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Abstract: A mathematical model based on the integral method is developed to solve the problem of
conduction-controlled solid–liquid phase change in annular geometries with temperature gradients
in both phases. The inner and outer boundaries of the annulus were subject to convective, constant
temperature or adiabatic boundary conditions. The developed model was validated by comparison
with control volume-based computational results using the temperature-transforming phase change
model, and an excellent agreement was achieved. The model was used to conduct parametric studies
on the effect of annuli geometry, thermophysical properties of the phase change materials (PCM), and
thermal boundary conditions on the dynamics of phase change. For an initially liquid PCM, it was
found that increasing the radii ratio increased the total solidification time. Also, increasing the Biot
number at the cooled (heated) boundary and Stefan number of the solid (liquid) PCM, decreased
(increased) the solidification time and resulted in a greater (smaller) solid volume fraction at steady
state. The application of the developed method was demonstrated by design and analysis of a
PCM–air heat exchanger for HVAC systems. The model can also be easily employed for design and
optimization of annular PCM systems for all associated applications in a fraction of time needed for
computational simulations.
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1. Introduction

Phase change materials (PCM) can be found in a variety of applications, such as thermal insulation
of building structures, cooling of electronic devices, waste heat recovery, energy storage, solar cooking
and spacecraft thermal systems. The heat transfer associated with the solid–liquid phase change
is difficult to analyze due to its transient nature and presence of moving phase boundary. In one
classification, the solid–liquid phase change problems can be divided into two categories, namely
the one-region and two-region problems [1]. In one-region problems, one of the phases remains at a
constant temperature equal to the phase change temperature throughout the heat transfer process,
whereas in two-region problem’s temperature gradients are established in both phases. The liquid
and solid states of the PCM usually have different thermophysical properties, which adds to the
difficulty of the solution procedure. A variety of solution methodologies have been developed for
solid–liquid phase change problems. Analytical (exact) solutions have been studied extensively over
several decades, but such methods are only available for certain moving boundary problems with
simple geometries and initial and boundary conditions. Examples include one-region phase change in
semi-infinite domain under constant temperature and constant heat flux boundary conditions [2,3].
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Practical melting and solidification problems with greater levels of complexity should be solved
using either approximate analytical methods or fully numerical techniques. Several approximate
solution techniques have been developed including perturbation methods, heat balance integral
technique, variational methods and quasi-stationary approximation. Rathjen and Jiji [4] presented an
analytical solution to the two-dimensional solidification of a liquid filling the quarter space subject to a
constant wall temperature. The solution was obtained by treating the heat of solidification as a moving
heat source. A nonlinear, singular and integro-differential equation for the solid–liquid interface
was derived and used to obtain the interface position. Jiji and Weinbaum [5] presented perturbation
solutions for the problem of inward solidification in an annulus at an initial temperature different form
the melting temperature. Kumar et al. [6] solved the outward radial melting of PCM contained in a
spherical shell using variational, integral and quasi-steady methods. The PCM was initially at melting
temperature and the inner surface was exposed to constant temperature boundary condition. Lamberg
and Siren [7] presented a simplified analytical model to solve the melting process with a constant
imposed end-wall temperature in a semi-infinite PCM storage. Jiji and Gaye [8] used a quasi-steady state
approximation to examine the effect of volumetric heat generation in one-dimensional solidification
and melting of a slab exposed to constant temperature boundary conditions. The transient term in the
energy equation was neglected.

In a related study, Kalaiselvam et al. [9] studied the solidification and melting process of PCM
inside cylindrical enclosures. The PCM was initially above melting temperature and exposed to
constant temperature boundary conditions. Analytical solutions were obtained to find the interface
locations at various time steps. Srivastava and Sinha [10] used the heat balance integral method
to predict the interface location and temperature variation of PCM for melting in cylindrical and
spherical cavity. The PCM was initially at fusion temperature and subject to constant temperature
boundary condition on one wall and adiabatic boundary condition on the other wall. Mosaffa et al. [11]
developed an approximate analytical model for the solidification process of PCM in a shell and tube
finned thermal storage considering sells of circular and rectangular cross sections. Heat transfer fluid
flowed in the inner tube and the outer storage surface was thermally insulated and the PCM was
initially at melting point. Bechiri and Mansouri [12] analytically studied the volumetric heat generation
effects during melting and solidification of nano-enhanced PCM in a horizontal cylindrical container
subject to convection heat transfer on the outer boundary using the variables separation method and
exponential integral function.

The integral method, proposed by Goodman [13], although approximate, provides an adequate
accuracy for engineering purposes and simplifies the problem from one requiring the solution of partial
differential equations to one requiring the solution of ordinary differential equations. Poots [14] used
two approximate integral methods, the Karman–Pohlhausen method and Tani method, to solve the
inward solidification of a uniform prism filled with liquid initially at melting temperature subject to
constant temperature boundary conditions. Results were compared with data previously obtained
from the relaxation method and showed good agreement for relatively large depth of solidification.
Zhang and Faghri [15] studied the melting of PCM in an annular space in a thermal energy storage
system using the integral method. Thermal energy was transferred to the PCM from a heat transfer
fluid flowing in the inner cylinder. The PCM was initially at melting temperature and outer surface
of the storage unit was thermally insulated. Siahpush and Crepeau [16] presented a solution for a
one-dimensional phase change problem using the integral method for a semi-infinite domain with
internal heat generation. The analysis assumed a quadratic temperature profile and a constant
temperature boundary condition on the exposed surface.

Review of the literature shows a great amount of effort devoted to solving the solid–liquid phase
change problems using analytical and semi-analytical methods. However, to the best of our knowledge,
there are no analytical or semi-analytical methods for phase change in annular geometries involving
heat transfer through both phases (two-region problem), under general boundary conditions. This
effort presents an integral method to analyze the time dependent two-region conduction-controlled
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melting and solidification of PCM in annular geometries subject to constant temperature or convective
boundary conditions. The model provides accurate predictions of the transient evolution of the phase
front location, as well as the temperature profiles within both solid and liquid phases. Compared with
other analytical methods, the presented model in this work is simple and flexible to adapt to various
types of boundary conditions. Furthermore, its flexibility and fast response time allows for simple
design and optimization of PCM heat exchangers.

