 partial pressure calculated by this model. The trend shows that the
model results are reliable compared with the experimental data.
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Table 3. Average absolute deviation of magnesite solubility in water between model calculation by this
model and the experimental results.

Reference Data Points T (◦C) PCO2 (atm) AAD%

Wells [7] 1 20 0.00029 3.8
Bar [8] 2 18 0.00031 13.3

Halla [9] 2 25–38.8 0.932–0.955 8.75
Berg and Borisova [10] 1 25 0.987 11.6

Christ and Hostetler [11] 3 90.3–91 0.0274–0.312 9.61
Benezeth et al. [3] 11 120–200 12–30 13.17
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Figure 1. Comparison of magnesite solubility in water at various temperatures and pressures. Lines
are calculated results by this model, and dots are from experiments.

The experimental data of nesquehonite solubility in water is more than that of magnesite, but is
with limited TP range. The temperature is from 0 to 60 ◦C and CO2 partial pressure is from 0.00029 to
21 atm. Table 4 shows the comparison between experimental data and the calculated results by this
model. The average absolute deviations are all under 10%. Figure 2a posts all of the experimental data
(which are judged as reliable by Visscher et al. [52]) and the calculated results with dots, most of which
are quite close to the equal line (y = x). Figure 2b shows the nesquehonite solubility varying with
CO2 partial pressure at various temperature. The comparison shows a reliable nesquehonite solubility
trend with CO2 partial pressure with this model calculations.

Table 4. Average absolute deviation of nesquehonite solubility in water between model calculation by
this model and the experimental results.

Reference Data
Points T (◦C) PCO2 (atm) AAD%

Engel [13] 14 3.5–50 0.878–5.986 2.09
Wells [7] 2 20 0.00029 9.41

Mitchell [16] 6 25 6–21 5.22
Haehnel [17] 12 5–60 1 1.13

Yanat and Rassonskaya [21] 10 0–53.5 1 2.91
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Figure 2. Comparison of nesquehonite solubility in water at various temperatures and pressures between
calculated results by this model and experiments. Dots are experimental data from references [10,13–17],
and lines are calculated results by this model. (a) comparison of experimental nesquehonite solubility
in water and the calculated results by this model. (b) Nesquehonite solubility varying with CO2 partial
pressure at various temperatures.

Compared with magnesite and nesquehonite, the experimental data of lansfordite solubility in
water is even less. The experimental work covers the temperature range from −1.8 to 20 ◦C and CO2

partial pressure from 1–10 atm. Table 5 shows the average absolute deviation of the calculated results
with this model from the current available experimental data. From the comparison, the calculated
results are close to the experimental data. Figure 3 shows the lansfordite solubility varying with
temperature at various CO2 partial pressures. The available experimental data points are also post on
the figure. The model results show its reliability to predict the solubility trend.
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Table 5. Average absolute deviation of lansfordite solubility in water between model calculation by
this model and the experimental results.

Reference Data Points T (◦C) PCO2 (atm) AAD%

Takahashi et al. [19] 6 −1.8–20 0.987 1.84
Ponizonvskii et al. [20] 4 0 1.93–9.68 3.92

Yanat’eva and Rassonskaya [21] 3 0–15 1 7.11
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Figure 3. Comparison of lansfordite solubility in water at various temperatures and pressures. Line is
the calculated results by this model and dots are from experiments.

3.2. CO2 Solubility

A complex system model should be able to reproduce experimental results of simple systems.
Duan and Sun [31] developed an accurate model (DS model) for CO2 solubility in water or brine within
a wide pressure, temperature, and salinity range. DS model has been comprehensively examined with
existing experimental data and is usually treated as a reliable model. We compared this model results
for CO2 solubility with DS model with temperature from 0–250 ◦C, pressure from 1–1000 bar, and
NaCl molality from 0 to saturated condition. Figure 4 shows the comparisons between results from
this model and the DS model. From the comparison, this model can reproduce the DS model results
with wide TP range at different NaCl concentrations.

To evaluate the influences of MgCO3 dissolution on CO2 solubility in brine, numerical experiments
are conducted with cases of MgCO3 saturated solutions or MgCO3 free solutions at various temperatures
and pressures. Figure 5 shows the CO2 solubility in water with MgCO3 saturated or free conditions.
From the comparisons, it can be concluded that dissolution of MgCO3 in water has little influence on
CO2 solubility. This is because of the limited solubility of MgCO3 minerals.
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3.3. Model Predictions

With the new model, the following results can be calculated: (1) the solubility of MgCO3

minerals (i.e., lansfordite, magnesite, and nesquehonite) at various conditions; (2) solutions properties
such as pH, various ion concentrations and carbonate concentrations at various conditions of
H2O-NaCl-MgCO3-CO2 systems.
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3.3.1. MgCO3 Mineral Solubility

MgCO3 mineral solubilities (i.e., lansfordite, magnesite, and nesquehonite) at various temperatures,
pressures, and NaCl molalities are calculated by this model. Figure 6a shows the solubility of magnesite
at temperature ranging between 0 and 200 ◦C, and pressure ranging between 1 and 1000 bar. Magnesite
solubility decreases with temperature and increases with pressure. Figure 6b shows the magnesite
solubility with CO2 mole fraction at various temperatures and 100 bar. From the results, the presence of
CO2 in gas phase significantly enhances magnesite solubility in water. Figure 6c shows the magnesite
solubility varying with NaCl molalities at 100 bar and various temperatures under conditions of gas
free or 100% CO2. The NaCl molality can enhance the dissolution of magnesite. With same temperature,
pressure, and NaCl molality, when the solution is in equilibrium with CO2, the magnesite solubility
increase is significant.

