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Abstract: PV modules tilted and oriented toward east and west directions gain gradually more
importance as an alternative to the presently-preferred south (north in the Southern Hemisphere)
orientation and it is shown to become economically superior even under the reimbursement of
feed-in tariff (FIT). This is a consequence of the increasing spread between the decreasing costs of
self-consumed solar power and the costs for power from the grid. One-minute values of irradiance
were measured by silicon sensors at different orientations and tilt angles in Hannover (Germany)
over three years. We show that south-oriented collectors give the highest electrical power during the
day, whereas combinations of east and west orientations (E-W) result in the highest self-consumption
rate (SC), and combinations of southeast and southwest (SE-SW) orientations result in the highest
degree of autarky (AD), although they reduce the yearly PV Power by 5-6%. Moreover, the economic
analysis of PV systems without FIT shows that the SE-SW and E-W combinations have the lowest
electricity cost and they are more beneficial in terms of internal rate of return (IRR), compared to the S
orientation at the same tilt. For PV systems with FIT, the S orientation presently provides the highest
transfer of money from the supplier. However, as a consequence of the continuing decline of FIT, the
economic advantage of S orientation is decreasing. E-W and SE-SW orientations are more beneficial
for the owner as soon as FIT decreases to 7 Ct/kWh. East and west orientations of PV modules do
not only have benefits for the individual owner but avoid high costs for storing energy—regardless
who would own the storage facilities—and by avoiding high noon peaks of solar energy production
during sunny periods, which would become an increasing problem for the grid if more solar power is
installed. Furthermore, two types of commonly used PV software (PVSOL and PVsyst) were used to
simulate the system performance. The comparison with measurements showed that both PV software
underestimate SC and AD for all studied orientations, leading to the conclusion that improvements
are necessary in modelling.
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1. Introduction

Decarbonization of our energy supply is an important component to fulfill pledges of the Paris
Agreement to keep the global warming below 1.5 °C, because 65% of the world’s current CO, emissions
are due to burning fossil fuels [1]. Renewable energy is one of the most cost-effective options to replace
fossil fuels and to reduce electricity-related emissions. In recent years, many countries have begun a
transition to more sustainable energy supply based on renewable energies. Solar energy represents the
most abundant natural energy resource on the earth and has the potential to replace fossil fuels to
satisfy this clean energy demand of our society in future [2]. This exceptional energy source is the most
simple and economic renewable energy technology available that can be easily installed, especially on
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rooftops of houses. The costs for solar modules, measured in $/Wp, have reduced by as much as 90%
during the last decade and are expected to fall further in the future [3].

Consequently, the evolution of renewable energy over the past decade has surpassed most
expectations. By the end of 2018, global total renewable generation capacity reached 2351 GW. PV
solar electricity has developed rapidly in minor private systems, as well as in large-scale installations
connected to national grids. Solar energy represented around 20.6% of renewable energy generation in
2018, with capacities of 486 GW [4].

The solar irradiance changes with geographical location, season, and time of the day according to
sun position in the sky. In addition, it varies by the influence of clouds, aerosols, and ground reflection.
The orientation and tilt angle of PV collectors are among the most important parameters that affect
the performance of a PV system, as they determine the amount of solar radiation received by the PV
collector [5]. The orientation and inclination of a PV installation has two effects on system output: On
the one hand, there is a larger or smaller amount of total annual yield; on the other hand, there is
an impact on the seasonal or daily timing of peak energy generation [6]. In general, PV systems are
divided into fixed and tracking systems. Fixed systems are often small systems installed on the roof of
a building, while tracking systems are often large PV systems installed to maximize the solar radiation
that reaches them [7]. Module performance is also affected by local factors for individual locations e.g.,
cloudiness, temperature, shading, dust, precipitation, and bird droppings [8].