2. Mathematical Model

The geometry of the problem considered in this work is shown in Figure 1. The PCM was
contained in an annular region and was assumed to be initially liquid at melting temperature Tm.
The inner and outer radii of the annulus were ri and ro, respectively. At time t = 0, the inner boundary
at r = ri was exposed to convective heating by a hot fluid at temperature Th (above the melting point)
and a heat transfer coefficient hi, while the outer boundary was subjected to convective cooling by
a cold fluid at Tc (below the melting point) and a heat transfer coefficient ho. The thermophysical
properties of the PCM were assumed to be constant and different for the solid and liquid phases.
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Figure 1. Cross-sectional view of the annular geometry subject to convective heat and cooling.

In order to overcome the relatively small thermal conductivity of most of the common phase
change materials, the PCM was assumed to be embedded within a porous solid matrix, such as metal
foams and expanded graphite, for enhanced heat transfer. Such high conductivity porous solid matrices
have attracted widespread interest in PCM applications due to their significant impact on increasing the
heat transfer rates [17,18]. It has been well established that the presence of the solid foams effectively
suppresses the natural convection within the melt and leads to a conduction-controlled melting [19–21].
To this end, the present model considers conduction-controlled melting. Based on these assumptions,
the energy equations for the solid and liquid regions of the PCM can be written as [1]:

1
αliq

∂Tliq

∂t
=

1
r
∂
∂r

(r
∂Tliq

∂r
) ri < r < s (1)

1
αsol

∂Tsol
∂t

=
1
r
∂
∂r

(r
∂Tsol
∂r

) s < r < ro (2)

where s shows the location of the solid–liquid interface measured from the center of the annulus, and
subscripts liq and sol denote the liquid and solid phases, respectively. The inner and outer convective
boundary conditions are:

−kliq
∂Tliq

∂r
= hi(Th − Tliq) r = ri (3)

−ksol
∂Tsol
∂r

= ho(Tsol − Tc) r = ro (4)

The energy balance and temperature continuity at the interface are:

ρliqhsl
ds
dt

= ksol
∂Tsol
∂r
− kliq

∂Tliq

∂r
r = s (5)
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Tliq(r, t) = Tsol(r, t) = Tm r = s (6)

where hsl and Tm are the PCM heat of fusion and the fusion temperature, respectively. To apply the
integral solution, the following dimensionless variables are defined:

θliq =
Tliq − Tm

Th − Tm
θsol =

Tsol − Tm

Tm − Tc
R =

r
ri

Ro =
ro
ri

S =
s
ri

τ =
αliqt

r2
i

Steliq =
cliq(Th − Tm)

hsl
Stesol =

csol(Tm − Tc)

hsl
Biliq =

hiri
kliq

Bisol =
horiRo

ksol

Nk =
ksol
kliq

Nc =
csol
cliq

Nα =
αsol
αliq

where θ, R, S, and τ are the dimensionless variables for temperature, radial coordinate, phase front
location, and time, respectively, Ste denotes the Stefan number and Bi indicates the Biot number. Also,
c, k, α and h represent the specific heat, thermal conductivity, thermal diffusivity, and heat transfer
coefficient, respectively. The dimensionless temperatures are defined in such a way that 0 ≤ θliq ≤ 1
and −1 ≤ θsol ≤ 0, and both are zero at the phase interface, where the temperature is equal to Tm. Using
the above dimensionless variables, Equations (1) to (6) can be nondimensionalized as following:

∂θliq

∂τ
=

1
R
∂
∂R

(R
∂θliq

∂R
) 1 < R < S (7)

1
Nα

∂θsol
∂τ

=
1
R
∂
∂R

(R
∂θsol
∂R

) S < R < RO (8)

∂θliq

∂R
= Biliq(θliq − 1) R = 1 (9)

∂θsol
∂R

= −Bisol(θsol + 1)
1

Ro
R = Ro (10)

dS
dτ

=
Nk
Nc

Stesol
∂θsol
∂R
− Steliq

∂θliq

∂R
R = S (11)

θliq(R, τ) = θsol(R, τ) = 0 R = S (12)

Logarithmic temperature profiles have been shown to satisfy the governing equations and
boundary conditions associated with phase change in annular geometries [15]. The following
logarithmic dimensionless temperature distributions for the solid and liquid phases are employed:

θliq = A + B(
ln R
ln S

) − (A + B)(
ln R
ln S

)
2

(13)

θsol = −C−D
ln (R/Ro)

ln (S/Ro)
+ (C + D)[

ln (R/Ro)

ln (S/Ro)
]
2

(14)

where A, B, C and D are the four time-dependent variables to be determined by satisfying
Equations (7)–(12).

It is noted that when the interface velocity is very large, such as very early stage of phase change
adjacent to a wall with a large heat transfer rate, the temperature profiles of Equations (13) and (14) fail
to capture the temperature distribution due to the excessively sharp slope close to the interface. It was
found that for such conditions, first degree logarithmic functions of the form θliq = C1 + C2(ln R/ ln S)
and θsol = C3 + C4 ln (R/Ro) ln (S/Ro)

−1 were able to capture the highly transient large heat fluxes.
The constants C1 to C4 were easily determined by application of the boundary and interfacial conditions.
However, for all other times, the temperature profiles of Equations (13) and (14) provided significantly
more accurate results. For the cases that required the first degree logarithmic temperature profiles
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(i.e., two-region phase change with constant temperature wall), it was found that the total time period
where these functions were needed was about 1% of the total duration of the phase change.

