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Abstract: A wireless battery charging circuit is proposed, along with a new load estimation method. 
The proposed estimation method can predict the load resistance, mutual inductance, output voltage, 
and output current without any wireless communication between the transmitter and receiver sides. 
Unlike other estimation methods that sense the high-frequency AC voltage and current of the 
transmitter coil, the proposed method only requires the DC output value of the peak current 
detection circuit at the transmitter coil. The proposed wireless power transfer (WPT) circuit uses the 
estimated parameters, and accurately controls the output current and voltage by adjusting the 
switching phase difference of the transmitter side. The WPT prototype circuit using a new load 
estimation method was tested under various coil alignment and load conditions. Finally, the circuit 
was operated in a constant current and constant voltage modes to charge a 48-V battery pack. These 
results show that the proposed WPT circuit that uses the new load estimation method is well suited 
for charging a battery pack.  

Keywords: wireless power transfer (WPT) circuit; battery charger; load estimation; constant current 
(CC) charging; constant voltage (CV) charging 

 

1. Introduction 

Wireless power transfer (WPT) technologies have been rapidly developed and widely applied 
to many industrial applications, such as biomedical devices, consumer electronics, manufacturing 
facilities, and electric vehicles (Evs), where direct contact between power supplies and applications 
is impossible or inconvenient [1–4]. To efficiently transfer power, most of the WPT circuits use 
electromagnetic coupling between coils. These WPT circuits use capacitors to reduce reactive power 
[5–13], and can be largely categorized into four types, depending on whether the capacitors are 
connected with the transmitter and receiver coils in series and series (S-S), series and parallel (S-P), 
parallel and parallel (P-P), or parallel and series (P-S) [5–7]. Among them, the S-S circuit has been 
widely used because the capacitances can be chosen independently of the load and coupling 
conditions [7–10].  

A typical S-S WPT circuit (Figure 1) [7,9,10] consists of a full-bridge inverter (Q1–Q4), a 
transmitter coil (L1), a full-bridge rectifier (D1–D4), a receiver coil (L2) ,and two capacitors (C1 and C2). 
L1 forms a resonance circuit with C1, and L2 forms a resonance circuit with C2. Both resonance circuits 
are designed to have the same resonance frequency 2211 /1/12 CLCLfoo ==⋅= πω . The transmitter 
and receiver coils have a mutual inductance, M12. The input to the full-bridge inverter is a DC voltage 
VDC. 
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Figure 1. The series and series (S-S) wireless power transfer (WPT) circuit for charging a battery. 

To charge a battery, the S-S WPT circuit should be operated in constant current (CC) output 
mode when the battery voltage Vbat is lower than predetermined limit voltage Vbat,cut, and in constant 
voltage (CV) mode when Vbat,cut ≤ Vbat < charging voltage limit (CVL) [9-12]. To support both modes, 
an additional DC–DC converter can be inserted between the S-S WPT circuit and the battery. 
However, the additional converter decreases the power transfer efficiency ηe and the power density 
[8,13]. To solve this problem, the battery can be directly connected to the S-S WPT circuit, as in Figure 
1, and several control methods have been introduced [9–13]. 

The WPT circuit in [9] uses the same S-S WPT circuit (Figure 1) and adopts a pulse frequency 
modulation (PFM) method to obtain a CV output. In this circuit, the switching frequency range 
should be selected differently whenever the coupling coefficient is varied, so the range of the 
frequency limiter cannot be determined easily when the coupling coefficient k12 varies widely. Also, 
wireless communication should be introduced to operate the PFM method. The circuit in [10] 
improves ηe by using two intermediate coils that are placed between the transmitter and receiver 
coils, and uses f = fCC for CC output and f = fCV for CV output, where the frequencies fCC and fCV are 
determined by the coupling coefficients among the four coils. However, the values of fCC and fCV vary 
in the manner that any coupling coefficient varies, and no method has been developed to date to 
measure the coupling coefficients, so accurate determination of fCC and fCV is a difficult task. The 
circuits in [11,12] use auxiliary switches and capacitors to change the output from CC to CV mode. 
However, this circuit needs wireless communication to change the operational mode, and additional 
components also decrease the power density. As mentioned above, most of control methods require 
wireless communication to know the load conditions and coupling state. 

