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Abstract: The study utilizes the energy-flux-vector method to analyze the heat transfer characteristics
of natural convection in a wavy-wall porous square cavity with a partially-heated bottom surface.
The effects of the modified Darcy number, modified Rayleigh number, modified Prandtl number, and
length of the partially-heated bottom surface on the energy-flux-vector distribution and mean Nusselt
number are examined. The results show that when a low modified Darcy number with any value of
modified Rayleigh number is given, the recirculation regions are not formed in the energy-flux-vector
distribution within the porous cavity. Therefore, a low mean Nusselt number is presented. The
recirculation regions do still not form, and thus the mean Nusselt number has a low value when
a low modified Darcy number with a high modified Rayleigh number is given. However, when
the values of the modified Darcy number and modified Rayleigh number are high, the energy flux
vectors generate recirculation regions, and thus a high mean Nusselt number is obtained. In addition,
in a convection-dominated region, the mean Nusselt number increases with an increasing modified
Prandtl number. Furthermore, as the length of the partially-heated bottom surface lengthens, a higher
mean Nusselt number is presented.

Keywords: energy flux vector; porous cavity; natural convection; wavy-wall; heat transfer
enhancement; visualization technique

1. Introduction

The plot of the heat flow paths is important since it can provide physical insights into the energy
transport process in detail. To achieve this purpose, Kimura and Bejan [1] have suggested a heatline
visualization technique. Following the study of Kimura and Bejan [1], numerous researchers have
explored the process of heat transport within thermal-fluid systems by utilizing the technique [2–4].

Hooman [5,6] has presented an energy-flux-vector method, which is basically similar to the heatline
technique, for visualizing the heat flow paths. Comparing the two visualization methods, Hooman [5,6]
has pointed out that the energy-flux-vector method is simpler than the heatline visualization technique
since the algebraic equations do not require solving. In the literature, numerous researchers [7–9]
have demonstrated that the process of heat transport can be completely explained by using the
energy-flux-vector method.

Natural convection in porous cavities has numerous practical applications in engineering fields,
including biomedical engineering, chemical and material processing, fluidized beds, geothermal
engineering, thermal insulation, solar collection, and so on [10–14]. To achieve the purpose
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of heat transfer enhancement, wavy-surface geometries are often imposed [7,8]. Note that the
practical applications for the natural convection in a wavy-wall cavity include heat exchangers, solar
collectors, condensers in refrigerators, geothermal engineering, and so on [15–17]. In the literature,
the investigation into the natural convection heat transfer behavior in a porous cavity with wavy
surfaces has been widely discussed [18–20]. The results have demonstrated that the use of the
wavy-surface geometries can improve the heat transfer effect. Recently, Biswal et al. [21] have utilized
the energy-flux-vector method to explain the process of heat transport of natural convection within a
porous cavity with curved side walls. Their results have shown that given suitable curved-side wall
forms with appropriate flow conditions, the heat transfer performance can be enhanced.

As discussed above, the analysis of the energy-flux-vector method on natural convection heat
transfer in a porous cavity with wavy surfaces has attracted little attention. Accordingly, in the
current study, the energy-flux-vector method is utilized to analyze the heat transfer characteristics
of natural convection within a porous square cavity bounded by a partially-heated flat bottom wall,
low temperature left and right wavy-walls, and an insulated flat top wall. The simulations focus
particularly on the effects of the modified Darcy number, modified Rayleigh number, modified Prandtl
number, and length of the partially-heated bottom surface on the energy-flux-vector distribution and
mean Nusselt number, respectively.

2. Mathematical Formulation

2.1. Governing Equations and Boundary Conditions

Figure 1 illustrates the studied porous square wavy-wall cavity with a partially-heated bottom
surface and a characteristic length of Lc. As shown, the partially-heated wall surface has a length of LH,
and it is placed on the center of the bottom wall. Meanwhile, the left and right walls are assumed to
have a constant low temperature and a complex-wavy surface.
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It is assumed that the working fluid is Newtonian and incompressible, and the flow and
temperature fields are two-dimensional and steady state. In addition, it is also assumed that the
Rayleigh number is less than 109 and thus, the assumption of laminar flow is valid. Furthermore,
the Boussinesq approximation [7,8,22] is imposed, and the local thermal equilibrium condition is
assumed to be achieved.
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Defining the non-dimensional quantities are as follows [14]:

