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Abstract: In the field of Fuel Cell Electric Vehicles (FCEVs), a fuel-cell stack usually works together
with a battery to improve powertrain performance. In this hybrid-power system, an Energy
Management Strategy (EMS) is essential to configure the hybrid-power sources to provide sufficient
energy for driving the FCEV in different traffic conditions. The EMS determines the overall
performance of the power supply system; accordingly, EMS research has important theoretical
significance and application values on the improvement of energy-utilization efficiency and the
serviceability of vehicles’ hybrid-power sources. To overcome the deficiency of apparent filtering lag
and improve the adaptability of an EMS to different traffic conditions, this paper proposes a novel
EMS based on traffic-condition predictions, frequency decoupling and a Fuzzy Inference System
(FIS). An Artificial Neural Network (ANN) was designed to predict traffic conditions according to the
vehicle’s running parameters; then, a Hull Moving Average (HMA) algorithm, with filter-window
width decided by the prediction result, is introduced to split the demanded power and keep
low-frequency components in order to meet the load characteristics of the fuel cell; afterward,
an FIS was applied to manage power flows of the FCEV’s hybrid-power sources and maintain the
State of Change (SoC) of the battery in a predefined range. Finally, an FCEV simulation platform
was built with MATLAB/Simulink and comparison simulations were carried out with the standard
test cycle of the Worldwide harmonized Light vehicle Test Procedures (WLTPs). Simulation results
showed that the proposed EMS could efficiently coordinate the hybrid-power sources and support
the FCEV in following the reference speed with negligible control errors and sufficient power supply;
the SoC of the battery was also maintained with good adaptability in different driving conditions.

Keywords: fuel-cell electric vehicle; batteries; energy-management strategy; road-condition prediction;
hull moving average; fuzzy inference system

1. Introduction

Being 3–5 times more energy efficient than conventional internal-combustion engine vehicles,
Electric Vehicles (EVs) have been globally expanding at a rapid pace over the last decade to meet
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the requirements of conventional-fossil-fuel conservation and vehicle-exhaust-emission reduction [1].
According to the report of the International Energy Agency (IEA), in 2018, global electric cars exceeded
5.1 million, and up to 2 million cars were from the previous year [2]. In this huge EV market, different
types of EVs are available, mainly including Plug-in Hybrid EVs (PHEVs), full Battery EVs (BEVs),
and Fuel Cell EVs (FCEVs) [3].

Compared with a PHEV or a BEV, an FCEV—an EV that uses hydrogen via a fuel cell to power an
electric motor—has unique advantages and has attracted much attention from both the research and
industry communities [4]. For example, hydrogen contains three times more energy per unit of mass
than gasoline, making it very attractive as a transport fuel; an FCEV has zero tailpipe emissions and
short refueling time; moreover, a fuel cell could have lower material footprint than lithium batteries [5].
Accordingly, FCEVs are not only considered applicable for light-duty passenger vehicles but are also
attractive options for long-distance and heavy-duty ones. Statistical data show that about 4000 fuel-cell
electric cars were sold in 2018 to reach a total stock of 11,200 units in the world [5].

Although an FCEV is very attractive for the above characteristics, due to the performance of a fuel
cell, its application in EVs still has some deficiencies. Without the health and safety considerations
of hydrogen-based fuel and the installation issues of hydrogen-refueling infrastructure for FCEVs,
those deficiencies mainly include: (1) a fuel cell has low power density, resulting in the weak
acceleration performance of an FCEV; (2) because of activation, ohmic and concentration polarization
losses, the output voltage/current characteristic of a fuel cell is quite ’soft,’ resulting in an obvious
output-voltage drop with increasing load current; and (3) a fuel cell is not able to recover energy,
resulting in vehicle-braking energy loss in applications [6–8].

To deal with the above deficiencies, a fuel cell is usually collaborated with a battery to power
an FCEV because the battery has higher power density for accelerations and can recover energy from
the braking system [9]. For example, the 2019 Toyota FCEV—Mirai—is powered by a fuel-cell stack
of 112 kW and an auxiliary driving battery with a maximum electricity output of 9 kW; the battery
allows for regenerative braking energy and also assists the EV during high-power demands like
acceleration [10].