To eliminate the necessity for wireless communication, several load estimation methods have 
been presented [14–19]. The methods in [14–16] predict the load resistance RL by using the 
information of the input voltage and current. However, these methods should know the value of the 
coupling state before estimating the load conditions, so they cannot be used for various coil 
alignments. The method in [17] adopts an additional capacitor in the S-S WPT circuit; this method 
operates the circuit in two modes for system identification, and analyzes the reflected impedance. 
However, the additional capacitor and bidirectional switch increase the circuit cost. The method in 
[18] measures the input voltage and current, and separates the imaginary part of the input 
impedance. To estimate the load conditions and coupling state, this method is implemented at one 
frequency, which is not a resonant frequency, so the impedance of the resonant tank slightly 
decreases the power transfer efficiency. The method in [19] injects a high frequency energy into the 
S-S WPT circuit, then detects the response of the circuit to estimate the load conditions. However, 
this method cannot follow the load conditions after initial energy injection. All of these methods [14–
19] can estimate the load conditions well, so they should be able to sense the high-frequency AC input 
voltage and current. The resonant frequency of the WPT circuit can be up to several hundred 
kilohertz, so the sampling frequency should be much higher than the resonant frequency; as a result, 
the analog-to-digital conversion is difficult. 
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This paper proposes a wireless battery charging circuit along with a load estimation method. 
This circuit does not need any wireless communication between the transmitter and receiver sides, 
and predicts the load resistance RL, output voltage Vbat, output current Ibat, and mutual inductance 
M12. In addition, because the simple peak current detection circuit is applied at the transmitter coil, 
the proposed circuit only senses the DC value, and does not need a high sampling frequency. The 
proposed WPT circuit senses the peak current values of the transmitter coil at fo and auxiliary 
frequency fa,, and calculates the load conditions by using these values. Then, the proposed WPT 
circuit operates in CC and CV modes, depending on the estimated load conditions and phase shift 
control of the full-bridge inverter. In Section 2, the analysis of the proposed WPT circuit with a load 
estimation method is given based on the fundamental harmonic approximation (FHA), experimental 
results are presented in Section 3, possible errors in the proposed estimation method are analyzed in 
Section 4, and a conclusion is given in Section 5. 

2. Wireless Power Transfer Circuit for Battery Charging 

2.1. Theoretical Models of the S-S WPT Circuit 

The gate control pulses Qg1–Qg4 (Figure 2) for the full-bridge inverter have a switching frequency 
f = 1/T = ω/(2π). The switching phase of 1gQ  and 2gQ  lags behind that of 3gQ  and 4gQ  by an 

angle φ, so the bipolar output pulses of the full-bridge inverter (v1, Figure 2) have a dead phase angle 
φ between the pulses. The fundamental component of v1 is given by 

)sin()cos1(2)sin()( 11 tVtVtv DC ωφ
π

ω +== . (1)

 
Figure 2. The gate signals and output voltage v1 of the full-bridge inverter. 

The current i1(t) of the transmitter coil, the current i2(t) of the receiver coil, and the input voltage 
v2(t) to the rectifier in Figure 1 can be expressed as 

)sin(11 θω += tIi  (2)

)sin(4)sin()( 22 ϕθω
π

ϕθω ++=++= tVtVtv bat  (3)

)sin(
2

)sin()( 22 ϕθωπϕθω ++=++= tItIti bat , (4)

where θ and φ are phase angles, Vbat is the battery voltage, and Ibat is the averaged charging current 
of the battery. 

The S-S WPT circuit had an equivalent circuit (Figure 3) for the fundamental component, where 
Rin, R1, and R2 are the equivalent series resistances (ESRs) of the full-bridge inverter, primary coil, and 
secondary coil, respectively. Using Equations (3) and (4), the equivalent resistance of the battery Rbat 
can be modeled with an equivalent resistance RL,eq as: 

bat

bat
bateqL I

VRR ⋅=⋅= 22,
88

ππ
. (5)
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Figure 3. Equivalent circuit for the S-S WPT circuit. Rin, R1, and R2 are equivalent series resistances 
of the full-bridge inverter, primary coil, and secondary coil, respectively. 