By differentiating Equations (13) and (14) and applying boundary conditions (9) to (12),
the following equations were obtained:

∂θliq

∂R
=

B ln S− 2(A + B) ln R

R(ln S)2 (15)

∂2θliq

∂R2 = −
B ln S + 2(A + B)(1− ln R)

R2(ln S)2 (16)

∂θliq

∂R
|R=1 =

B
ln S

(17)

∂θliq

∂R
|R=S = −

2A + B
S ln S

(18)

∂2θliq

∂R2 |R=S =
(B + 2A) ln S− 2(A + B)

S2(ln S)2 (19)

∂θsol
∂R

=
−D ln (S/Ro) + 2(C + D) ln (R/Ro)

R[ln (S/Ro)]
2 (20)

∂2θsol

∂R2 =
D ln (S/Ro) + 2(C + D)[1− ln (R/Ro)]

R2[ln (S/Ro)]
2 (21)

∂θsol
∂R
|R=Ro = −

D
Ro ln (S/Ro)

(22)

∂θsol
∂R
|R=S =

2C + D
S ln (S/Ro)

(23)

∂2θsol

∂R2 |R=S =
−(2C + D) ln (S/Ro) + 2(C + D)

S2[ln (S/Ro)]
2 (24)

Substituting Equation (17) into Equation (9), and Equation (22) into Equation (10), a relation
between A and B, as well as between C and D could be obtained as follows:

B = (A− 1)Biliq ln S (25)

D = (1−C)Bisol ln (S/Ro) (26)

Differentiating θliq in Equation (12) yields:

dθliq =
∂θliq

∂R
dR +

∂θliq

∂τ
dτ = 0, R = S (27)

which can be rearranged to get:

∂θliq

∂R
dS
dτ

+
∂θliq

∂τ
= 0, R = S (28)

Combining Equations (7) and (28) yields:

∂θliq

∂R
dS
dτ

+
1
R

∂θliq

∂R
+
∂2θliq

∂R2 = 0, R = S (29)
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Substituting Equations (11), (18), and (19) into Equation (29), a quadratic function of A and B
could be obtained:

Steliq(2A + B)2 + (
Nk
Nc

)
ln S

ln (S/Ro)
Stesol(2A + B)(2C + D) + 2(A + B) = 0 (30)

Similar expressions as Equations (27) to (29) can be derived for θsol, resulting in a quadratic
function of C and D:

NkNcStesol(2C + D)2 +
ln (S/Ro)

ln S
Steliq(2A + B)(2C + D) + 2Nα(C + D) = 0 (31)

Equations (25), (26), (30) and (31) represent a system of four coupled nonlinear equations with
four unknown variables A, B, C and D. This system of equations is solved numerically. The solution
procedure is described in Section 2.2.

2.1. Special Case of Constant Temperature Boundaries

Constant temperature boundary conditions can be viewed as convective boundary with infinite
heat transfer coefficient (Bi→∞). Considering Equations (25) and (26) in the limiting case of Bi→∞,
the only way for B and D to have finite values is that A and C are equal to 1. Thus, the dimensionless
temperature distributions in the solid and liquid phases under the constant temperature boundary
conditions are:

θliq = 1 + B(
ln R
ln S

) − (1 + B)(
ln R
ln S

)
2

(32)

θsol = −1−D
ln (R/Ro)

ln (S/Ro)
+ (1 + D)[

ln (R/Ro)

ln (S/Ro)
]
2

(33)

The constants A = 1 and C = 1 can then be substituted into Equations (30) and (31) to convert
them into a system of two equations and two unknowns. For a given S, this system can be solved for B
and D to obtain the temperature distributions and phase front displacement rate.

2.2. Solution Procedure

This section describes the step-by-step procedure to solve for the evolution of the phase front
location, S, and time-dependent temperature profiles across the solid and liquid PCM regions.
The required input includes seven nondimensional variables, namely Biliq, Bisol, Steliq, Stesol, Ro, Nk,
Nc, and Nα, as well as the initial location of the phase interface, S0. The solution starts with an
initial guessed value for A. Using the initial values for S and A, B is found from Equation (25), and
Equations (30) and (31) are converted into a system of two algebraic equations with two unknowns
that can be solved to obtain C and D. Replacing the calculated value of C in Equation (26) results in a
second value for D. A residual is defined as the difference between the two values of D obtained from
Equation (26) and from the solution of Equations (30) and (31). If the absolute value of the residual is
greater than a selected convergence criterion, the initial value of A is varied and the above procedure is
repeated until the residual approaches zero within an acceptable range (<10−6 in the present work).
It is noted that the changes to A are made in a systematic manner based upon the variations of the
residual in the past iterations according to the bisection method [22].

Once A, B, C, and D corresponding to the provided interface location S are determined, they can be
substituted into Equations (18) and (23) and replaced into Equation (11) to determine the displacement
rate of the interface:

dS
dτ

=
Nk
Nc

Stesol
2C + D

S ln (S/Ro)
+ Steliq

2A + B
S ln S

(34)
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Next, the phase front location is advanced using the velocity calculated from the Equation (34);
S(τ + ∆τ) = S(τ) + dS/dτ (∆τ), where ∆τ is the time step to march in time. In the new time step, S(τ) is
replaced by S(τ + ∆τ) and the above solution procedure is repeated. The marching in time continues
until the steady-state is reached or the phase change is completed. For the results presented in this
work, a time step size of ∆τ = 0.001 was found to yield results that were independent of the time
step size.