x∗ = x
Lc

, y∗ = y
Lc

, αe f f =
ke f f
ερCp

, u∗ = uLc
αe f f

, v∗ = vLc
αe f f

, p∗ = pL2
c

ρα2
e f f

,

θ = T−TL
TH−TL

, Km = K
ε , Prm =

µ
ραe f f

, Dam = Km
L2

c
, Ram =

ρgβL3
c (TH−TL)
µαe f f

(1)

where ρ, Cp, and p represent the density, specific heat, and pressure, respectively; u and v are the
velocity components along x- and y-axes, respectively; TH and TL signify the high temperature and
low temperature, respectively; subscript m indicates the modified value; and superscript ∗ denotes
the non-dimensional quantity. After the viscous dissipation and thermal radiation effects are ignored,
the continuity, momentum and energy conservation equations described the flow behavior and heat
transfer characteristics of natural convection within the porous cavity is written in the following
non-dimensionalized forms [14]:

Continuity equation:
∂u∗

∂x∗
+
∂v∗

∂y∗
= 0 (2)

x-direction momentum equation:

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −

∂p∗

∂x∗
−

Prm

Dam
u∗ + Prm(

∂2u∗

∂x∗2
+
∂2u∗

∂y∗2
) −

1.75
√

150

√
u∗2 + v∗2
√

Dam
u∗ (3)

y-direction momentum equation:

u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −

∂p∗

∂y∗
−

Prm

Dam
v∗ + Prm(

∂2v∗

∂x∗2
+
∂2v∗

∂y∗2
) −

1.75
√

150

√
u∗2 + v∗2
√

Dam
v∗ + Ram · Prm · θ (4)

Energy conservation equation:

u∗
∂θ
∂x∗

+ v∗
∂θ
∂y∗

=
∂2θ

∂x∗2
+
∂2θ

∂y∗2
(5)

The dimensionless boundary conditions are expressed as follows:
Bottom partially-heat wall: u∗ = v∗ = 0, θ = 1
Bottom other walls: u∗ = v∗ = 0, ∂θ/∂

⇀
n
∗

= 0
Left and right wavy walls: u∗ = v∗ = 0, θ = 0
Top wall: u∗ = v∗ = 0, ∂θ/∂

⇀
n
∗

= 0

where
⇀
n
∗

is the normal vector.

2.2. Energy Flux Vectors and Nusselt Number

The energy flux vectors (
⇀
E) are defined as follows [5–9]:

⇀
E =

∂H∗

∂y∗
⇀
i −

∂H∗

∂x∗
⇀
j (6)

∂H∗

∂y∗
= u∗θ−

∂θ
∂x∗

, (7)

−
∂H∗

∂x∗
= v∗θ−

∂θ
∂y∗

. (8)

Note that H∗ is the non-dimensional heat function, and
⇀
i and

⇀
j are the unit components in x-

and y-directions, respectively.
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The mean Nusselt number (Num) along the partially-heated bottom surface is defined as follows:

Num =

∫
Nudξ (9)

where Nu(= hLc
ke f f

= −
(
∂θ

∂
⇀
n
∗

)
) is the Nusselt number, and h is the convection heat transfer coefficient.

2.3. Geometric Description and Numerical Method

In this study, the left and right walls of the porous cavity are assumed to have a complex-wavy
surface, which is formulated as follows [7,8]:

y∗ = αwSin(2πx∗) +
αw

2.5
Sin(4πx∗) (10)

where αw is the amplitude of the wavy surface.
In the current study, the generalized coordinate transform technique, finite volume method,

and SIMPLE algorithm are used to solve the governing equations presented in Equations (2)–(5).
The numerical methods are identical to those used in our previous studies [7,8]. A detailed description
of the numerical methods applied in this work can be found in [7,8].

2.4. Numerical Validation and Grid Independence Evaluation

The currently used numerical models and numerical methods were valid by comparing the
current results with those presented by Singh et al. [14]. Table 1 shows these results. Note that the
Rayleigh number of Ra = 105, porosity of ε = 0.6, and Prandtl number of Pr = 1 are given in the case.
It is shown that the current results are identical to those presented in Singh et al. [14].

Table 1. Comparison of current results for mean Nusselt number with Singh et al. [14] for two different
Darcy numbers.