Then, the Kirchhoff’s voltage law (KVL) gives 
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where Z1 = R1 + jωL1 + 1/(jωC1) and Z2 = R2 + jωL2 + 1/(jωC2). Using Equations (6) and (7), the phase of 
the input impedance Zin (Figure 4a), the voltage conversion ratio Tv (Figure 4b), the amplitude of i1(t), 
the peak current of i1(t) (I1) (Figure 4c), the amplitude of i2(t), and the peak current of i2(t) (I2) (Figure 
4d) are calculated as 
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Figure 4. Electrical characteristics of the S-S WPT circuit for VDC = 50 V, φ = 0, L1 = 202.49 μH, L2 = 202.06 
μH, C1 = 49.97 nF, C2 = 50.09 nF, M12 = 59.18 μH, Rin = 12 mΩ, R1 = 252 mΩ, and R2 = 248 mΩ: (a) phase 
angle of Zin; (b) voltage gain Tv; (c) amplitude of I1; and (d) amplitude of I2. 

2.2. Load Estimation Method Using the Magnitue of Input Impedance 

The proposed circuit uses the simple peak detection circuit (Figure 5) in [20] to measure the peak 
current of the transmitter coil I1 as a DC value. The peak detection circuit is composed of a current 
sensor, an amplifier for the peak detection (A1), an amplifier for the voltage follower (A2), an input 
resistance of peak detector (Ri), a feedback loop resistance (Rf), a feedback loop diode (Df), a 
rectification diode (Do), an output capacitor (Co), and an output resistance (Ro). If the output voltage 
of the current sensor (Vs) is lower than the voltage of Co (Vo), Df remains on, and Do remains off. In 
this operating mode, the output voltage of A2 (Vout) is clamped to Vo, and Co is discharged by Ro. When 
Vo becomes smaller than Vs, Df is turned off and Do is turned on. In this operating mode, Co is charged 
to the new positive peak of Vs, so Vs = Vo = Vout. 

 
Figure 5. The peak detection circuit to measure the peak current of the transmitter coil. 
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To estimate the load conditions, the peak detection circuit measures the peak current I1,o at f = fo 
and I1,a at f = fa, respectively, and uses simple mathematical equations for the input impedance. The 
measurement time of I1,o and I1,a is short, so the load conditions are assumed to remain constant during 
the estimation process. Also, the system parameters of the transmitter side (VDC, φ, L1, C1 and R1) and 
receiver side (L2, C2 and R2) are assumed to be known, and the proposed method predicts M12, RL,eq, 
Ibat, and Vbat. 

At first, the circuit operates at f = fo, and the M12 can be expressed using detected I1,o and Equation 
(8) as 
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where V1,o is the peak voltage of the transmitter coil at f = fo, πφ /)cos1(2,1 += DCo VV from Equation (1), 
and the unknown parameters of Equation (12) are M12 and RL,eq. 

Then, the circuit operates at f = fa, and the square of the absolute value of input impedance 
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where V1,a, I1,a is the peak voltage and current of transmitter coil at f = fa, πφ /)cos1(2,1 += DCa VV  from 
Equation (1). In this equation, the unknown parameters are the same as Equation (12).  

If Equation (12) is applied to Equation (13), the RL,eq can be arranged as 0,
2

, =++ γβα eqLeqL RR , 

where α, β and γ are as follows: 
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This equation has two solutions for RL,eq, and the smaller one is a reasonable value according to 
the calculation result, so estimated load resistance RL,eq,est and estimated equivalent resistance of 
battery Rbat,est can be estimated as 

estbatesteqL RR ,2
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γαββ . (17)

Then, the estimated mutual inductance M12,est can also be derived by applying Equation (17) to 
Equation (12) as: 
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Other important estimated load parameters Ibat,est and Vbat,est at f = fo can be expressed using 
Equations (1)–(7), (17), and (18) as 
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esteqLestbatestbat RIV ,,,

2

, 8
⋅⋅= π . (20)

Finally, the proposed method can predict RL,eq, M12, Ibat, and Vbat, and does not need a high 
sampling frequency to measure AC voltage and current, similar to previous studies [14–19]. 

2.3. Control Method of the S-S WPT Circuit for Battery Charging 

The battery should be charged in CC mode when Vbat ≤ Vbat,cut, and in CV mode when Vbat > Vbat,cut. 
In CV mode, Ibat decreases as Vbat increases, until Ibat reaches the end charging current Iend at which the 
charging operation stops [9-12].  

Tv and I2 in Equations (9) and (11) depend on RL,eq, which varies as the charge state of battery 
varies. When all ESRs are negligibly small, Equation (11) gives I2 at ω = ωo as 

12
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because Z1 = R1 and Z2 = R2 when ω = ωo. This equation indicates that the WPT circuit can be operated 
in CC mode if all ESRs are ignored and ω = ωo. However, ESRs affect the capability of CC regulation 
(Figure 4d), so a separate control method should be introduced to attain CC mode; the proposed WPT 
circuit applies phase shift control of the full-bridge inverter at f = fo, and the φ to maintain the CC 
output is compensated by using the proportional integral (PI) controller, which can be calculated as 
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where Iref is the predetermined charging current reference. If ESRs are very small in CC mode, the 
influence of RL,eq in φ will also be very small. 