Similar behavior of nesquehonite and lansfordite solubilities are observed from Figure 6d–i
at various conditions except temperature effects. Nesquehonite solubility in water decreases with
temperature at lower temperature range (about 0–120 ◦C) and increases with temperature at higher
temperature range (about more than 120 ◦C, Figure 6d). Lansfordite solubility in water increases with
temperature with the entire range from 0–200 ◦C (Figure 6g).
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Figure 6. MgCO3 mineral solubility at various temperatures, pressures, NaCl molalitis, and CO2
mole fractions in gas phase. (a) Magnesite solubility in water varying with temperature at various
pressures; (b) magnesite solubility in water varying with CO2 mole fraction in gas phase at various
temperature and 100 bar; (c) magnesite solubility in NaCl solutions varying with NaCl molality in cases
of 100% CO2 or 0% CO2 in gas phase; (d) nesquehonite solubility in water varying with temperature at
various pressures; (e) nesquehonite solubility in water varying with CO2 mole fraction in gas phase.
(f) nesquehonite solubility in NaCl solutions varying with NaCl molality; (g) lansfordite solubility in
water varying with temperature at various pressures; (h) lansfordite solubility in water varying with
CO2 mole fraction in gas phase; (i) lansfordite solubility in NaCl solutions varying with NaCl molality.



Energies 2019, 12, 4533 12 of 16

3.3.2. Solution Properties

With the new thermodynamic model of CO2-H2O-NaCl-MgCO3 systems, the solution properties
(such as pH, various species concentrations, distribution of carbonate species, etc.) can be calculated.
Figure 7 shows the pH of solutions (saturated with CO2) varying with pressure from 1 to 1000 bar at
different temperatures under conditions of MgCO3 saturated or free. NaCl molality is 4 molal for all
the scenarios. From Figure 7, equilibrium with MgCO3 minerals can significantly increase pH values
of the solutions. The MgCO3 minerals can be treated as “buffer minerals” for aqueous solutions.
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From the previous sections, when CO2 or carbonate minerals dissolved in water, it can be in
the forms of CO2

(aq), HCO3
−, CO3

2−, and MgCO3
(aq). Figure 8 shows the various carbon species

concentrations varying with pressure at 100 ◦C under conditions of MgCO3 minerals saturated or free.
At different conditions, most of the carbon in aqueous solution is in the form of CO2

(aq), and HCO3
− is

secondary. When the solutions are in equilibrium with the MgCO3 minerals, higher concentrations of
different forms of carbon can be observed.
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4. Conclusions

With regards to the importance of magnesium carbonate minerals to CO2 geological storage
projects, we developed a thermodynamic model of CO2-H2O-NaCl-MgCO3 systems from 0–200 ◦C,
1–1000 bar, and halite up to high concentration. The model can calculate the phase equilibria
and speciation including gas phase mole fractions, molality of aqueous species (such as CO3

2−,
HCO3

−, Mg2+, Mg(OH)+, H+, OH−, CO2
(aq), and MgCO3

(aq)), pH, and dissolution and precipitation of
MgCO3 minerals.

To validate the model, we compared the model results with the current existing data in terms
of CO2 solubility in aqueous solutions, and MgCO3 mineral solubilities. From the comparison, CO2

solubility in NaCl solutions can be reproduced in a wide temperature, pressure, and salinity range
with similar accuracy as the previous work [31,46]. The experimental solubility of nesquehonite,
magnesite, and lansfordite in aqueous solutions with various temperature and CO2 partial pressure can
be reproduced by this model. The AAD% between model results and experimental data are calculated.
From the results, most of the experimental data can be reproduced with AAD% less than 10%.

The model is used for the prediction of phase equilibria of CO2-H2O-NaCl-MgCO3 systems with
temperature from 0–200 ◦C, pressure from 1–1000 bar, and halite concentration up to 6 molal. From the
results, the followings can be concluded.

(1) Temperature usually decreases the mineral solubilities, and pressure usually increases the
solubility. However, for nesquehonite, the solubility decreases with temperature when the
temperature is less than about 100 ◦C and increases when the temperature is higher than 100 ◦C.
For lansfordite, the solubility increases with temperature from 0–200 ◦C.

(2) The presence of CO2 in aqueous solution or gases phase will significantly enhance the dissolution
of MgCO3 minerals.

(3) For CO2 saturated solutions, the dissolution of MgCO3 minerals will increase the pH of the
solutions at different temperature and pressure conditions. MgCO3 minerals can be treated as
“buffer minerals”.
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(4) The influences of MgCO3 minerals on CO2 solubility are insignificant. However, the concentrations
of carbon-bearing ions in the solutions are significantly increased by the dissolution of
MgCO3 minerals.
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