3. Validation

The integral solution was validated by comparison with computational results obtained from a
control volume code based on the temperature transforming method [1]. Validation studies of the code
against experimental results has been reported in prior publications by one of the authors [23,24]. Due
to the conduction-controlled phase change, the momentum and pressure correction equations where
deactivated in the computational model and only the energy equation was solved:

ρ
∂(cT)
∂t

=
1
r
∂
∂r

(kr
∂T
∂r

) − ρ
∂se
∂t

(35)

The specific heat, c, and the source term, se, appearing in the above equation are defined as a
function of temperature:

c(T) =


csol, T < Tm − δT

(
csol + cliq

2
) +

hsl
2δT

, Tm − δT < T < Tm + δT

cliq, T > Tm + δT

(36)

se(T) =


csolδT, T < Tm − δT

(
csol + cliq

2
) δT +

hsl
2

, Tm − δT < T < Tm + δT

cliqδT, T > Tm + δT

(37)

where δT is a small temperature defining the mushy zone. For the results presented here, a δT of 0.01 ◦C
was employed. The above equations were solved using an in-house finite volume computer code
implemented in FORTRAN. A detailed study was performed to establish the grid and time step size
independency of the computational results. For this study, the computational model was employed
to determine the temporal evolution of the solid volume fraction during freezing process of a PCM
in an annulus with Ro = 4. The solid and liquid Stefan numbers were set to 0.2 and 0.3, respectively.
Before starting the freezing process, steady-state temperature profile was established in fully melted
PCM by setting the temperature at the outer boundary equal to the melting temperature (θ = 0) and
subjecting the inner boundary to convective heating with Bi = 4. The freezing process was triggered by
changing the outer boundary temperature to θsol = −1. In each time step, the solution was considered
converged when the residual of the energy equation decreased to less than 10−9. Figure 2a,b show the
variations of the solid volume fraction with time for various grid sizes and time steps, respectively.
In these figures, a zoomed-in inset is included to show the effect of the studied variable in further
detail. From the results, a grid size of 100 cells in radial direction and a time step size of 10 s were
found to provide results that were independent of the computational grid and time step size.
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Figure 2. Study of the effect of (a) grid size in radial direction, and (b) the time step size on the phase
change materials’ solid volume fraction during freezing process.

For the validation studies of the integral method, the PCM properties and the boundary conditions
in the numerical model were set to match the nondimensional parameters used in the integral solution.
After the simulations were completed, the numerical results were converted to nondimensional form
for comparison with the results from the integral method. Comparisons were made for 5 combinations
of boundary conditions shown in Table 1. In case (a), the inner and outer boundaries were subject to
constant temperatures above and below the melting temperature, respectively. In case (b), the inner
boundary was convectively heated and the outer boundary was at a constant temperature smaller
than the melting temperature. For the third case (c), the inner boundary was adiabatic (Bi = 0) and the
outer boundary was at constant temperature below the melting temperature. In case (d), the inner
and outer boundaries were subject to convective heating and cooling, respectively. Finally, in case (e),
the inner boundary was adiabatic and the outer boundary was convectively cooled. The dimensionless
outer radius Ro was kept constant at 4 and the Stefan number of the solid and liquid phases were set
to 0.2 and 0.3, respectively. The initial condition for all the cases was fully melted PCM. The initial
temperature distribution was the steady-state temperature profile obtained by applying an inner
boundary condition from Table 1 and an outer boundary temperature of θ = 0 (for cases (c) and (e),
the initial condition reduces to liquid PCM at θ = 0).

Table 1. Boundary conditions for validation cases.

Case Inner Boundary Condition Outer Boundary Condition

(a) constant temperature, Bi→∞ constant temperature, Bi→∞
(b) convection, Bi = 4 constant temperature, Bi→∞
(c) adiabatic, Bi = 0 constant temperature, Bi→∞
(d) convection, Bi = 4 convection, Bi = 4
(e) adiabatic, Bi = 0 convection, Bi = 4

The results of the solid phase volume fraction φ calculated by integral and numerical methods
are shown in Figure 3. In this figure, the symbols represent the results from the integral method and
the numerical results are represented by lines. For all cases, an excellent agreement was achieved
between the results obtained from the integral and numerical methods with a discrepancy of less than
1%. The simulations were carried out on a PC with Intel Core i5 processor and 8 GB of RAM. For all the
five cases, the solution time for the integral model was less than 5 s, whereas the solution time for the
finite volume model varied from about 30 s for case (c) to about 120 s for case (d), showing a substantial
reduction in computational cost. The reduction in computational time will be more profound for
systems involving multiple PCM units. For example, the case study presented in Section 5 includes
30 rows of convectively cooled PCM units that must be analyzed consecutively. The integral model
solved the benchmark problem presented in Section 5 in less than 2 min. A finite volume model would
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have taken more than 1 h to solve the same problem. The time saving offered by the integral model
becomes particularly advantageous for optimization and parametric studies of latent heat thermal
energy storage systems, where a large number of design conditions must be explored.Energies 2019, 12, x FOR PEER REVIEW 9 of 20 
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4. Results and Discussion

Parametric studies were carried out to investigate the effects of the five important dimensionless
design and operational parameters, namely the annuli radius ratio Ro, Biot numbers at the heated and
cooled boundaries, and Stefan numbers of the solid and liquid phases, on the heat transfer behavior
of the PCM. The results were compared with a base case in which the radii ratio was set to Ro = 4,
the inner and outer boundaries were subject to convective heating and cooling, respectively, with
Bi = 4, and the Stefan number of 0.3 was applied to both solid and liquid phases. In each of the five
parametric studies, only one parameter was varied while the other four remained unchanged. For all
the cases, Nk, Nc, and Nα were equal to 1.