To operate the WPT circuit in CV mode, Tv should not depend on RL,eq. If all ESRs are negligible, 
Equation (9) can be approximated as 

 ]/)/1/[(][ ,1112 eqLv RCjLjMjT κωωω ++≈ , (23)

where 122121
2

21
2
12

2 //)/(1)( CLCLCCLLM ++−−= ωωκ . After setting κ = 0, the frequencies fCV1 and 

fCV2 for CV operation are obtained as 121 1/2 kff oCV +⋅= π  and 122 1/2 kff oCV −⋅= π , and Tv at f = 

fCV1 or f = fCV2 is calculated using Equation (23) and 211212 LLkM =  as 12 / LLTv = . However, ESRs 
in CV mode are also difficult to ignore, and if fCV1 and fCV2 deviate too much from fo, the system 
efficiency also drastically decreases [14]. Therefore, the proposed WPT circuit still operates at f = fo in 
CV mode, and the φ to maintain the CV output is compensated by using the PI controller, which can 
be calculated as  
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The influence of RL,eq in CV mode cannot be ignored, even if ESRs are very small. Thus, φ will 
increase as RL,eq increases. 

Finally, the proposed S-S WPT circuit applies the control algorithm (Figure 6) for battery 
charging, and it consists of the following procedures: 

1) Modulate the WPT circuit at f = fo and fa; sense the I1,o and I1,a, respectively. 
2) Using the I1,o and I1,a, estimate Rbat,est[1] = Vbat,est[1] / Ibat,est[1] and M12,est. 
3) If Vbat,est [1] < CVL, begin the control procedure. Otherwise, turn off the S-S WPT circuit. 
4) Set f = fo to operate the WPT circuit in the CC mode. 
5) Using the PI controller, adjust φ[n] such that Ibat,est equals to Iref. 
6) Estimate the Rbat,est[n] = Vbat,est[n] / Ibat,est[n] by using I1,o[n] and (12); Rbat,est[n] is continuously 

updated to follow the charging profile of battery. 
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7) Repeat 5) - 6) until Vbat,est[n] = CVL. 
8) Change the operation of WPT circuit from the CC to CV mode, and maintain f = fo. 
9) Using the PI controller, adjust φ[n] such that Vbat,est = CVL. 

10) Repeat procedure 6 until Ibat,est[n] =Iend. 
11) Turn off the S-S WPT circuit. 

 

Figure 6. A block diagram of the digital controller for the S-S wireless battery charging circuit. 

The controller has a protection function for charging current limit (CCL), CVL, and coil 
alignment of the WPT circuit. When M12,est < M12,limit, the controller terminates the battery-charging 
operation, because the alignment of the coils is inappropriate for battery charging. 

3. Experimental Results 

The experimental S-S WPT circuit for battery charging (Figure 7a,b) was built and tested to prove 
the proposed control method. Two identical coils had an inner diameter of 100 mm and outer 
diameter of 200 mm; L1 = 202.49 μH, L2 = 202.06 μH, and C1 = C2 = 50 nF were chosen for fo = 50 kHz. 
The input voltage VDC was 50 V, and the sampling frequency to sense the output value of the peak 
detector was set as 50 kHz, which was simply synchronized to the fo. The values of circuit parameters 
are given in Table 1. 

 

Figure 7. Photograph of the (a) transmitter coil and (b) experimental S-S WPT circuit. 
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Table 1. Circuit parameters for the experimental circuit. 

Component Value (Model) 
L1 202.49 μH 
L2 202.06 μH 
C1 49.97 nF 
C2 50.09 nF 
Rin 12 mΩ 
R1 252 mΩ 
R2 248 mΩ 