Based on Earth-sun geometry, many studies were carried out to find the optimum tilt angle and
orientation of PV systems in certain areas worldwide, e.g., Italy [9], Turkey [10], Australia [11], the
United States [12], India [13], China [14], and Ghana [15]. Most previous studies show that the optimal
fixed tilt angle of PV collectors depends only on geographical latitude (), if local weather and climatic
conditions are not considered. However, because of the diffuse solar radiation, the optimal tilt angles
may differ from those in reality. Huld et al. [16] showed that climate characteristics have a huge
influence on the optimal tilt angle in Europe. Lave and Kleissl [12] showed that the optimal tilt is
reduced by up to 10 degrees when cloudiness is taken into consideration, particularly in the northern
United States. European studies [17,18] concluded that the optimum tilt must be reduced by 10° to 20°
between southern and northern Europe because of the same effect. Beringer et al. [19] showed that
solar collectors oriented to the South at a tilt angle of 50°-70° in the winter months (October-March)
and 0°-30° in the summer months (April-September) would result in the highest monthly yield for the
location of Hannover, Germany.

Rooftop PV systems have gained importance in the last decade, especially from the drop in the
cost of solar PV modules and the increase of end-consumer electricity tariff. According to recent
studies, up to 25% of EU electricity consumption could be potentially produced in small rooftop PV
systems installed in the existing EU building [20]. Other authors estimate that all electricity needs
can be produced on rooftops [21]. There is increased interest in the self-consumption (SC), i.e., the
part of PV power production that is consumed by the house owner. The savings from self-consumed
PV-generated electricity are much higher than the profit from selling excess generation at spot prices. It
may also have a positive effect on the distribution grid and make the production profiles of PV systems
connected to the grid smoother.

The SC depends mainly on the system size: The more PV power installed, the more often the
produced electricity exceeds consumption; i.e., it is non-linear with installed power [22]. SC can also
be increased by energy storage and by load management; i.e., the influence of temporal resolution
becomes less distinct with added a battery storage [23]. In practice, the SC rate can range from a few
percent to a theoretical maximum of 100%, depending on the PV system size and load profile. Moreover,
estimation of SC depends also on time resolution; i.e., it is overestimated when using hourly data of
PV electricity production and household load profiles. Luthander et al. [24] found that for individual
buildings, sub-hourly data are needed to capture the behavior of high peak power. Leicester et al. [25]
found that SC is overestimated by 71.3% when using hourly data, compared with 54.8% when using
one-minute data. Accordingly, high temporal resolution data are required to quantify SC accurately.
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There are very limited studies that described simultaneous direct measurements of PV generation
and consumption. However, one method to obtain more data with greater variety is to use PV data and
separately-obtained load profile data, and estimate the SC fraction [25]. With the present reimbursement
for feed-in tariffs that value just the yearly sum fed into the grid, suitability studies focused for rooftop
have just concentrated on the yearly yield. Many studies and online web tools concerning the suitability
of the orientation of rooftop implicitly take only the yearly sum into account [26]. Calculations for the
diurnal variability are lacking.

In this study, we use one-minute data to compare the outputs of 12 solar collectors at various tilt
and azimuth angles in order to propose an alternative concept for increasing SC via non-south-oriented
PV systems and investigate its potential. The calculations are based on measurements from silicon
sensors with different orientations and tilt angles in Hannover (Germany). The SC of all orientations
is calculated by using a set of separately measured load profiles in order to evaluate the best and
more-economic orientations for rooftop PV systems. The results are also compared with the simulated
values of two widely used PV software packages, PVSOL [27] and PVsyst [28] to validate this software.
Detailed information about the simulation parameters are listed in Tables.

2. Methodology

The input dataset used in this study is composed of one-minute output of 12 solar collectors
(Figure 1) installed for three years (2016-2018) on the roof of the Institute for Meteorology and
Climatology (IMUK) of the Leibniz Universitit Hannover (Hannover, Germany; 52.23° N, 9.42° E
and 50 m above sea level). Measurements have been made, using crystalline silicon PV devices with
individual temperature sensors (Mencke and Tegtmeyer GmbH, Hameln, Germany). The PV devices
have been calibrated by the manufacturer in November 2013 and they are cleaned regularly to prevent
the accumulation of dirt and dust. In addition, all devices are compared after one year of measurements
by placing them side by side horizontally. These comparisons were performed under different weather
conditions and have showed an agreement within +3%.

Figure 1. Set of solar PV devices based on silicon sensors mounted in several different tilt angles and
orientations, operational at the IMUK (Institute for Meteorology and Climatology) [IMUK, 2017].