4.1. Effect of Dimensionless Radius Ro

To investigate the effect of the radii ratio, the solidification of initially melted PCM in annuli with
three values of Ro of 2, 4, and 8 was studied. All other parameters including the solid and liquid Stefan
numbers and Biot numbers at the heated and cooled walls were the same as the base case. Table 2
summarizes the operating and boundary conditions for the three cases. Figure 4 shows the solid
volume fraction development with time for the three cases. It can be observed that the annular space
with the greatest radii ratio took the longest time to complete solidification. A four times increase in
the radius ratio from Ro = 2 to Ro = 8 resulted in about 13 times increase in the dimensionless times for
the phase change to reach steady state (τ ≈ 15 for Ro = 2 and τ ≈ 200 for Ro = 8). The dimensionless
temperature distributions at steady state are shown in Figure 5. The liquid and solid regions are
represented by solid and dashed lines, respectively. It can be seen that the temperature at the inner
(outer) boundary was closer to 1 (-1) for greater radii ratios. From Equations (9) and (10), the smaller
temperature difference at the boundaries corresponds to smaller temperature slopes at the boundaries
that is evident in Figure 5. Considering the smaller temperature gradients at the inner boundary
(R = 1) for greater radii ratios, and noting the equality of the input and output heat transfer rates at
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steady state, it can be inferred from Figure 5 that the steady state heat transfer rate through the PCM
decreased when the radii ratio increased.

Table 2. Parametric study on the effect of radii ratio on phase change in annulus.

Parameters Base Case
Variations

(v1) (v2)

Ro 4 2 8
Bisol 4 4 4
Biliq 4 4 4
Stesol 0.3 0.3 0.3
Steliq 0.3 0.3 0.3

Energies 2019, 12, x FOR PEER REVIEW 10 of 20 

Energies 2019, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/energies 

Ro 4 2 8 𝐵𝑖௦௢௟ 4 4 4 𝐵𝑖௟௜௤ 4 4 4 𝑆𝑡𝑒௦௢௟ 0.3 0.3 0.3 𝑆𝑡𝑒௟௜௤ 0.3 0.3 0.3 

 
Figure 4. Solid volume fraction evolution with time for various annuli with various ratios of outer rad. 

 
Figure 5. Nondimensional temperature distribution of the solid and liquid phases at steady state for 
various ratios of outer to inner radius to inner radius. 

4.2. Effect of Biot Number  

This section investigates the effect of Biot number on the phase change behavior of the PCM. 
Table 3 lists the details of the four cases where Biot numbers were changed and compared with the 
base case. Cases (v1) and (v2) are the parametric studies of the Biot number at the outer boundary 
where PCM is cooled, 𝐵𝑖௦௢௟. In case (v1), 𝐵𝑖௦௢௟ is set to 2, half of that in the base case, and in case 
(v2), 𝐵𝑖௦௢௟ is set to 8, double that in the base case. In cases (v3) and (v4), the Biot number at the inner 
boundary adjacent to liquid PCM, 𝐵𝑖௟௜௤, is varied to 2 and 8 while 𝐵𝑖௦௢௟ remains unchanged.  

Table 3. Parametric study on the effect of Biot number on the phase change in annulus. 

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

ϕ

τ

Ro=2
Ro=4 base case
Ro=8

Ro = 2
Ro = 4 (base case)
Ro = 8

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

0 2 4 6 8 10

θ

R

Ro = 8

Ro = 4 (base case)

Ro = 2

Figure 4. Solid volume fraction evolution with time for various annuli with various ratios of outer rad.

Energies 2019, 12, x FOR PEER REVIEW 10 of 20 

Energies 2019, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/energies 

Ro 4 2 8 𝐵𝑖௦௢௟ 4 4 4 𝐵𝑖௟௜௤ 4 4 4 𝑆𝑡𝑒௦௢௟ 0.3 0.3 0.3 𝑆𝑡𝑒௟௜௤ 0.3 0.3 0.3 

 
Figure 4. Solid volume fraction evolution with time for various annuli with various ratios of outer rad. 

 
Figure 5. Nondimensional temperature distribution of the solid and liquid phases at steady state for 
various ratios of outer to inner radius to inner radius. 

4.2. Effect of Biot Number  

This section investigates the effect of Biot number on the phase change behavior of the PCM. 
Table 3 lists the details of the four cases where Biot numbers were changed and compared with the 
base case. Cases (v1) and (v2) are the parametric studies of the Biot number at the outer boundary 
where PCM is cooled, 𝐵𝑖௦௢௟. In case (v1), 𝐵𝑖௦௢௟ is set to 2, half of that in the base case, and in case 
(v2), 𝐵𝑖௦௢௟ is set to 8, double that in the base case. In cases (v3) and (v4), the Biot number at the inner 
boundary adjacent to liquid PCM, 𝐵𝑖௟௜௤, is varied to 2 and 8 while 𝐵𝑖௦௢௟ remains unchanged.  

Table 3. Parametric study on the effect of Biot number on the phase change in annulus. 

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

ϕ

τ

Ro=2
Ro=4 base case
Ro=8

Ro = 2
Ro = 4 (base case)
Ro = 8

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

0 2 4 6 8 10

θ

R

Ro = 8

Ro = 4 (base case)

Ro = 2

Figure 5. Nondimensional temperature distribution of the solid and liquid phases at steady state for
various ratios of outer to inner radius to inner radius.

4.2. Effect of Biot Number

This section investigates the effect of Biot number on the phase change behavior of the PCM.
Table 3 lists the details of the four cases where Biot numbers were changed and compared with the base
case. Cases (v1) and (v2) are the parametric studies of the Biot number at the outer boundary where
PCM is cooled, Bisol. In case (v1), Bisol is set to 2, half of that in the base case, and in case (v2), Bisol is
set to 8, double that in the base case. In cases (v3) and (v4), the Biot number at the inner boundary
adjacent to liquid PCM, Biliq, is varied to 2 and 8 while Bisol remains unchanged.
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Table 3. Parametric study on the effect of Biot number on the phase change in annulus.