Q1–Q4 FDP0715N15A 

D1–D4 30ETH06 
Controller TMS320F28335 

First, the load estimation was performed using the method in Section 2.2. Rbat and M12 between 
the transmitter and receiver coils were measured and estimated using electrical load (DL1000H; NF, 
Co. Ltd) and a inductance, capacitance and resistance (LCR) meter. The coil alignment was 
modulated on either the separation h in the axial direction of the coil or the misalignment v in the 
radial direction (Figure 8). At h = 6 cm and v = 0 cm, the WPT circuit was operated at fo = 50 kHz and 
fa = 55 kHz to estimate the load condition, and Rbat = 20.11 Ω and M12 = 48.81 μH at φ = 0. The measured 
I1,o = 4.21 A (Figure 9a) and I1,a = 5.08 A (Figure 9b), and the estimated load conditions were Rbat,est = 
20.49 Ω and M12,est = 49.30 μH by using Equations (17) and (18). The errors of estimation results were 
−1.88% and −1.86%, respectively; other estimation results were obtained while varying h, v, and Rbat 
(Table 2, Table 3). Here, h was varied in the range of 5–7 cm at v = 0 cm, v was varied in the range of 
0–6 cm at h = 0 cm, and Rbat was varied in the range of 15.06–25.17 Ω. As a result, the proposed method 
estimated the Rbat and M12 within absolute errors at <3.87% and <3.38%, respectively. These 
experimental results demonstrate the usefulness of the proposed load estimation method. The errors 
of estimation were caused by inductance variation according to the coil alignment conditions and 
measurement error at fo and fa. A detailed error analysis is given in the next section. 

 
Figure 8. Alignment schematic of the two coils from top view. 
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Figure 9. Operation wave forms of the proposed WPT circuit: (a) v1, i1, v2, and i2 at fo = 50 kHz; (b) v1, 
i1, v2, and i2 at fa = 55 kHz. 

Table 2. Estimation results for Rbat. 

h, v (cm) Rbat (Ω) 
Rbat,est (Ω) 

(Error (%)) Rbat (Ω) 
Rbat,est (Ω) 

(Error (%)) Rbat (Ω) 
Rbat,est (Ω) 

(Error (%)) 
5, 0 

15.06 

15.20 (−0.92) 

20.11 

19.61 (2.48) 

25.17 

24.22 (3.77) 
6, 0 15.60 (−3.58) 20.49 (−3.58) 25.31 (−0.55) 
7, 0 15.54 (−3.18) 20.54 (−2.08) 25.35 (−0.71) 
5, 2 15.46 (−2.66) 19.72 (1.90) 24.19 (3.87) 
5, 4 15.45 (−2.58) 20.37 (−1.29) 25.11 (0.23) 
5, 6 15.60 (−3.58) 20.27 (−0.79) 24.84 (1.31) 

Table 3. Estimation results for M12. 

h, v (cm) M12 (μH) 
M12,est (μH) 
@ 15.06 Ω 

(Error (%)) 

M12,est (μH) 
@ 20.11 Ω 

(Error (%)) 

M12,est (μH) 
@ 25.17 Ω 

(Error (%)) 
5, 0 59.18 58.41 (1.30) 58.7 (0.81) 59.03 (0.26) 
6, 0 48.81 49.27 (−0.92) 49.73 (−1.86) 49.76 (−1.92) 
7, 0 40.76 41.12 (−3.18) 41.59 (−2.08) 41.62 (−2.08) 
5, 2 57.28 55.37 (3.38) 55.73 (2.71) 55.85 (2.50) 
5, 4 49.54 49.28 (0.53) 49.68 (−0.26) 49.79 (−0.49) 
5, 6 38.66 39.55 (−2.28) 39.49 (−2.12) 39.44 (−1.99) 

The current and voltage regulation for the battery charging were implemented using the 
controller proposed in Section 2.3. An electrical load was used to emulate the battery pack, which 
was assumed to have 30 V ≤ Vbat ≤ 48 V (corresponding to a pack of 12 serially connected Li-ion battery 
cells). The Rbat of the battery pack was 15 Ω ≤ Rbat ≤ 24 Ω for CC charging at Iref = 2 A and 24 Ω ≤ Rbat ≤ 
240 Ω for CV charging at CVL = 48 V and Iend = 200 mA. The transmitter and receiver coils were located 
at h = 5 cm and v = 0 cm. In procedures 1 and 2, the controller of the WPT circuit used fo = 50 kHz and 
fa = 55 kHz; Rbat,est (1) = 15.51 Ω at Rbat = 15.01 Ω (−3.33% error) and M12,est = 59.78 μH at M12 =59.18 μH 
(−1.01% error). Because Vbat,est (1) = 31.02 V < CVL in procedure 3, the controller began the charging 
control procedures in steps 4–11. 