Two groups of identical devices are considered here: The first group consist of devices with 45°
tilt, oriented to S, E, W, SE, and SW; the second group consists of vertical devices, oriented to S, E, W,
SE, SW, and N. The tilt angle for the first group (45°) is chosen to represent the large number of roof
pitches, where most residential houses in Germany were built with a tilted roof angle between 40° and
45° [29]. According to the initial design of the measurement system, the S measurements are conducted
at tilt angles of 40° and 50°, therefore we take the average of both sensors (40° and 50°) to represent the
PV outputs at 45° tilt; the uncertainty resulting from this procedure and other orientation uncertainties
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are less than 1% according to PVGIS calculations. Table 1 shows an overview about the inclination
uncertainty, according to a Photovoltaic Geographical Information System (PVGIS) calculation [30]
for Hannover.

Table 1. Annual PV energy produced in Hannover with respect to the optimal inclination [%] according
to PVGIS.

East — Azimuth - West

tilt 90 8 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90
0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 86
10 8 8 8 8 9 91 92 92 93 93 93 92 92 91 90 89 88 87 86
20 84 8 8 90 92 94 95 9% 97 97 97 96 96 94 93 91 89 87 84
30 81 8 8 90 93 9 97 98 99 99 99 98 97 96 93 91 88 85 81
40 78 82 8 89 92 94 96 98 99 100 99 98 97 95 92 89 8 82 78
50 74 78 82 8 8 92 94 9 97 97 97 96 95 92 90 87 83 79 74
60 70 74 78 82 8 88 90 92 93 93 93 92 91 8 8 82 79 74 70
720 65 69 73 76 80 82 84 8 8 87 87 8 8 8 8 77 73 69 65
80 59 63 67 70 73 75 77 78 79 8 79 79 78 76 73 70 67 64 60
9 53 57 60 63 65 67 69 69 70 70 70 70 69 68 66 63 60 57 54

3. PV System Output Calculation

In general, there are several ways to calculate the power output of PV systems. We used in this
study a simple method for calculating it [31]:

I i o
Puj = Py X 77 X (14 (Teeni =25 °C)) x PLF 1)
urc

where P, is power output of the PV system, P, is the rated PV system power (the output power of PV
device under standard test conditions), I, is the measured solar irradiance, I;rc = 1000 W/m?, T, is
the module temperature (in °C), v is power temperature coefficient, and PLF is the power loss factor.

The equation contains the temperature coefficient to take into account the drop of sensor signal
because of the temperature and to correct the testing conditions. The losses because of inverter and the
degradation mechanisms of the PV sensors (0.5%/a) are included in Equation (1) as a PLF, which is

time dependent because of the degradation of sensors.

3.1. Load Profile

The power generation profiles were calculated by using the Equation (1). A synthesized dataset
of actual measured load profiles provided by HTW Berlin [32] is used to simulate a household’s
consumption pattern of electricity. The data set consists of 74 load profiles of German single-family
houses with a temporal resolution of 1 min for every day of the year. The load profile used for
the calculations is the average of six selected profiles which have an annual consumption between
3900 kWh and 4055 kWh. The average profile has an annual electricity consumption of 4006 kWh
(Figure 2). It can be assumed that the selected profiles represent a four-person household.
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Figure 2. Six private household profiles which have an annual consumption between 3900 kWh and
4055 kWh [32]. The average profile (black curve) has an annual electricity consumption of 4006 kWh.

3.2. Economic Parameters

Feed-in tariffs are the most common policy instrument worldwide to support renewable energy.
Many PV installations sell their power at local grid, and the majority of feed-in tariff contracts are
at a fixed price per kWh for 10-20 years [33]. This results in an optimal orientation that is the same
for both maximum economic yield and maximum energy production. The German FIT for solar
photovoltaic uses varying rates depending on the size of the project. Countries in which the FIT
was eliminated usually replace it by net metering schemes. The net metering is also used in many
different countries under different rules, but consists of a system in which the excess electricity injected
into the grid can be used at a later time to compensate the consumption when PV generation is not
sufficient. The compensation usually covers a specific period (usually 1-3 years) depending on the
country’s regulations, and any excess energy after this period is not remunerated. So, the main idea is to
configure the system settings in a way its annual production does not exceed the annual consumption,
minimizing the deviation between them and increasing SC. Examples of countries using net metering
schemes are: the United States (with particular conditions depending on the state), Denmark, Greece,
Australia, Brazil, Mexico, and Chile [34-36].