However, the integration of a battery into an FCEV requires energy management. The purpose
of energy management is to improve total system efficiency and protect hybrid-power sources
and enhance their serviceability [11]. An effective EMS can improve the driving performance of
an FCEV and even product competitiveness. Accordingly, EMSs have been a research hotspot with the
development of hybrid-source-powered EVs in recent years.

In an FCEV, an EMS configures the hybrid-power sources to provide sufficient energy for driving
the vehicle in different traffic conditions while offering a timely response to address possible fast
power changes due to accelerating or braking by dynamically balancing load sharing among power
sources [12–14].

To realize the energy management of an FCEV, different methodologies can be found from
the literature, such as rule-, Frequency Decoupling (FD)-, Fuzzy Inference System (FIS)- and
optimization-algorithm-based methods.

The rule-based EMSs are easy to implement and have been widely adopted [15–17]. The technique
proposed in Reference [15] divides system states into three categories according to the battery’s State
of Change (SoC) and determines fuel-cell reference power by the rules according to load power and
fuel-cell power constraints. Simulation results showed that this strategy is simple and effective, but the
high performance of the battery was not given full consideration. Roumila et al. [16] divided the
system into eight states according to battery SoC and load power and defined a reference power of the
fuel cell in each state. Simulation results showed the effectiveness of this strategy but the definition of
reference power of the fuel cell in each state was empirical.

The basic idea of FD-based methods is to decouple and redistribute the required load power in
the frequency domain according to the load characteristics of each power source [18–20]. For example,
an FD-based method is designed to divide power demand into high- and low-frequency components,
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and then distributes them to the battery and fuel cell, respectively. Li et al. and Ibrahim et al. proposed
a wavelet-transform- and fuzzy-logic-based FD method in which low-positive-frequency components
of the required power are distributed to the fuel cell and high-frequency components are distributed
to the auxiliary energy source [18,19]. Marzougui et al. used a first-order low-pass filter to separate
the required power for the FD but the filtering-hysteresis problem made it difficult for the fuel cell to
follow the low-frequency trend of the load power [20]. FD-based methods are intuitive and efficient
but the filtering-hysteresis problem and computational complexity are the main limitations. Another
disadvantage of this method is that the SoC of the battery is not taken into account.

FIS-based methods manage hybrid-power sources according to formalized-expert experience
and fuzzy inference. Because of their robustness and flexibility, many researchers adopted FIS-based
strategies for real-time energy management [21–23]. Yang et al. designed a two-input/one-output
fuzzy-power controller with load current and battery SoC as inputs and fuel-cell reference current as
output [24]. Marzougui et al. designed a fuzzy controller by using trapezoidal membership functions
to restrain fuel-cell power fluctuations, but simulation results showed that the sensitivity of the
designed controller was compromised [8]. A difficulty of FIS-based energy management is parameter
configuration. To reduce parameter-design difficulty and enable better control performance, many
researchers considered combining other algorithms with FIS such as wavelet–fuzzy strategies [25–27].
Another deficiency concerning current research on FIS-based energy management is that simulation
models are often simplified for fast simulations, with reduced accuracy [28–30].

Optimization-algorithm-based EMSs usually convert an energy-management problem into
a solution-searching problem by defining an object function that is normally used to minimize running
cost and/or emissions and adopting an iterative algorithm to find the optimized solution satisfying
system-constraint conditions [31,32]. This type of energy-management method can calculate optimized
power distributions and take them as control reference for different power sources, accordingly
resulting in great advantages for fuel economy. Wang et al. designed an object function to minimize
hydrogen consumption and calculate the power distribution of fuel cells and lithium batteries [31].
The hydrogen-utilization rate and system efficiency were improved according to simulation results.
Nuesch et al. included fuel consumption and the vehicle emission into one object function with
different weights, and adopted a transient optimization method to minimize the target and managed
the output power of the diesel engine and the battery in a hybrid vehicle. Simulation results showed
that this strategy optimizes fuel consumption within various constraints [32]. With this type of method,
if the global-optimization solution can be found and used as control reference of hybrid-power
sources, the fuel economy can be improved; however, the searching process in the solution space is
time-consuming and, accordingly, their applications in real-time scenarios are limited.