In the CC mode of procedures 4–7, the waveform (Figure 10) shows that v1 and i1 had the same 
phase because the S-S WPT circuit operated at f = fo, and that φ was compensated to regulate Ibat,est = 
Iref. When the circuit operated at Rbat = 15.01 Ω (Figure 10a), Ibat = 2.07 A (–3.5% error) and Vbat = 31.21 
V. In this CC mode, Vbat increased as Rbat increased because Ibat,est tracked the predetermined Iref = 2 A. 
The waveform of Figure 10b shows that Vbat increased to 46.55 V at Rbat = 22.47 Ω, while Ibat = 2.07 A (–
3.5% error). When procedure 5 was used in the CC mode, the range of regulated Ibat was 2.074–2.079 
A; the tracking absolute error was <3.95% (Figure 12). The power transfer efficiency of the CC mode 
gradually increased as Rbat increased, and the range of it was 88.81–92.05% (Figure 13). After Vbat,est 
reached CVL = 48 V, the charging mode was changed to CV mode in the procedures 8–11. 
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Figure 10. Operation wave forms of the proposed WPT circuit: v1, i1, Vbat, and Ibat in the CC mode (a) 
at Rbat = 15.01 Ω and (b) at Rbat = 22.47 Ω. 

The waveform of CV mode (Figure 11) also shows that v1 and i1 had the same phase because the 
S-S WPT circuit operated at f = fo, and that φ was compensated to regulate Vbat,est = CVL. When the 
circuit operated at Rbat = 54.10 Ω (Figure 11a), Vbat = 47.24 V (1.58% error) and Ibat = 0.88 A. In this CV 
mode, as Rbat increased, Tv increased (Figure 4b); φ should be increased to maintain Vbat. Thus, Ibat 
gradually decreased until Ibat,est = Iend. The waveform of Figure 11b shows that Ibat decreased to 0.2 A at 
Rbat = 244 Ω, while Vbat = 47.92 V (0.16% error). When procedure 9 was used, the range of regulated 
Vbat was 47.09–47.92 V; the tracking absolute error was <1.89% (Figure 12). The power transfer 
efficiency of the CV mode gradually decreased as Rbat increased, and the range was 74.77–92.49% 
(Figure 13). 

 

Figure 11. Operation wave forms of the proposed WPT circuit: v1, i1, Vbat, and Ibat in the CV mode 
(a) at Rbat = 54.10 Ω and (b) at Rbat = 244 Ω. 

 
Figure 12. Measurement of regulated Ibat and Vbat in constant current (CC) and constant voltage (CV) 
modes. 
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Figure 13. Power transfer efficiency of the proposed WPT circuit in CC and CV modes. 

These results show that the proposed load estimation method is suitable for use in battery 
charging, and that the adjustment of φ was crucial to have Ibat follow Iref in CC charging mode and to 
have Vbat follow CVL in CV charging mode. 

4. Error Analysis 

In the proposed estimation method, the errors of estimation results can be generated using the 
deviated inductance (Ldev) according to the coil alignment and measurement error of input impedance 
at fo and fa. Therefore, these errors of the proposed method were analyzed by using MATLAB (R2015a, 
MathWorks, Massachusetts, USA) in this section. 

In this section, the errors of estimation results due to the Ldev (Figure 14a,b) were calculated as  

100]/))([()(Error ,,, ×−= batdevestbatbatdevestbat RLRRR , (25)

100]/))([()(Error 12,1212,,12 ×−= MLMMM devestdevest , (26)

where Rbat,est(Ldev) and M12,est(Ldev) are estimated Rbat and M12 in the Ldev. The measurement errors of input 
impedance (Figure 14c–f) were calculated as 

100]/)[(Error ,,,,, ×−= ainmeasureainainain ZZZZ


, (27)

100]/)[(Error ,,,,, ×−= oinmeasureoinoinoin ZZZZ


, (28)

where measureainZ ,,


 and measureoinZ ,,


 are measured values of ainZ ,


 and oinZ ,


 at f = fa and f = fo by 
using a peak detection circuit in Figure 5. Then, the errors of estimation results due to the ainZ ,Error


 

and oinZ ,Error


 (Figure 14c–f) were calculated as 

100]/))([()(Error ,,,,, ×−= batmeasureainestbatbatfaestbat RZRRR


, (29)

100]/))([()(Error 12,,,1212,,12 ×−= MZMMM measureainestfaest


, (30)

100]/))([()(Error ,,,,, ×−= batmeasureoinestbatbatfoestbat RZRRR


, (31)