The FIT used in the financial model for the calculation is 10.64 Ct/kWh (from July, 2019) and the
price is constant for 20 years. The electricity price (30.22 Ct/kWh) considered in the calculations in this
study represents the average price level for private households in Germany in 2019, including taxes
and levies [37]. The increase of electricity price is expected to slow down to 2% p.a. as an average
value during the next 20 years. The levelized cost of PV energy (LC) in northern Germany ranges
between 9.89 Ct/kWh and 11.54 Ct/kWh, depending on the annual solar irradiance [38]; a value of
10 Ct/kWh is used in this study.

In the design of PV systems, the self-consumption rate (SC) and the degree of autarky (AD) are
two important quantities used to assess the congruence of the PV generation and electricity demand
profiles. The self-consumption rate is defined by the ratio of PV directly used (Ppy) to the total amount
of PV power generated (Pr), according to Equation (2).

_ Pou
¢ = 3 )
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The degree of autarky is defined as a ratio of PV directly used to the total consumption by the
household [39], according to Equation (3).

Ppu
AD = — 3
5 ®)
where L is the energy consumed by the loads.
The electricity price Pg used to evaluate the economic impact of PV system at specific orientation
has been calculated according to Equation (4).

Pp = (Pg—-Pr)+LC 4)

where Pg is the grid electricity price, Pr; is the FIT, and LC is the levelized cost of PV energy.

Figure 3 shows a workflow diagram used in this study to calculate the SC with the feed-in
components. The calculations are always dependent on the consumption of electricity, with the primary
objective to fulfil the demand from the PV produced energy, before purchasing from the public grid. If
the produced electricity exceeds the consumption of the house, the excess is supplied to the public
grid. Moreover, the internal rate of return (IRR) for all available orientations has been calculated over
the life cycle of the PV system (20 years) in order to enlighten prospective owners/investors of rooftop
PV systems. The IRR, defined as a discount rate that makes the net present value from all cash flows
from a project equal to zero, is used to evaluate the attractiveness of a project or investment, and it is
probably one of the most meaningful metric for investors [40]. The degradation mechanisms of the PV
collectors (0.5%/a) and an annual increase of electricity price (2%/a) were taken into account in the
IRR calculations.

Load PV Energy
Demand Production

Grid

Production
<

Yes-' Feed-In '

Figure 3. Schematic view of the calculation of system components. The calculations are always

Demand

dependent on the load demand, with the primary objective to fulfil it from the PV produced energy,
before purchasing electricity from the public grid.

3.3. PV Software

PV estimation models are generally used to estimate the expected energy output of a PV system.
These models need specific input parameters such as meteorological conditions of the location, system
design details, and definitions of the main components used. A variety of software for the simulation of
PV systems is available in the market, including PVsyst, PVSOL, and others. PVsyst, developed at the
University of Geneva, is one of the most common modeling software tools used in the PV industry to
simulate the performance of grid-connected or stand-alone PV systems and calculate their energy yield.
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PVsyst allows the definition of meteorological databases from many different sources and formats, as
well as on-site measured data [41]. On the other hand, PVSOL is a German software developed by
Valentine Software [27] for dynamic simulation with 3D visualization and detailed shading analysis
of photovoltaic systems. PVSOL gives customers the best return on their investment by visualizing
systems, and it can perform economic and performance analysis with comprehensive reports.

4. Results and Discussion

4.1. Production and Consumption under Different Weather Conditions

Figure 4 shows the PV production profiles for the S and E-W orientations during three days of May
2018 with different weather conditions (clear sky, partly cloudy, and fully cloudy) and correspondent
customer load profiles for the same days of the year.
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Figure 4. PV Production profiles for three days of May 2018 and the correspondent customer load profiles
for the same days of the year. The thick (gray) curve represents the 10-minte average consumption.

The load profiles show different peaks over the day according to consumption patterns, while,
the PV power production changes according to the movement of the sun and the weather conditions.
The influence of orientation is shown clearly in clear sky days, when the energy production depends
mainly on the sun’s position. The E-W orientation covers more the edges of the day and reduces
noon peak. On the other hand, the orientation is irrelevant under cloudy conditions, when the solar
irradiance dominated by diffuse component. In general, SC rate is higher under cloudy conditions.