From the above analysis, it can be seen that different energy-management methods have their
advantages but also shortcomings in FCEV applications. It is easier to apply rule-, FD- and FIS-based
methods in real-time situations than global optimization-based methods, but they are not as adaptive
and optimal as the latter ones; for an optimization-based method, the searching process in the solution
space takes time and this kind of method is not always applicable for real-time applications in an FCEV
with lots of dynamics during a driving process. Moreover, another problem of the current research on
EMSs of an FCEV is that changes in driving conditions are not fully taken into account in EMS design.
In reality, actual traffic conditions are complex and changeable, and EMSs designed with a certain
condition may not be usable under all other driving conditions [33].

Considering the main difficulties in the current research of energy-management methods for
an FCEV, a novel EMS combining an advanced FD technique and an FIS with a traffic-condition
predictor is proposed in this paper for an EV powered by a fuel cell and a battery. The proposed
traffic-condition-based HMA-FIS EMS has the advantages of FD/FIS-based methods and does not
need complicated calculation; the adaptability of this method can be improved by the contribution of
the traffic-condition predictor.
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The rest of this paper is organized as follows—the structure and composition of an FCEV,
which was taken as the research object of this paper, is described in Section 2. In Section 3, the proposed
EMS is presented. To verify the effectiveness of the proposed EMS, a simulation platform of the FCEV
with the proposed EMS was built with MATLAB/Simulink in Section 4 and some simulation results
are presented with comparisons in the same section. Finally, in Section 5, the conclusion of this
paper is made.

2. FCEV Structure and Its Power System

A front-wheel-driven FCEV, including a fuel cell, a battery, a DC/DC converter, a traction motor
and its controller, wheels and vehicle body, is taken as the research object in this paper. The structure
of this FCEV is shown in Figure 1.
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Figure 1. Structure of fuel-cell electric vehicle (FCEV) powered by fuel cell and battery with proposed
energy-management strategy (EMS).

In Figure 1, it can be seen that the fuel cell is connected to the DC bus via a DC/DC converter,
which was adopted to convert the output voltage of the fuel cell to the nominal voltage of the DC bus.
A battery was used as an auxiliary power source in order to enhance powertrain performance and
increase the system’s capability for energy recovery. The battery is directly connected with the DC bus
to take advantage of quick charging/discharging performance, and to decrease the size and weight
of the hybrid-power supply [34]. The fuel cell and the battery jointly provide the necessary energy
through the DC bus to drive the vehicle according to speed reference.

The EMS provides the output-power reference of the fuel cell according to the feedback parameters
of the motor, the hybrid-power sources, and the vehicle with the proposed power-management method.
The battery delivers the rest of the required power by subtracting the fuel-cell power (controlled by
the EMS) from the total demanded power.

A Permanent Magnet Synchronous Motor (PMSM) and a three-phase inverter, powered by the
DC bus, were taken as the traction-motor system of the FCEV. The Maximum Torque Per Ampere
(MTPA) control principle was adopted to control the motor below the base speed and a flux-weakening
method was used to achieve maximum motor speed [35–37].

The vehicle dynamic, mainly including gear, differential, wheels and brakes, and EV body,
is shown in Figure 1. Since the mechanical transmission system of the vehicle is not the main focus of
this paper, the modeling of the vehicle dynamic is not discussed in detail and the related details can be
found in References [38–40].
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3. Traffic-Condition-Prediction-Based HMA-FIS Energy-Management Strategy

The flowchart of the proposed EMS is shown in Figure 2, which represents the working flow of
the EMS block in Figure 1.

Online traffic condition 
identification

HMA with variable window 
width  N

Fuzzy inference system
(inference with Filtered power and SoC)

Off-line 
training

Training 
samples

Trained NN

Identified condition type

Recursive traffic condition 
prediction

(b)

(c)

Step (1) Step (2)

Traffic condition type

Filtered required power

Fuel cell power reference

System 
measurements

To the electrical system 
and the FCEV body

(a)

Step (3)

Figure 2. Working flow of proposed EMS. (a) An ANN-based traffic-condition predictor, (b) Hull
Moving Average (HMA) algorithm with variable window width, and (c) fuzzy inference system.