100]/))([()(Error 12,,,1212,,12 ×−= MZMMM measureoinestfoest


, (32)

where Rbat,est( measureainZ ,,


) and M12,est( measureainZ ,,


) are Rbat,est and M12,est in the ainZ ,Error


, and Rbat,est(
measureoinZ ,,


) and M12,est( measureoinZ ,,


) are Rbat,est and M12,est in the oinZ ,Error


. 
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Figure 14. Error analyses (a) of Rbat,est with inductance deviation, (b) of M12,est with inductance 
deviation, (c) of Rbat,est with measurement error at fa, (d) of M12,est with measurement error at fa, (e) of 
Rbat,est with measurement error at fo, and (f) of M12,est with measurement error at fo. 

At first, the coil alignment of the proposed estimation method was verified in the rage of h = 5–
7 cm at v = 0 cm and v = 0–6 cm at v = 5 cm. In this misalignment range of coils, the self-inductance of 
L1 and L2 was changed according to the effect of the magnetic field between coils. The variation range 
of L1 = 202.01–203.41 μH, and L2 = 201.50–202.94 μH in M12 = 38.66–59.18 μH. In this error analysis, 
according to the Ldev, the simulation parameters were set as L1 = L2 = 202.71 μH, C1 = C2 = 49.97 nF, Rin 
= 12 mΩ, R1 = 252 mΩ, and R2 = 248 mΩ. Then, the Ldev was equivalently set between L1 and L2 as Ldev 
= L1,dev = L2,dev = 202.02–203.41 μH, Rbat1 = 15 Ω, Rbat2 = 20 Ω, Rbat3 = 25 Ω, M12,max = 59.18 μH, and M12,min = 
38.66 μH. The ainZ ,Error


 and oinZ ,Error


 were set to zero in this analysis, and only Ldev was 

considered. As a result, the Error(Rbat,est,dev) and Error(M12,est,dev) increased as Rbat decreased at M12,max 
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and Rbat increased at M12,min (Figure 14a, b). Also, the Error(Rbat,est,dev) and Error(M12,est,dev) due to the 
variation of Rbat (Rbat1–Rbat3) were more sensitive at M12,min than M12,max.  

Secondly, the proposed estimation method measures the measureainZ ,,


 and measureoinZ ,,


, and the 
ainZ ,Error


 and oinZ ,Error


 have an effect on the accuracy of the estimation. In this error analysis, 

according to the ainZ ,Error


 and oinZ ,Error


, Error(Rbat,est,fa), Error(M12,est,fa), Error(Rbat,est,fo), and 
Error(M12,est,fo) were analyzed under the ±1% variation of ainZ ,Error


 and oinZ ,Error


, and the 

simulation parameters were equivalently set as the error analysis of Equations (25) and (26). The 
Error(Rbat,est,dev) and Error(M12,est,dev) were set to zero in this analysis. In the ainZ ,Error


, the 

Error(Rbat,est,fa) and Error(M12,est,fa) increased as Rbat increased, and were larger at M12,min than M12,max in 
the same Rbat (Figure 14c,d). In the oinZ ,Error


 at M12,max, the Error(Rbat,est,fo) and Error(M12,est,fo) 

increased as Rbat increased. At M12,min, the Error(Rbat,est,fo) increased as Rbat decreased, and Error(M12,est,fo) 
increased as Rbat increased (Figure 14e,f). Overall, the ainZ ,Error


 had more impact on the accuracy 

of proposed estimation method than the oinZ ,Error


. 
In conclusion, the errors of estimation results were <3% in Equations (25), (29), and (31), and 

<1.5% in Equations (26), (30) and (32). Also, Equations (25) and (26) (Figure 14a,b) were more sensitive 
to the variation of Rbat and M12 than Equations (29)–(32) (Figure 14c–f). In the practical applications, 
the proposed controller (Figure 6) includes the protection function to limit the range of coil alignment 
as M12,est < M12,limit, and the auxiliary positioning device can be introduced to minimize the inductance 
deviation. 