4.2. Annual Insolation

The annual total solar energy as function of surface azimuth and tilt angles is depicted in Figure 5.
The left side histogram shows that the maximum annual total energy is for a south-facing surface with
a tilt angle between 30° and 40°, closer to 40°. The annual total energy is less than the maximum by
approximately 0.2% for surface orientation of 30° S, and it decreases gradually with higher or lower tilt
angles. The annual produced energy for the surfaces oriented at the same tilt angle (45°) toward E and
W are 77.0% and 75.9% of the optimal orientation respectively. For orientations of 45° SE or SW, the
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annual total energy produced are 94.8% and 93.3% of maximum produced energy. The inequality in
total energy for E and W and in SE and SW may denote asymmetric distributions of solar irradiance
before and after midday. On the right histogram of Figure 4 we can see that, for a vertical surface with
orientation of 90° south, the produced energy is 66.2% of the 40° tilted surface, whereas it is about 50%
for E and W surfaces. The annual total energy of the northern vertical surface is reduced by about 74%.

N
o

m S45
=Rl 2016-2018 -
m Load -

o

o
n

Average Produced & Consumed PV Power [kW]
o

g
o

5 10 15 20
Time

Figure 5. Produced and consumed PV power averaged over all days of the years 2016-2018 for the S,
E-W, and SE-SW orientations at 45° tilt. The area below the gray curve represents the average load
profile. The E-W and SE-SW facing installation produce more electricity in the mornings and evenings
with a lower midday peak, so they match the load profile more closely.

In general, the amount of energy produced by a PV collector is proportional to solar radiation
received by a surface in a specific orientation. Table 2 shows the annual produced energy and its
percentage from the maximum value (at 45° S) for different orientations and tilt angles. The table
also shows the SC rate and AD for each orientation. For 45° tilt surfaces, the lowest SC rate (37.9%) is
for the S facing solar installation, while the highest SC rate (51.4%) is for the E-W combination. The
high SC rate is because the power output of E-W installation matches the load profile more closely,
producing more electric energy at the beginning and at the end of the day, with a lower midday
peak (Figure 6). The AD has its maximum at SE-SW combination (40.7%) and its minimum at the E
orientation (35.4%). Moreover, the economic efficiency of all studied orientations for the cases with
and without FIT is also listed in Table 2. Overall, the E-W and SE-SW combinations have the lowest
electricity cost (29.2 Ct/kWh and 29.1 Ct/kWh respectively), while the E orientation has the highest one
(30.7 Ct/kWh), both cases for the system without FIT. For PV systems with FIT, the S-facing systems
have the lowest electricity price (22.0 Ct/kWh) because of the high PV generation and accordingly the
high feed-in amount, while the E-facing systems have the highest price (25.6 Ct/kWh).
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Table 2. Results of measurement for a PV size of 4.8 kWp at different tilt angles in Hannover, Germany.

. . E45 + SE45 +
Orientation S45 E45 W45 W45 SE45 SW45 SW45 S90 E90 W90 SE90 SW90 N90

Percentage of SS45 (%) 100 762  75.0 75.6 946 931 93.8 66.8 498 503 646 644 258

Annual PV Generation 2678

4145 3157 3111 3134 3921 3859 3890 2769 2064 2046 2655 1069
(KWh/a)
SC rate (%) 379 449 479 514 386 407 419 509 574 662 500 554 95.1
Autarky (%) 392 354 372 403 378 392 40.7 352 296 345 334 367 254
Cost NoFIT 295 307 301 292 305 295 29.1 309 327 311 314 304 340
CYKWh Wi FIT 220 256 253 247 230 228 225 270 302 291 276 271 339
IRR % NoFIT 159 020 084 190 110 157 2.09 013 -215 -019 -053 070 —4.23
Over20ys “Wwith FIT  7.05 413 442 514 629 645 682 323 012 145 261 333 —410
99T Average Annual Produced Solar Energy- 2016-2018 Average Annual Produced Solar Energy- 2016-2018
971 328 W a7.9 4000
90.7 94.3 94.8 g3 35
4000 Bs.8 87.0
icl
\i\ 77.0 759 3000 66.2 64,1 63.5
= 3000
5 495 50.0
I 2000
T 2000
g
B 25.9
d 1000
1000

S0 510 520 530 540 S50 S60 570 E45 W45 SE45 SW45 590 ES0 W30 SES0 SW30 NSO

Figure 6. Average annual total solar energy (2016-2018) measured at IMUK and normalized values (in
%) with respect to the annual total maximum energy at 40° S. The solar energy decreases for higher or
lower tilt angles and for other azimuth angles.