Da = 10−2 Da = 10−4

Current results 3.441 1.067
Singh et al. [14] 3.461 1.067

Error (%) 0.6 0.0

The mesh sizes of 101× 201, 101× 501, 101× 1001, 201× 1001 have been examined for the variation
of mean Nusselt number, respectively, and the results showed that the mesh size of 101× 1001 has a
grid-independent solution.

3. Results and Discussion

In the study, the ranges of the non-dimensional parameters were set as follows: modified Darcy
number: Dam = 10−5 to Dam = 10−2; modified Rayleigh number: Ram = 102 to Ram = 105; modified
Prandtl number: Prm = 0.1 to Prm = 10; amplitude of wavy surface: αw = 0.25; and length of the
partially-heated bottom surface: L∗H = 0.3 to L∗H = 0.9.

Figures 2 and 3 illustrate the distributions of the energy flux vectors and isotherms within
the porous cavity for various modified Darcy numbers and modified Rayleigh numbers. Figure 4
shows the effects of the modified Darcy number and modified Rayleigh number on the mean Nusselt
number. According to the definition of the energy flux vectors given in Equation (6), the conduction
mechanism dominates if the flow of energy flux vectors is directly from the bottom partially-heated
high-temperature wall to the left and right low-temperature wavy-walls, while the convection
mechanism dominates if the energy flux vectors generate closed recirculation regions [5–9]. Therefore,
as shown in Figure 2a, when the values of the modified Darcy number and modified Rayleigh number
are both low, the heat transfer effect within the porous partially-heated cavity is dominated by a pure
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conduction mechanism since the closed recirculation regions in the energy-flux-vector distribution
are not created. In addition, a low modified Darcy number represents a low permeability due to the
presence of a high flow resistance [14]. Therefore, although a larger buoyancy effect induced by giving a
high modified Rayleigh number is presented, a high flow resistance is also generated within the porous
partially-heated cavity. As a result, the energy flux vectors do still not form closed recirculation regions,
and thus the conduction mechanism continually dominates heat transfer behavior (see Figure 2b).
Under conduction-domination, the high-temperature fluid heated by the partially-heated bottom
surface is slowly diffused to left and right low-temperature wavy-wall surfaces to be dissipated (see
the isotherms in Figure 2). Consequently, under a low modified Darcy number, a low mean Nusselt
number is presented, irrespective of the value assigned to the modified Rayleigh number (see Figure 4).
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given a modified Darcy number of Dam = 10−2 and modified Rayleigh numbers of: (a) Ram = 102 and
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When a high modified Darcy number and a low modified Rayleigh number is given, the closed
recirculation regions of the energy flux vectors are still not formed within the porous partially-heated
cavity (see Figure 3a). Although a high modified Darcy number has a high permeability and a low flow
resistance, a low modified Rayleigh number induces a small buoyancy effect. Therefore, the convection
effect is still weak, and the conduction mechanism continues to dominate the heat transfer effect. As a
result, a low mean Nusselt number is presented (see Figure 4).

When the modified Darcy number and the modified Rayleigh number are both high, a low flow
resistance and a high buoyancy effect occur within the porous partially-heated cavity. Therefore, the
closed energy-flux-vector recirculations are formed, resulting in enhancement of the convection effect
(see Figure 3b). The high-temperature fluid on the partially-heated bottom wall is promptly driven to
the left and right low-temperature walls to be dissipated (see the isotherms in Figure 3b). As a result, a
high mean Nusselt number is obtained (see Figure 4).