In Figure 2a, the block in the gray background is an ANN-based traffic-condition predictor that
can forecast driving conditions according to real-time running signals of the FCEV and pass the
prediction result on to the adjacent frequency-decoupling block labeled shown in Figure 2b, where an
adopted HMA algorithm is shown; its window width is adjusted according to the predicted traffic
condition among three predefined categories. The HMA filters out high-frequency components from
the demanded power and transfers the low-frequency parts of the required power to the next block
(Figure 2c in gray background). That block is based on fuzzy inference and is used to calculate
output reference power of the fuel cell according to battery SoC and the low-frequency trend of the
demanded power.

3.1. Traffic-Condition Categorizing

To make the proposed EMS adaptive to varying traffic conditions, driving-condition categories
are defined in this section that were taken into account in the energy-management process.

According to Reference [41], common traffic conditions can be divided into three main
types—Urban Congestion Type (UCT), Urban/Suburb Normal Type (USNT) and Highway Clear
Type (HCT). The UCT is the condition where a vehicle is driving on a congested urban road and
its characteristics are low average speed with frequent idling. USNT includes situations where the
vehicle is driving in urban or suburban areas with a better traffic environment; average speed is higher
than that of UCT but due to the existence of traffic lights, idling frequency is still high. The HCT is
the driving condition in a flat, closed and straight road with clear traffic, average speed is high and
the vehicle is seldom idle. The characteristics of the three traffic conditions above are summarized
in Table 1.
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Table 1. Characteristics of three defined traffic-condition types. Note: UCT, Urban Congestion Type;
USNT, Urban/Suburb Normal Type; HCT, Highway Clear Type.

Characteristics UCT USNT HCT

Average driving speed Low Medium High
Maximum driving speed Low Medium High
Engine start and stop frequency High Medium Low
Idling time Long Medium Short

3.2. Neural-Network-Based Traffic-Condition Predictor

Because different traffic conditions lead to different power demands for driving an FCEV,
a traffic-condition predictor was developed to enhance the adaptability of the EMS to different
traffic conditions.

Although features of the defined traffic conditions in Table 1 are straightforward and in consistency
with our experience, it is not easy to automatically identify current driving conditions in real
time because characteristic parameters are coupled, and there are nonlinear relationships between
driving parameters and condition types. Accordingly, a Back Propagation Neural Network (BPNN)
was adopted to realize traffic-condition predictions due to its good nonlinear mapping capability.
Then, the predicted result was used to adjust the window width of the subsequent HMA algorithm in
the EMS working flow.

The structure of the BPNN is shown in Figure 3, which includes an input layer with 11 neurons,
a hidden layer with eight neurons, and an output layer with one neuron. The network receives
11 selected feature parameters of the FCEV during the driving process and outputs the identified
traffic-condition type from the three predefined categories (UCT, USNT, and HCT). The 11 selected
driving-feature parameters are listed in Table 2.
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Figure 3. Structure of Back Propagation Neural Network (BPNN) for traffic-condition prediction.
(a) Input layer of the BPNN, (b) hidden layer of the BPNN, and (c) output layer of the BPNN.
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Table 2. BPNN inputs: 11 feature parameters.

Feature Parameters Units Descriptions

spd_avg m/s Average driving speed
spd_max m/s Maximum driving speed
acc_avg m/s2 Average acceleration
acc_max m/s2 Maximum acceleration
de_avg m/s2 Average deceleration
de_max m/s2 Maximum deceleration
r_idle / Idle speed ratio
r_acc / Acceleration ratio
r_de / Deceleration ratio
r_uni / Uniform speed ratio
stops / Stopping times

The working process of the BPNN-based traffic-condition-type prediction can be divided
into three steps—(1) offline BPNN training; (2) online BPNN identification; and (3) recursive
traffic-condition prediction.

In Step (1), the sample data of different road conditions are collected and used to train the BPNN
offline with a back-propagation algorithm. After being trained, the BPNN becomes an approximation
with high precision between selected driving parameters and traffic condition types. Then, in Step (2),
the trained BPNN is used to identify the traffic condition online. In reality, traffic conditions normally
gradually transition from one to another (although they may be frequent and fast); online identification
is done every m (m is an integer and greater than 1) sampling periods instead of at each sampling
instant. During identification, BPNN inputs are the 11 feature parameters calculated from the latest
n (n is an integer and greater than 1) sampling data, and output is the recognition of the current
driving-condition type. Finally, the identified traffic-condition type is used as the prediction result for
the coming m sampling period. A new online identification is repeated after m sampling periods at the
m + n sampling instant. This recurrent prediction process is illustrated in Figure 4.