The IRR analysis of PV systems without FIT shows that the SE-SW and E-W orientations tilted at
45° is more beneficial with an IRR value of 2.09% and 1.90%, respectively, when compared to the S
orientation at the same tilt with 1.59%. For PV systems with FIT, the IRR for the S orientation is higher
with a value of 7.05%, compared to the SE-SW and E-W orientations with 6.82% and 5.14%, respectively.

As expected, for the vertical surfaces, the S orientations gives the highest output (66.8% of the
maximum), while the lowest energy is produced by N-facing surface (25.8 of the maximum), because
of the Earth-sun geometry in the northern hemisphere. In terms of the SC rate, the N surfaces have the
highest rate, due to the low energy production in this direction, while the lowest rate (50.0%) is for the
SE surface. The AD has its maximum at SW orientation (36.7%) and it is minimum at N orientation
(25.4%). Accordingly, the SW orientation has the lowest electricity cost (30.4 Ct/kWh) for the system
without FIT, while the S and SW orientations have the lowest electricity cost (27.1 Ct/kWh) for PV
systems with FIT. The difference between prices is found to be small and is within +3%. However,
we found that a changing the irradiance of 3% cause only a small change of the price and therefore
conclude that the assessed measurement uncertainties do not significantly affect the prices.

Moreover, we examined whether the PV self-consumption will be influenced similarly in all
investigated orientations, by changing the system size. For that purpose, we varied the module area
by +/-50% in 5% steps (Figure 7). As expected, the SC rate increased by a reduction of the module
area (in our specific case the default area was 24.3 mz) for the orientations (S45, E45-W45, SE45-SW45).
This increase only slightly depends on the orientation: The E40-W40 increased by 29% while the south
orientation increased by 26% with a reduction of the module area of 50%. While it is obvious that the
SC rate becomes smaller for larger module areas, an increase in module size will affect all orientations,
but the S orientation will be affected slightly less than the other orientations.
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Figure 7. The change in self-consumption (SC) rate with varying the module area by +/-50% in 5%
steps. The change in SC rate depends on the orientations.

4.3. Effects of the Changing Feed-In Tariffs

Feed-in tariffs of renewable energy in Germany are decreasing as each year passes and PV FIT
drops faster than any other renewable power source. In the last 15 years, the FIT recorded a decrease
of approximately 80% for small rooftop PV installations and 90% for medium-size PV systems [42].
Figure 8 shows the decrease in German FIT from 2000 to 2020.

60
— 50 f
3
x I
= 40
A
] 30 +
8 [
o L
g 20
2
s C
- 10 > - u " Ogn
] u]
E - G-
2000 2005 2010 2015 2019
—New PV, roof system/small 0 Average remuneration from tender
New PV, ground-mounted/roof large + Gross domestic electricity price
Average feed-in tariff for PV = Electricity price for small industry

Figure 8. The changes of PV FIT and electricity price in Germany (2000 to 2020). The FIT dropped
approximately 80% for small rooftop PV installations and 90% for medium-size PV systems [42].

According to Obane and Okajima [43], the FIT scheme for small PV systems is fast approaching
its closure or expiration in many countries. In Germany, the EEG law stipulates that further FIT
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systems will not be allowed, when the total PV installations reach 52 GW. At the end of April 2018, the
country had 43.8 GW PV installed. With the current tenders of PV, this cap is expected to be reached in
2020 [44]. However, the German government presently reconsidering this plan and is considering to
allow FIT in future when the 52 GW is exceeded. With decreasing FIT self-consumption is gaining
higher importance, especially with increasing cost of delivering PV electricity and rapid decline in
the cost of solar PV modules. In addition, after 2020, the FIT will gradually expire for the oldest PV
plants [42] and the produced PV power will be mainly used for SC. Thus, E-W and SE-SW orientations
will provide the highest SC rate and will be more beneficial for the householders. Our calculation
shows that the higher benefit of south orientation is no longer existent if FIT decreases to 7.0 Ct/kWh
or lower, where at least the SE-SW orientation will have a higher IRR that the S orientation.