Parameters Base Case
Variations

(v1) (v2) (v3) (v4)

Ro 4 4 4 4 4
Bisol 4 2 8 4 4
Biliq 4 4 4 2 8
Stesol 0.3 0.3 0.3 0.3 0.3
Steliq 0.3 0.3 0.3 0.3 0.3

Figure 6 shows the solid volume fraction variations with time for various Bisol and Biliq values.
As shown in Figure 6a, the dimensionless time for the phase change to reach steady state was about
100, 60 and 40 when Bisol was 2, 4 and 8, respectively. As expected, increasing the Biot number at the
cooling boundary decreased the total solidification time and resulted in a greater solid volume fraction
at steady state. Figure 6b shows the evolution of the solid volume fraction with time for Biliq equal to
2, 4 and 8 at constant Bisol = 4. The total solidification time was about 60, 50 and 40 for Biliq of 2, 4
and 8, respectively. The greater Biliq values decreased the total solid volume fraction at steady state
due to higher heat transfer rates to the interface from the liquid side. Also, due to the improved heat
transfer rates from the liquid side, steady-state was reached in a slightly shorter time. Figure 7 shows
the effect of Biot number on the dimensionless temperature profiles at steady state. It is evident in this
figure that when Bisol (Biliq) was increased, the outer (inner) surface temperature decreased (increased),
leading to a sharper temperature gradient and shorter time to reach steady state.
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Figure 6. Overall solid volume fraction variations with time for (a) varying Bisol and constant Biliq, and
(b) varying Biliq and constant Bisol.
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4.3. Effect of Stefan Number

In this section, the effect of Stefan number on the PCM phase change behavior is studied. Table 4
lists the details of the parametric study. In cases (v1) and (v2), the Stefan number of the solid phase,
Stesol, was varied to 0.1 and 0.5 and compared with the base case with Stesol = 0.3. Cases (v3) and (v4)
are related to liquid Stefan numbers, Steliq, of 0.1, 0.3 (base case) and 0.5. Figure 8 shows the solid
volume fraction development from parametric study of Stesol and Steliq. As shown in Figure 8a, the total
dimensionless solidification time was about 100, 60 and 30 for Stesol of 0.1, 0.3 and 0.5, respectively.
In Figure 8b, the total solidification time was about 30, 50, and 70 for Steliq of 0.1, 0.3 and 0.5, respectively.
Figure 8 shows that increasing Stesol and/or decreasing Steliq increased the solid volume fraction at
steady state. When the material properties are constant, the increase in Stefan number can be viewed
as greater temperature difference between the heating or cooling source and the melting temperature.
Thus, greater Stesol (Steliq) corresponds to greater driving temperature difference for solidification
(melting), which in turn led to greater (smaller) solid volume fraction at steady state. Moreover, when
Stesol was increased (Steliq was decreased), the greater solid volume fractions at steady-state were also
reached in a shorter time.
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Table 4. Parametric study on the effect of Stefan number on phase change in annulus.

Parameters Base Case
Variations

(v1) (v2) (v3) (v4)

Ro 4 4 4 4 4
Bisol 4 4 4 4 4
Biliq 4 4 4 4 4
Stesol 0.3 0.1 0.5 0.3 0.3
Steliq 0.3 0.3 0.3 0.1 0.5

Figure 9 shows the dimensionless temperature distribution from parametric study of Stesol and
Steliq. It is evident that increasing Stesol and/or decreasing Steliq led to smaller surface temperatures.
The steady state dimensionless temperature profiles in Figure 9 have different slopes adjacent to the
interface in the solid and liquid regions. This is because of the nondimensionality. The actual solid and
liquid steady-state temperature profiles have the same exact slope at the interface considering similar
thermal conductivities and steady-state conditions (see Equation (5) with ds/dt set to 0).
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5. Application

The application of the developed integral method is demonstrated by design and analysis of a
sample solar PCM–air heat exchanger. The solar PCM–air heat exchanger can be incorporated into
an air handler unit to partially cover the heating needs for supplying warm air to a building space
in winter nights using the solar thermal energy stored during the daytime. The heat exchanger is
comprised of a series of concentric pipes arranged in a staggered tube bundle (Figure 10a). The annular
space between the inner and outer pipes is filled with a PCM. The PCM is melted during the day
by warm water flowing through the inner pipes. The warm water can be supplied by a simple flat
plate solar water heater. During the night, cold fresh air from outside flows over the outer pipes and
preheats by absorbing heat from the solidifying PCM.
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Figure 10. (a) Configuration of the tube bundle, and (b) schematic of the HVAC system integrated with
the solar PCM–air heat exchanger.

The heat exchanger is assumed to include 30 rows of cylinders with 10 cylinders in each row
(a total of 300 cylinders). The cylinders are assumed to be 1-m long and have inner and outer diameters
of 0.01 m and 0.04 m, respectively. The transverse and longitudinal spacing of the cylinders in the
tube bundle are ST = 0.05 m and SL = 0.043 m, respectively. The average heat transfer coefficient
associated with the flow of cold air over the bundle can be calculated from Zukauskas correlation [25].
Commercial PCM PureTemp 37) from PureTemp@ (PureTemp LLC, Minneapolis, MN, USA) [26] was
used in the analysis. Thermal properties of PureTemp 37 are listed in Table 5. The density change of the
PCM upon phase change was neglected. As seen in the table, the PCM has a low thermal conductivity
that hinders effective heat transfer. To this end, the PCM is assumed to be embedded in aluminum
foam for heat transfer enhancement. The aluminum foam is assumed to have a porosity of 97.7%,
creating a PCM-metal foam composite with an effective thermal conductivity of 2 W/m·K. Details of
the calculation of the effective thermal conductivity can be found elsewhere [27]. It is noted that this
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case study did not aim to optimize the design of the PCM–air heat exchanger and is mainly intended to
demonstrate the application of the developed model for time-efficient analysis of engineering systems.

Table 5. Thermal properties of PureTemp 37@ PCM.