5. Conclusion 

This paper presents a wireless battery charging circuit that uses a new load estimation method. 
The proposed method estimates RL, M12, Vbat, and Ibat without any wireless communication by using a 
simple peak detection circuit to sense the peak current of the transmitter coil; it samples this peak 
current as a DC value. After the peak current values are sampled at resonant frequency fo and 
auxiliary frequency fa, the estimation is performed by using the magnitude of the input impedance. 
Thus, this method does not need a high sampling frequency to detect the AC voltage and the current 
of the transmitter coil. When the proposed WPT circuit is operated to charge a battery pack, the circuit 
uses the proposed load estimation method and phase φ control of the full-bridge inverter to regulate 
the output current and voltage. A prototype circuit to charge a 48-V battery pack was tested under 
the various load resistance and coil alignment conditions. Then, the errors of estimation results due 
to the inductance variation and measurement error were analyzed. Finally, all experimental and 
simulation results indicated that the proposed method is well suited to control the WPT battery 
charging circuit efficiently. 
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Nomenclature 

Q1–Q4   Switches of full bridge inverter. 
D1–D4   Diodes of full bridge rectifier. 
L1, L2   Transmitter and receiver coil (H). 
C1, C2   Resonant capacitors of transmitter and receiver coil (F). 
ω, f    Angular switching frequency and switching frequency (rad/s], (Hz). 
ωo, fo    Resonance angular frequency and resonance frequency (rad/s], (Hz). 
fa    auxiliary switching frequency (Hz). 
VDC    DC input voltage of full-bridge inverter (V). 
Vbat, Vbat,cut  Output voltage (battery voltage) and predetermined limit voltage of battery (V). 
Ibat    Output current (battery charging current) (A). 
ηe    Power transfer efficiency (%). 
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k12, M12   Coupling coefficient and mutual inductance (H). 
M12,limit   Limitation of M12 in charging controller for proposed circuit (H). 
fcc, fcv    Switching frequency for constant current and voltage (Hz). 
RL    Load resistance (Ω). 
v1(t), i1(t)   Voltage and current of transmitter coil (V), (A). 

1V


, 1I


   Voltage and current vector of transmitter coil. 
V1, I1    Amplitude of 1V


 and 1I


 (V), (A). 

v2(t), i2(t)   Voltage and current of receiver coil (V), (A). 
2V


, 2I


   Voltage and current vector of receiver coil. 
V2, I2    Amplitude of v2(t) and i2(t) (V), (A). 
φ    Switching phase difference between lags of full-bridge inverter (rad). 
θ    Phase difference between v1(t) and i1(t) (rad). 
ϕ    Phase difference between i1(t) and v2(t), i2(t) (rad). 
Rin, R1, R2   Equivalent series resistance of full-bridge inverter, primary and secondary coil (Ω). 
Rbat, RL,eq   Resistance of battery and equivalent resistance of Rbat (Ω). 
Rbat,est   Estimated Rbat (Ω). 
inZ


    Input impedance Vector. 
Z1, Z2   Impedance of primary and secondary coil (Ω). 
Tv    Voltage conversion ratio of V2 / V1. 
A1, A2   Amplifier for peak detection and voltage follower of peak detection circuit. 
Ri, Rf   Input resistance of A1 and feedback loop resistance of peak detection circuit (Ω). 
Df, Do   Feedback loop diode and rectification diode of peak detection circuit. 
Co, Ro   Output capacitor and resistance of peak detection circuit (F), (Ω). 
Vs, Vo   Output voltage of current sensor and voltage of Co (V). 
Vout    Output voltage of A2 (V). 
I1,o, I1,a   Peak current of transmitter coil at f = fo and f = fa (A). 
V1,o, V1,a   Peak voltage of transmitter coil at f = fo and f = fa (V). 

oinZ ,


, ainZ ,


  Magnitude of input impedance vector at f = fo and f = fa. 
RL,eq,est, M12,est  Estimated RL and M12 (Ω), (H). 
Ibat,est, Vbat,est   Estimated Ibat and Vbat (A), (V). 
Iend    End charging current (A). 
Iref    Charging current reference (A). 
fCV1, fCV2   f for CV operation (Hz). 
h, v    Coil alignment change in axial and radial direction of coil (cm). 
Ldev    Deviated inductance according to alignment of coil (H). 

measureainZ ,,


  Measured value of ainZ ,


 at f = fa. 
measureoinZ ,,


  Measured value of oinZ ,


 at f = fo. 

Rbat,est,dev   Estimated Rbat in Ldev (Ω). 
Rbat,est,fa, Rbat,est,fo  Estimated Rbat by using measureainZ ,,


 and measureoinZ ,,


 (Ω). 

M12,est,dev   Estimated M12 in Ldev (H). 
M12,est,fa, M12,est,fo  Estimated M12 by using measureainZ ,,


 and measureoinZ ,,


 (H). 
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