Parameter 
extraction

Neural 
network
(trained)

Data 
collecting

𝑇 𝑇 𝑇 ∗𝑇 𝑇 

Parameter 
extraction

Neural 
network
(trained)

Data 
collecting

𝑇  forecast

𝑇 forecast

Time (s)

Figure 4. Steps 2 and 3 of prediction process: online identification and recursive prediction.

3.3. Hull-Moving-Average-Based Frequency Decoupling

During a real driving procedure, instantaneous high power is often required to rapidly speed up
an FCEV. As discussed before, the output power characteristic of a fuel cell makes it difficult to meet this
prompt high-power demand. To solve this problem, a frequency-decoupling method that can separate
low-frequency components from demanded power by filtering high-frequency components is essential
for the efficient operations of a hybrid-source-powered FCEV [42–44]. The low-frequency components
of the demanded power are fulfilled by the fuel cell, while high-frequency power requirements are
satisfied by the battery.
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A Moving Average (MA) algorithm can filter out high-frequency components and retain the
low-frequency trend of a signal, and this makes the MA applicable to smooth the demanded power of
an FCEV [45]. Common MA algorithms include Simple MA (SMA), Weighted MA (WMA), Exponential
MA (EMA) and Hull MA (HWA).

The SMA, essentially a low-pass filter, calculates the mean value of the data within a filter window
(with a window width of N) and takes this average as a filtered value. The SMA assigns the same
weight to all data in the window and results in an obvious filtering lag. Larger filter window width N
leads to a smoother filtering output but increases filtering lag, which reduces frequency-decoupling
performance [45]. To address this filtering-lag problem, WMA and EMA algorithms were developed
by assigning bigger weights to more recent data, and smaller weights to far-off data in the window
with linear and exponential calculations, respectively [46]. For example, the calculation equation of the
WMA is as follows:

p̂k(N) =
Npk + (N − 1)pk−1 + ... + pk−N+1

(N + 1)N/2
(1)

where pk is the value of a time sequence at time k, and p̂k(N) is the average value of pk after a WMA
calculation with a window width of N.

It can be seen from Equation (1) that most recent data pk are multiplied by the biggest weight of
N, while earliest value pk−N+1 is multiplied by the smallest weight of 1. This mechanism improves
the trend-tracking capability of the filter and decreases lag but the disadvantages of the WMA and
EMA are that assigned weights and window width are normally constants for the whole time series.

The HMA algorithm can improve the above insufficiency by carrying out calculations shown in
Equation (1) threefold with different filter-window widths; smoother filtering results can be obtained
with decreased filtering lag. Accordingly, the HMA algorithm was adopted in this paper for the
demanded power-frequency decoupling, and its calculation procedure has the four following steps [47].

Step 1: HMA calculates a WMA with Equation (1) with a period of N1 = round(N/2).

p̂k(N1) =
N1 pk + ... + pk−N1+1

(N1 + 1)N1/2
(2)

Step 2: The HMA calculates a WMA with a period of N.

p̂k(N) =
Npk + ... + pk−N+1

(N + 1)N/2
(3)

Step 3: A new data series is generated with the results of Steps 1 and 2.

p
′
k = 2p̂k(N1)− p̂k(N) (4)

Step 4: HMA calculates a WMA with a period of N2 = sqrt(N) on the new data series.

p
′
ˆ
k(N2) =

N2 p
′
k + ... + p

′
k−N2+1

(N2 + 1)N2/2
(5)

In the HMA algorithm, filter-window width N is a significant parameter determining the filtering
effect. The value of N is connected with the signal characteristics and a well-selected value can result
in smoother filtering output with reduced filtering lag. For example, the demanded power to drive
an FCEV in the HCT has fewer fluctuations and large amplitude. To process this signal with HMA,
a smaller value of N can be chosen to compromise between signal smoothing and filtering lag. For the
demanded driving power in UCT, on the other hand, power has more variations with relatively
small amplitudes; in this case, a bigger value of N can be selected to smooth the filtering result.
In the case of driving in a USNT, a power signal with medium fluctuations and moderate amplitudes
should be filtered with a value of N between the two situations above. Therefore, an N value and
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traffic-condition type are closely connected with the required driving power of this traffic-condition
type; if a value of N is well-selected for a particular traffic-condition type, a better power-filtering
result can be obtained. On the basis of this observation and the summary of comparison simulation
results during our research process, the selected N values in different traffic-condition types are listed
in Table 3.