Melting
Temperature (◦C)

Heat of Fusion
(kg/kJ)

Thermal
Conductivity

(W/m·K)

Density
(kg/m3)

Specific Heat
(kJ/kg·K)

37 210 0.25 (solid)
0.15 (liquid)

920 (solid)
840 (liquid)

2.21 (solid)
2.63 (liquid)

Only the discharging (freezing) process of the PCM is considered. It is assumed that the PCM
was fully melted during the day and the discharge process started with liquid PCM at the melting
temperature. The discharge process includes both latent heat transfer from the solidifying PCM and
sensible heat transfer from the completely solidified PCM. During the latter stage, heat transfer takes
place from relatively warmer solid PCM to the relatively colder intake air. The sensible heat transfer
diminishes when the temperature of the solid PCM approaches that of the intake air. The integral
method described in Section 2 is employed to analyze the problem in the phase change stage. The heat
transfer analysis during cooling of the fully solidified PCM is described in the Appendix A.

For the heat transfer analysis, the length of the PCM–air heat exchanger was divided into a
number of elements, each including one row of cylinders (a total of 30 elements in this case). During
a time step, the air temperature was assumed to remain constant within each element. The analysis
started from the first element for which the inlet air temperature was known. The air temperature was
applied as the cold source temperature in the integral method and the temperature of the outer surface
of the PCM, To, was determined from the model. In each time step, the heat transfer from the PCM
to the air was calculated from q = hA(To – Tair). Having the heat transfer q, the temperature rise of
the air across the element was calculated from Tair,out = Tair,in + q/(

.
maircp,air). The calculations were

then moved to the next time step for the same element. The heat transfer analysis of the first element
continued until the PCM was completely solidified and the temperature of the solid PCM approached
the inlet air temperature. The analysis of the first element determines the transient variations of the
air temperature at the outlet of the element for the entire duration of solidification and the following
sensible cooling. The outlet temperature from the first element was used as the inlet temperature to the
second element. A similar procedure was repeated for the second element, with the inlet temperature
being the outlet temperature of the first element. The solution progressed through the downstream
elements until the entire length of the heat exchanger was covered.

The inlet air temperature and velocity were varied to study their impact on the outlet air
temperature form the PCM–air heat exchanger. Figure 11 shows the results of the thermal performance
of the PCM–air heat exchanger for various air inlet velocities at a constant inlet temperature of 0 ◦C.
Three air inlet velocities of 1 m/s, 0.5 m/s and 0.3 m/s, were considered. Figure 11a shows the temporal
variations of the outlet air temperature. Two distinct stages can be observed in the outlet temperature
profiles; a relatively stable initial stage followed by a sharply decreasing stage. The first stage is related
to the time period where the majority of the rows still possess some molten PCM and as such their
temperature is anchored to the fusion temperature of the PCM. In the latter stage, the majority of
the rows are completely solidified and their temperature drops quickly as they release heat to the
air. Figure 11b depicts the evolution of the overall solid volume fraction with time throughout the
entire PCM heat exchanger. The overall solid volume fractions were calculated by averaging the solid
volume fractions of all the 30 rows in each time step. As evident, increasing the air velocity decreased
the solidification time. An almost linear relationship was observed between the air velocity and the
total solidification time. It was also observed that in all cases the solid volume fraction increased
almost linearly with time except the final stage of solidification.
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Figure 11. Time variations of (a) the air outlet temperature, (b) the overall solid volume fraction
throughout the PCM heat exchanger, and (c) heat transfer rate during the phase change process for
various air inlet velocities. (d) Snapshots of solid volume fraction distribution across the tube bundle
for an air inlet velocity of 1 m/s.

Figure 11c shows the total heat transfer rate during the phase change process. As evident, the heat
transfer rate was fairly constant during the early stage of solidification. The relatively stable heat
transfer rate was attributed to presence of multiple rows of the PCM; when an upstream row was fully
solidified, the heat transfer from the following row automatically increased due to greater temperature
difference. It could also be observed that reducing the inlet air velocity resulted in a longer period of
stable heat transfer rate. Figure 11d shows snapshots of the solid volume fraction across the entire
tube bundle at certain times during the solidification process. As shown, the PCM in the tube rows
closer to the air inlet solidified faster than the downstream rows due to exposure to colder air. In the
downstream elements, the air was already preheated that led to smaller temperature differences and
smaller heat transfer rates from the PCM.

Figure 12 shows the results of the heat exchanger’s thermal performance for three inlet air
temperatures of 0 ◦C, 5 ◦C and 10 ◦C and a constant inlet velocity of 0.3 m/s. For each case,
the simulation was stopped when the outlet air temperature dropped to about 0.1 ◦C above the air
inlet temperature. It could be observed in Figure 12a that for relatively greater air inlet temperatures,
the outlet temperature could be maintained relatively stable for a longer period of time. The same two
heat transfer stages discussed with regard to Figure 11a were also observed in Figure 12a. Figure 12b
shows the effect of the air inlet temperature on the overall solid volume fraction throughout the entire
PCM heat exchanger. As evident, decreasing the air inlet temperature decreased the solidification time.
Quantitatively, every 5 ◦C increase in the air inlet temperature increased the solidification time by
about 0.5 h. Figure 12c shows the heat transfer rate during the entire discharge period (including both
latent and sensible heat transfer stages). As evident, increasing the air inlet temperature resulted in
a longer period of relatively constant heat transfer rate. A 5 ◦C increase in the air inlet temperature
decreased the heat transfer rates by about 500 W during the first stage of heat transfer. Figure 12d
shows the distribution of the solid volume fraction across the entire tube bundle at certain times during



Energies 2019, 12, 4474 16 of 20

the operation for an inlet air temperature of 10 ◦C. Again, the full solidification started at the rows
closer to the inlet and progressed toward the downstream rows as the time elapsed.
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Figure 12. Time variations of (a) air outlet temperature, (b) the overall solid volume fraction throughout
the PCM heat exchanger, and (c) heat transfer rate during the phase change process for various air inlet
temperatures. (d) Snapshots of solid volume fraction distribution across the tube bundle for an inlet air
temperature of 10 ◦C.