Figures 5 and 6 illustrate the distributions of the energy flux vectors and isotherms within the
porous partially-heated cavity for various modified Prandtl numbers and modified Rayleigh numbers.
Figure 7 shows the effects of the modified Prandtl number and modified Rayleigh number on the mean
Nusselt number. Note that the modified Darcy number is set as Dam = 10−2 in the cases. It shows that
given a low modified Rayleigh number, the distributions of the energy flux vectors and isotherms are
similar for various modified Prandtl numbers (see Figure 5a,b). The recirculation regions of energy flux
vectors are not created, and thus the conduction heat transfer dominates. In other words, the effect of
the modified Prandtl number on the heat transfer is insignificant. Therefore, a low and approximately
constant mean Nusselt number is presented (see Figure 7). When a high modified Rayleigh number is
given, it shows that the size of closed energy-flux-vector recirculation regions enlarges as the modified
Prandtl number is increased (see Figure 6a,b). In other words, a higher modified Prandtl number has
a stronger convection effect under high modified Rayleigh numbers. Consequently, a higher mean
Nusselt number is presented (see Figure 7).
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Figure 8 illustrates the distributions of the energy flux vectors within the porous cavity for
various partially-heated lengths and modified Rayleigh numbers. Figure 9 shows the effects of the
partially-heated length and modified Rayleigh number on the mean Nusselt number. Note that the
modified Darcy number is set as Dam = 10−2 in these cases. For a low modified Rayleigh number,
the conduction heat transfer dominates since the recirculation regions of the energy flux vectors are not
formed within the porous cavity for various partially-heated lengths (see Figure 8a). Therefore, a low
mean Nusselt number is presented. As the length of the partially-heated bottom surface is lengthened,
a larger bottom heated area is presented. Consequently, a higher mean Nusselt number is obtained (see
Figure 9). Given a high modified Rayleigh number, the energy flux vectors form closed recirculation
regions. The size of the recirculation regions enlarges as the partially-heated length is extended (see
Figure 8b). As a result, the strength of the convection effect enhances. Consequently, the mean Nusselt
number rises with the increasing length of the partially-heated bottom surface (see Figure 9).

Energies 2019, 12, x FOR PEER REVIEW 8 of 11 

Figure 6. Distributions of energy flux vectors and isotherms within a partially-heated porous cavity 

given a modified Rayleigh number of 510=mRa  and modified Prandtl numbers of: (a) 

1.0Pr =m  and (b) 10Pr =m . Note that 210−=mDa  and 3.0* =HL . Note also that the black 

solid lines indicate the flow direction of energy flux vectors, while the red dashed lines indicate the 
isothermal contours. 

 
Figure 7. Variation of mean Nusselt number with modified Prandtl number as a function of a 

modified Rayleigh number. Note that 210−=mDa  and 3.0* =HL . 

Figure 8 illustrates the distributions of the energy flux vectors within the porous cavity for 
various partially-heated lengths and modified Rayleigh numbers. Figure 9 shows the effects of the 
partially-heated length and modified Rayleigh number on the mean Nusselt number. Note that the 
modified Darcy number is set as 210−=mDa  in these cases. For a low modified Rayleigh number, 
the conduction heat transfer dominates since the recirculation regions of the energy flux vectors are 
not formed within the porous cavity for various partially-heated lengths (see Figure 8a). Therefore, 
a low mean Nusselt number is presented. As the length of the partially-heated bottom surface is 
lengthened, a larger bottom heated area is presented. Consequently, a higher mean Nusselt number 
is obtained (see Figure 9). Given a high modified Rayleigh number, the energy flux vectors form 
closed recirculation regions. The size of the recirculation regions enlarges as the partially-heated 
length is extended (see Figure 8b). As a result, the strength of the convection effect enhances. 
Consequently, the mean Nusselt number rises with the increasing length of the partially-heated 
bottom surface (see Figure 9). 

  
(a) (b) 

Figure 8. Distributions of energy flux vectors within a porous cavity given partially-heated lengths of
L∗H = 0.3 and L∗H = 0.9 and modified Rayleigh numbers of: (a) Ram = 102 and (b) Ram = 105. Note
that Dam = 10−2 and Prm = 1. Note also that the red solid lines indicate the partially-heated length of
L∗H = 0.9, and the green dashed lines indicate the partially-heated length of L∗H = 0.3.

Energies 2019, 12, x FOR PEER REVIEW 9 of 11 

Figure 8. Distributions of energy flux vectors within a porous cavity given partially-heated lengths 

of 3.0* =HL  and 9.0* =HL  and modified Rayleigh numbers of: (a) 210=mRa  and (b) 
510=mRa . Note that 210−=mDa  and 1Pr =m . Note also that the red solid lines indicate the 

partially-heated length of 9.0* =HL , and the green dashed lines indicate the partially-heated 

length of 3.0* =HL . 

 
Figure 9. Variation of mean Nusselt number with partially-heated length as a function of a modified 

Rayleigh number. Note that 210−=mDa  and 1Pr =m . 