The economic calculations above were done for the conditions of the present FIT in Germany.
The major conclusions, however, can used for many countries around the world, which apply FIT or
similar PV cost structures. The results are especially relevant for the countries, which offer a very low
FIT (e.g., New Zealand and Portugal) or for which eliminated the FIT scheme (e.g., UK, Spain, Czech
Republic, Italy).

4.4. Comparison with PV Software

For simulation of the IMUK measurement system, a fixed PV system configuration, consisting of
a 4.8 kWp is considered in the calculations, corresponding to the installation of 24 modules. Moreover,
the same load profile that is used for the calculation of SC and AD at IMUK is also used in both models.
Table 3 shows the important model parameters used in the simulation.

Table 3. Model parameters used in comparison.

Parameter Model (PVSol, PVSyst)
Modules 4.8 kWp, mono, 24 modules
Inverter ABB, 4.6 kW

Climate data Meteonorm 7.2
Transposition model Perez-Ineichen model
Diffuse radiation model Perez model

Both simulation programs have been run for each orientation separately. Table 4 shows the
simulated annually produced energies for all studied orientations and tilt angles. The programs
overestimate the south-tilted irradiance and most of the studied orientations. This may result from
the use of an anisotropic model (Perez-Ineichen model) to calculate the tilted irradiance, where we
found in a previous study [45] that anisotropic models overestimate the south-tilted irradiance and
most vertical-tilted irradiances.

The table also shows the SC and AD fractions for each orientation. For the 45°-tilt surfaces,
the lowest SC (PVsyst = 32.9% and PVSOL = 32.3%) are for the S orientation, while the highest SC
(PVsyst = 43.1% and PVSOL = 44.5%) is for the E-W combination, which agrees with the measured
results. According to PVsyst, the AD has its maximum at E-W combination (37.4%) and at S orientation
(34.7%) according to PVSOL calculations, while it is minimum at the W orientation for both models
(PVsyst = 34.0%, PVSOL = 31.9).

For the vertical surfaces, the results of both programs show also that the S orientations gives the
highest output, while the lowest energy is produced by a N-facing surface. In terms of the SC rate, the
N surface has the highest fractions (PVsyst = 85.7% and PVSOL = 89.0%), while the lowest (40.7%) are
for the S surfaces. The AD has its maximum for S surfaces (PVsyst = 31.8% and PVSOL = 30.6%) and it
is minimum at the N orientation (PVsyst = 24.6% and PVSOL = 24.7). Table 4 also shows that both
PV programs overestimate the percentage of energy production at 45° in most orientations versus the
southern maximum value.
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Table 4. Results of PV software PVSPL and PVSyst for a PV size of 4.8 kWp at different orientation and

tilt angles.
. . E45 + SE45 +
Orientation  S45 E45 W45 W45 SE45 SW45 SW45 S90 E90 W90 SE90 SW90 NN9O
PVsyst
Annual PV
(kWh) 4457 3596 3531 3564 4250 4174 4212 3161 2439 2362 3053 2938 1148
Percentage
of the max 100 79.5 79.3 78.7 948 941 93.9 71.0 55.1 54.6 684 672 260
(%)
SC (%) 329 407 389 43.1 349 339 36.1 40.7 495 46.6 423 409 85.7
AD (%) 362 356 340 374 364 351 37.3 31.8 30.1 28.0 319 30.3 246
PVSOL
ArEEuWa}lI)P v 4330 3425 3046 3148 4160 3857 3920 3012 2289 1975 2945 2629 1115
Percentage
of the max 100 77.8 68.7 71.3 959  88.3 90.1 699  53.1 45.9 684  61.1 25.8
(%)
SC (%) 323 399 431 44.5 334 356 35.6 40.7 504 57.0 415 456 89.0
AD (%) 347 334 319 34.1 345 338 34.5 30.6 288 281 30.5 299 247