Table 3. Selected N in different traffic conditions.

Traffic Condition Types N Values

UCT 22
USNT 18
HCT 14

According to Table 3, in each-frequency decoupling process, HMA filter-window width N is
adjusted by the traffic condition forecasted by the BPNN to improve the filtering effect and the
adaptability of the EMS to various driving conditions.

3.4. Fuzzy-Inference-System-Based Fuel-Cell Energy Management

The HMA-based frequency-decoupling method retains the low-frequency components of the
demanded power for the fuel cell to match its load characteristic, and leaves high-frequency power to
the battery. Although the traffic-condition-adapted window-width adjustment is adopted in the HMA,
it still has to manage the hybrid-power sources. This algorithm only considers the output-power
characteristics of the two power sources in the frequency domain and does not take battery SoC
maintenance into account.

The SoC is an essential parameter of a battery, and it is normally used as an indicator of the
amount of remaining energy as compared with its fully charged amount in percentage. Consider
that the battery should always be well-protected to avoid overcharging or overdischarging, the SoC
should be maintained within an allowed range to prevent possible damage. Another consideration
is that, in the hybrid-power supply of the FCEV shown in Figure 1, the battery is directly connected
to the DC bus without any converter. In this case, the battery needs to keep the output voltage as
stable as possible to support the DC bus voltage with variable SoC. According to the voltage/SoC
characteristic of a battery, if the battery’s voltage platform needs to be maintained, the SoC should
be kept in a particular range. An example of the voltage platform with a battery of 288 V and 14 Ah
is shown in Figure 5 [48]. From this figure, it can be seen that SoC maintenance range is 40%–80% to
maintain the voltage platform; if the SoC goes beyond this range, output voltage apparently increases
or decreases. Accordingly, for battery protection and DC bus voltage support, the battery SoC is
considered be bounded within the above range by the EMS proposed in this paper.

Figure 5. Voltage platform of a battery rated at 288 V and 14 Ah [48].
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An FIS was shown to be efficient in the energy-management applications for its intelligence and
model free advantages [49]. Therefore, an FIS was adopted as the last stage of the proposed EMS. As can
be seen in Figure 2, during the working flow of the proposed EMS, the filtering result of the demanded
power, which corresponds to its low-frequency components, by the HMA is given to a fuzzy system
for inference; the second input of the FIS is the estimated SoC of the battery. After the fuzzification,
fuzzy-implication-calculation and defuzzification processes, a power reference is generated by the FIS
for the fuel cell and its DC/DC converter to control its output power. Meanwhile, inadequate power
with high-frequency dynamics is calculated and supplied by the battery to keep the power balanced.

To realize fuzzification, the first input of the FIS, noted as P∗d , which stands for the low-frequency
components of the demanded power, is divided into five fuzzy sets; the second input, noted as SoC,
which represents the state of charge of the battery, is divided into three fuzzy sets. The output of the
FIS, noted as Pf cs, which denotes the reference power of the fuel cell, is also divided into five fuzzy sets.
The selected membership functions and the fuzzy-set distributions are shown in Figure 6.

 

 

 

 

 

 
  
  

Figure 6. Membership distributions of Fuzzy Inference System (FIS) inputs and output variables.
(N, Negative; S, Small; M, Medium; B, Big; VB, VeryBig; and VS, VerySmall.)

With these fuzzy sets, 15 fuzzy inference rules in the IF-THEN form were designed as follows.

1. IF P∗d is N and SoC is S, THEN Pf cs is VS;

2. IF P∗d is N and SoC is M, THEN Pf cs is VS;

3. IF P∗d is N and SoC is B, THEN Pf cs is VS;

4. IF P∗d is S and SoC is S, THEN Pf cs is M;

5. IF P∗d is S and SoC is M, THEN Pf cs is S;

6. IF P∗d is S and SoC is B, THEN Pf cs is VS;

7. IF P∗d is M and SoC is S, THEN Pf cs is B;
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8. IF P∗d is M and SoC is M, THEN Pf cs is M;

