

Supporting Information

Life Cycle Assessment and Techno-Economic Analysis of Pressure Sensitive Bio-Adhesive Production

Minliang Yang and Kurt A. Rosentrater *

Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA; minlyang0909@gmail.com

* Correspondence: karosent@iastate.edu

Energy Source	Percentage
Fossil fuels	57.83%
Hydroelectric	17.81%
Wind	13.82%
Nuclear	3.65%
Wood and wood-derived fuel	2.41%
Solar Photovoltaic	1.95%
Geothermal	1.01%
Landfill gas	0.67%
Biogenic municipal waste	0.44%

Table S1. Electricity sources in Iowa, 2016 (adapted from [26]).

Table S2. Assumptions of total capital investment (C_{TCI}) in the pressure sensitive bio-adhesive production plant.

Parameters	Assumptions	Sources
1. Direct fixed capital cost (CDFC)	$C_{DC} + C_{IC} + C_{OC}$	
(1) Direct cost (C_{DC})		
Equipment purchase cost (CPC)		SuperPro Designer database
Piping	$0.68 \times C_{PC}$	[32]
Instrumentation	$0.50 \times C_{PC}$	[32]
Insulation	0.03 × C _{PC}	[32]
Electrical facilities	$0.30 \times C_{PC}$	[32]
Building	$0.45 \times C_{PC}$	[32]
Yard improvement	$0.20 \times C_{PC}$	[32]
Auxiliary facilities	0.55 × C _{PC}	[32]
Installation	0.55 × C _{PC}	[32]
Land	$0.08 \times C_{PC}$	[32]
(2) Indirect cost (CIC)		
Engineering	$0.30 \times C_{DC}$	[52]
Construction	0.35 × Cdc	[52]
(3) Other cost (Coc)		
Contractor's fee	$0.06 \times (C_{DC} + C_{IC})$	[32]
Contingency	$0.08 \times (C_{DC} + C_{IC})$	[32]
2. Working capital (Cw)	0.15 × CDFC	[33]
3. Start-up and validation cost (Cs)	$0.10 \times C_{\text{DFC}}$	[32]

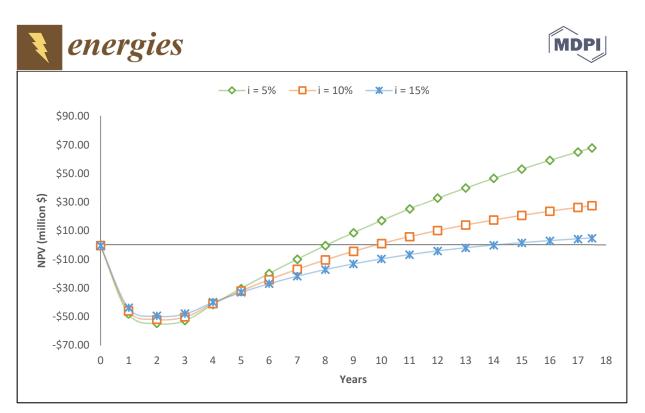


Table S3. Assumptions of annual operating cost (CAOC) in the pressure sensitive bio-adhesive production plant.

Parameters	Assumptions	Sources	
1. Material cost (См)			
Glycerol	1.04 \$/kg	[35]	
Acrylic acid	0.90 \$/kg	[53]	
Phenothazine (PTZ)	11.30 \$/kg	[53]	
Amberlyst 15	104.00 \$/kg	[53]	
Ethanethiol	5.48 \$/kg	[53]	
Carbon disulfide	1.37 \$/kg	[53]	
3-chloro-2-butanone	35.22 \$/kg	[53]	
Acetone	0.10 \$/kg	[53]	
Azobisisobutyronitrile (AIBN)	5.81 \$/kg	[53]	
4, 4'-Azobis	565.00 \$/kg	[53]	
Potassium hydroxide (KOH)	1.05 \$/kg	[53]	
Isosorbide	71.00 \$/kg	[53]	
Succinic anhydride	5.00 \$/kg	[53]	
2. Utilities cost (Cu)			
Electricity	5.08 cents/kWh	[36]	
Steam	12.00 \$/t	SuperPro Designer database	
Process Water	0.12 \$/t		
3. Labor cost (CL)			
4. Facilities cost (C _F)			
Maintenance	0.02 × C _{PC}	[32]	
Depreciation	Straight-line method	[37]	
Insurance	$0.01 \times DFC$	[32]	
Tax	$0.02 \times C_{DFC}$	[32]	
Plant overhead	$0.50 \times C_L$	[32]	

Table S4. Techno-economic analysis results of bio-glycerol based PSA plant with five different plant scales.

Plant Scale (t/d)	Total Capital Investment (\$)	Annual Operating Cost (\$)	Revenue (\$)	Unit Production Cost (\$/kg)
1	48,909,738	3,876,334	1,457,553	19.37
2	51,057,911	4,845,825	2,937,544	11.79
5	53,681,083	6,393,394	7,348,741	5.73
10	55,937,860	10,313,591	14,705,088	4.07
40	62,293,007	33,506,923	58,801,354	2.76

Figure S1. Discounted cash flow results for the 40 t/d PSA production plant at different discount rates. NPV: net present value.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).