4. Conclusions 

This paper has analyzed the heat transfer behavior of natural convection in a porous square 
wavy-wall cavity with a partially-heated bottom surface using the energy-flux-vector method. The 
effects of the flow parameters and length of a partially-heated bottom surface on the 
energy-flux-vector distribution and mean Nusselt number have been discussed. The studied results 
are summarized as follows: 

1. Given a low modified Darcy number, the energy flux vectors did not generate recirculation 
regions within the porous cavity, irrespective of the value assigned to the modified Rayleigh 
number. The conduction heat transfer dominated, and thus the mean Nusselt number was low. 

2. Given a high modified Darcy number and a low modified Rayleigh number, the heat transfer 
effect was dominated by the conduction mechanism since no recirculation region was formed 
in the energy flux vectors. Therefore, a low mean Nusselt number was obtained. 

3. Given a high modified Darcy number with a high modified Rayleigh number, recirculation 
regions in the energy-flux-vector distribution were produced, resulting in a 
convection-domination. Consequently, a high mean Nusselt number was presented. 

4. In conduction-dominated region, the effect of the modified Prandtl number on the 
energy-flux-vector distribution and mean Nusselt number was insignificant. However, in 
convection-dominated region, the size of the closed energy-flux-vector recirculation region 
enlarged, and the value of the mean Nusselt number raised as the modified Prandtl number 
was increased. 

5. In conduction-dominated or convection-dominated regions, the mean Nusselt number was 
raised as the length of the partially-heated bottom surface lengthened. 

Author Contributions:  Conceptualization, C.-C.C.; Methodology, C.-C.C.; Software, C.-C.C. and Y.-T.L.; 
Validation, C.-C.C. and Y.-T.L.; Formal Analysis, C.-C.C.; Investigation, C.-C.C.; Resources, C.-C.C. and Y.-T.L.; 
Data Curation, C.-C.C. and Y.-T.L.; Writing-Original Draft Preparation, C.-C.C.; Writing-Review & Editing, 
C.-C.C.; Visualization, C.-C.C.; Supervision, C.-C.C.; Project Administration, C.-C.C.; Funding Acquisition, 
C.-C.C. and Y.-T.L. 

Figure 9. Variation of mean Nusselt number with partially-heated length as a function of a modified
Rayleigh number. Note that Dam = 10−2 and Prm = 1.

4. Conclusions

This paper has analyzed the heat transfer behavior of natural convection in a porous square
wavy-wall cavity with a partially-heated bottom surface using the energy-flux-vector method.
The effects of the flow parameters and length of a partially-heated bottom surface on the
energy-flux-vector distribution and mean Nusselt number have been discussed. The studied results
are summarized as follows:
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1. Given a low modified Darcy number, the energy flux vectors did not generate recirculation
regions within the porous cavity, irrespective of the value assigned to the modified Rayleigh
number. The conduction heat transfer dominated, and thus the mean Nusselt number was low.

2. Given a high modified Darcy number and a low modified Rayleigh number, the heat transfer
effect was dominated by the conduction mechanism since no recirculation region was formed in
the energy flux vectors. Therefore, a low mean Nusselt number was obtained.

3. Given a high modified Darcy number with a high modified Rayleigh number, recirculation regions
in the energy-flux-vector distribution were produced, resulting in a convection-domination.
Consequently, a high mean Nusselt number was presented.

4. In conduction-dominated region, the effect of the modified Prandtl number on the
energy-flux-vector distribution and mean Nusselt number was insignificant. However, in
convection-dominated region, the size of the closed energy-flux-vector recirculation region
enlarged, and the value of the mean Nusselt number raised as the modified Prandtl number
was increased.

5. In conduction-dominated or convection-dominated regions, the mean Nusselt number was raised
as the length of the partially-heated bottom surface lengthened.
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Nomenclature

Dam modified Darcy number, Dam = Km
L2

c
⇀
E energy flux vector

ke f f effective thermal conductivity, Wm−1K−1

Lc characteristic length of square cavity, m
LH length of partially-heated bottom surface, m

Nu Nusselt number, Nu = hLc
ke f f

= −
(
∂θ

∂
⇀
n
∗

)
Num mean Nusselt number, Num =

∫
Nudξ

Prm modified Prandtl number, Prm =
µ

ραe f f

Ram modified Rayleigh number, Ram =
ρgβL3

c (TH−TL)
µαe f f

T temperature, K
Greek symbols
αe f f effective thermal diffusivity, m2s−1

αw amplitude of wavy surface
β thermal expansion coefficient, K−1

ε porosity
K permeability, m2

θ dimensionless temperature, θ = T−TL
TH−TL
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