In order to have comparable results of simulation with the measured results, the generated PV
energy of the IMUK system have been controlled by changing the PV area to produce the same annual
output as the inverter output of simulation software. Figure 9 shows the results of the comparison:
Both PV programs underestimate SC and AD for all studied orientations; SC rate was underestimated
by 0.4% to 14%, while AD values were underestimated by 1.3% to 8.1%. These results lead to the
conclusion that improvements are necessary in the modelling of SC and AD.
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Figure 9. Comparison between IMUK results and simulated values. The used PV simulation software

underestimate self-consumption and degree of autarky at all studied orientations and tilt angles.
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5. Conclusions

Using one-minute measured data of PV energy, the outputs of 12 solar collectors at various tilt and
azimuth angles in Hannover (Germany) were analyzed. For validation, the results were also compared
with the simulated values of two widely used PV software: PVSOL and PVsyst.

The measurements show that a south-oriented generator at about 40° gives the highest electricity
profile. For non-vertical devices, the combinations of E and W orientations result in the highest SC rate
and combinations of SE and SW orientations result in the highest AD. E-W and SE-SW combinations
have the lowest electricity coast for PV systems without FIT, while the E orientation has the highest one.
For PV systems with FIT, S orientation provides the highest transfer of money from the supplier. The
economic analysis using IRR of PV systems without FIT shows that the SE-SW and E-W orientations
tilted at 45° is slightly more beneficial, while S orientation has higher IRR for PV systems with FIT.

However, in light of the continuing decline of FIT, the advantage of S orientation is decreasing
and our results show that E-W and SE-SW orientations will be more beneficial if FIT is to 7 Ct/kWh
or lower. East and west orientations of PV modules and not south orientations should be supported
because they would also reduce the economic costs for storing renewable energy—regardless who
would own the storage facilities—and avoid high noon peaks of solar energy production, which would
become a problem for the grid for higher solar power penetrations levels.

Furthermore, the results show that the vertical tilted surfaces represent a high potential for PV
energy production and facade PV systems could be an alternative for many people, especially for
those who do not have access to a rooftop. So far, combinations of different vertically tilted modules
as well as the combinations between vertical and 45°-tilted surfaces have not yet been taken into
account because of the problems with the standardization of shadows from nearby building, trees and,
other obstacles.

The calculation in this study assumed a constant price for the FIT over the day. However, if we
consider the general trend to link the price of electricity with the spot market price, so that the price of
selling or feeding electricity to grid changes according to the production and demand, the E-W and
SE-SW orientations might become even more beneficial against S-facing PV systems. In addition, the
suitability criteria for rooftops carrying solar modules must be questioned [26]. More roofs should be
taken into account when diurnal variations are considered. Based on our measurements and analysis
we conclude that the yearly sum of produced electricity can no longer be the only criterion for the
installation of PV modules. Instead, other orientations may be more beneficial for both the owner and
the society that uses solar power.

Regarding the model validation, both of the tested PV software overestimate the energy production
at most studied orientations and also overestimate the percentage of these orientations when compared
to the south-oriented generator. This result agrees with previous results [45], which showed that
anisotropic models overestimate the S-tilted irradiance and most vertical irradiances. The need to
improve existing modelling has also been shown in previous studies [46,47]. A major cause for the
deviation between models and measurements may be the oversimplified assumptions about the sky
radiance, which can be overcome by new measurement techniques [48,49]. Moreover, the study showed
that the overestimation increases with increasing deviation from the south direction. In addition, both
PV programs underestimate SC rate and AD for all studied orientations. SC rate was underestimated
from 0.4% to 14%, while AD values were underestimated from 1.3% to 8.1%. These results lead to the
conclusion that improvements are necessary when modelling SC and AD.

The amount of solar irradiance received by the surface of the PV collector is among the most
important parameters that affect the performance of a PV system. Therefore, high-resolution tilted
solar irradiance data in various orientations and weather conditions are needed to feed the models for
better simulation of PV Power.
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Nomenclature

sC Self-consumption

AD Degree of autarky

Py, Power output of the PV system
P, Rated PV system power

Iy Measured solar irradiance
Iurc Solar irradiance at STC (1000 W/m?2)
Tsen Sensor temperature

y Power temperature coefficient
Pdu PV directly used energy

PLF Power loss factor

® Geographical latitude ¢

PVg Total PV generated energy

Pe Electricity price

PG Grid electricity price

Pfi, FIT Feed-in tariff

LC Levelized coast of PV energy
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