6. Conclusions

A semianalytical model based on the integral method was developed to solve the two-region
melting and solidification of PCM in annuli. The inner and outer boundaries of the annulus could
be subject to convective, constant temperature or adiabatic boundary conditions. The model was
validated by comparison with a control volume-based computational model that employed the
temperature-transforming method to capture the phase change. The results of the integral model
deviated from the computational results by less than 1%. The developed model was employed
to conduct parametric studies on the effect of the radii ratio, Ro, Biot numbers at the heated and
cooled boundaries, Biliq and Bisol, and Stefan numbers of the liquid and solid phases, Steliq and Stesol,
respectively. It was found that increasing the radii ratio increased the total solidification time. Increasing
Bisol or Stesol and decreasing Biliq or Steliq both led to a reduced solidification time and a larger solid
volume fraction at steady state. The analytical model was applied to analyze the performance of a solar
PCM–air heat exchanger for applications in heating, ventilation and air conditioning (HVAC). It was
demonstrated that a properly designed PCM–air heat exchanger, could serve as an auxiliary heater
for the air handler and reduce energy consumption. More than one order of magnitude reduction
in the computational time was achieved by using the integral model as compared to finite volume
simulations. The significantly smaller computational cost offered by the present model is particularly
attractive for optimization and parametric studies of latent heat thermal energy storage systems, where
a large number of design conditions must be explored.
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Nomenclature

A time-dependent variable
B time-dependent variable
Bi Biot number
C time-dependent variable
c specific heat (J/kg·K)
D time-dependent variable
h heat transfer coefficient (W/m2

·K)
hsl heat of fusion (J/kg)
k thermal conductivity (W/m·K)
Nc specific heat ratio
Nk thermal conductivity ratio
Nα thermal diffusivity ratio
R dimensionless radial coordinate
r radial coordinate, or radius (m)
S dimensionless phase front location
s phase front location (m)
se energy source term
Ste Stefan number
t time (s)
T temperature (◦C)
Tm fusion temperature (◦C)
Greek
α thermal diffusivity (m2/s)
φ volume fraction
θ dimensionless temperature
ρ density (kg/m3)
τ Fourier number
Subscripts
c cold
h hot
i inner boundary
liq liquid
o outer boundary
sol solid

Appendix A : Integral Solution of Sensible Heat Transfer

After solidification is completed, the average temperature of the PCM may be greater that the air flowing
over it. This temperature difference induces heat transfer from solid PCM to the air. The heat transfer in the
completely solidified PCM is governed by Equation (2) subject to convective cooling at the outer surface and
adiabatic inner boundary. This problem can be solved analytically using the integral transform method [28].
However, a simpler integral solution is developed here to provide a unified and consistent integral method to
capture all the stages of heat transfer to or from the PCM.



Energies 2019, 12, 4474 18 of 20

The inner and outer boundary conditions are represented by:

∂θsol
∂R

= 0 R = 1 (A1)

−Ro
∂θsol
∂R

= Bisol(θsol + 1) R = Ro (A2)

where θsol = (T − Tm)/(Tm − T f ), with Tf being the heat transfer fluid temperature adjacent to the PCM. The
following nondimensional temperature profile is used in which the coefficients E, F and G are a function of time
only:

θsol = E + F ln R + G ln2 R (A3)

Application of the boundary condition (A1) yields F = 0, and boundary condition (A2) provides a relation
between E and G:

E = −G
(
ln2 Ro +

2 ln Ro

Bisol

)
− 1 (A4)

Temperature profile (A3) can be rewritten using Equation (A4) as follows:

θsol = −G
(
ln2 Ro − ln2 R +

2 ln Ro

Bisol

)
− 1 (A5)

The dependency of G on time can be obtained from the following transient energy balance applied to unit
length of the annulus:

mcsol
dTsol

dt
= 2πrok

∂Tsol
∂r

∣∣∣∣∣
ro

(A6)

where m and Tsol are the mass and mass-averaged temperature of the solid PCM, respectively. The above equation
can be represented in the following nondimensional form:

(R2
o − 1)

dθsol
dτ

= 2Ro
∂θsol
∂R

∣∣∣∣∣
Ro

(A7)

The dimensionless average temperature can be obtained by integrating the temperature profile of (A3) from
R = 1 to R = Ro:

θsol =
2

R2
o − 1

∫ Ro

1
θsolRdR =

G
R2

o − 1

[
ln2 Ro + (

2
Bisol

−R2
o −

2R2
o

Bisol
) ln Ro +

R2
o − 1
2

]
− 1 (A8)

Substituting θsol from Equation (A8) into Equation (A7) and noting that (∂θsol/∂R)
∣∣∣
Ro

= (2G ln Ro)/Ro, the
following equation is obtained:

dG
dτ

[
ln Ro +

2
Bisol

−R2
o −

2R2
o

Bisol
+

R2
o − 1

2 ln Ro

]
= 4G (A9)

The above equation can be integrated to obtain G as a function of dimensionless time:

G = C1 exp

 8 Bisol ln Ro

2 Bisol ln2 Ro + 4 ln Ro − 2R2
o ln Ro(Bisol + 2) + Bisol(R2

o − 1)
τ

 (A10)

The constant of integration, C1, can be found from the initial condition; at the beginning of the sensible
cooling stage, when the solidification process was just completed, the temperature at the inner adiabatic boundary
is equal to the melting temperature:

θsol(R = 1, τ = 0) = 0 (A11)

Substituting G from Equation (A10) into Equation (A5) and applying Equation (A11), the constant C1 can be
found as following:

C1 = −
Bisol

Bisol ln2 Ro + 2 ln Ro
(A12)
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The nondimensional temperature during the sensible cooling as a function of time and space can be found
by substituting the Equations (A10) and (A12) into Equation (A5):

θsol = −1−C1(ln
2 Ro − ln2 R +

2 ln Ro

Bisol
) exp

 8 Bisol ln Ro

2 Bisol ln2 Ro + 4 ln Ro − 2R2
o ln Ro(Bisol + 2) + Bisol(R2

o − 1)
τ

 (A13)
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