9. IF P∗d is M and SoC is B, THEN Pf cs is S;

10. IF P∗d is B and SoC is S, THEN Pf cs is B;

11. IF P∗d is B and SoC is M, THEN Pf cs is B;

12. IF P∗d is B and SoC is B, THEN Pf cs is M;

13. IF P∗d is VB and SoC is S, THEN Pf cs is VB;

14. IF P∗d is VB and SoC is M, THEN Pf cs is VB;

15. IF P∗d is VB and SoC is B, THEN Pf cs is M;

Mamdani inference was adopted to realize the implication calculation, and a centroid
defuzzification method was applied to convert the inference result from a fuzzy value to an accurate
one. Centroid defuzzification is expressed with the following equation [50].

u =

∫
xµA(x)dx∫
µA(x)dx

(6)

where x is a linguistic variable, µA(x) is the membership value of x in a fuzzy set A, and u is the crisp
value after the defuzzification.

4. Simulation and Result Analysis

4.1. Simulation Platform and Parameter Configurations

In order to evaluate the performance of the proposed traffic-condition-prediction-based HMA-FIS
EMS, a simulation platform was built with the MATLAB/Simulink and Simscape Driveline,
SimPowerSystems, and Powertrain Blockset toolboxes. This platform realized the FCEV structure
shown in Figure 1, and was built by modifying a simulation example, Fuel Cell Vehicle Power Train
(FCVPT) (Available for download with https://ww2.mathworks.cn/matlabcentral/fileexchange/
33309-fuel-cell-vehicle-fcv-power-train). The simulation platform is shown in Figure 7.
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Figure 7. FCEV simulation platform with proposed EMS.

The Class 3b test cycle of the Worldwide harmonized Light vehicle Test Procedures (WLTPs)
was adopted in the simulations as a speed profile; it is a 1800 s and 23.266 km test cycle with a top
vehicle speed of 131.3 km/h. This test cycle includes a low-speed section, a medium-speed section,

https://ww2.mathworks.cn/matlabcentral/fileexchange/33309-fuel-cell-vehicle-fcv-power-train
https://ww2.mathworks.cn/matlabcentral/fileexchange/33309-fuel-cell-vehicle-fcv-power-train
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a high-speed section, and an ultrahigh-speed section. The velocity and section distributions over 1800 s
are shown in Figure 8. Statistical data of this test cycle are summarized in Table 4.
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Figure 8. Class 3b Worldwide harmonized Light vehicle Test Procedure (WLTP) test cycle.

Table 4. Statistical data of Class 3B WLTP cycle with a total of 1800 s and 23.266 km.

Sections Low Medium High Extra-High

Duration (s) 589 433 455 323
Stop Duration (s) 156 48 31 7

Distance (m) 3095 4756 7162 7162
Stop Percentage 26.5% 11.1% 6.8% 2.2%

Max. Velocity (km/h) 56.5 76.6 97.4 131.3
Min. Acceleration (m/s2) −1.47 −1.49 −1.49 −1.21
Max. Acceleration (m/s2) 1.47 1.57 1.58 1.03

In the ’Energy Management System’ block of Figure 7, the EMS presented in Section 3 is realized.
In the ’FCEV Electrical System’ block, a Proton Exchange Membrane Fuel Cell (PEMFC) rated at
288 V and 100 kW was adopted as the main power source of the FCEV. A DC/DC converter in
current-regulated mode was used to connect the PEMFC to the DC bus. A 288 V and 13.9 Ah
lithium-ion battery was equipped as an auxiliary power source, which is directly connected to the DC
bus. The battery SoC is estimated by a classical current-integration method. The electrical motor is
a 288 V, 100 kW, and 8-pole salient rotor PMSM with the associated drive based on AC6 blocks of the
SimPowerSystems toolbox. A flux-weakening vector control is used to achieve a maximum motor
speed of 12,500 rpm. During simulations, the output power of the fuel cell was limited between 2 and
100 kW, and the initial value of the battery SoC was set to be 40.3%. A more detailed model description
and parameter configurations can be found in [34]. In the ’FCEV Dynamics’ block of Figure 7, a 1625 kg
light vehicle with a gearbox was realized, and the parameters of the EV are shown in Table 5.

To be more practical in the simulations, a Mechanical Brake Assist System (MBAS) was designed
and added to the EV model to make the FCEV follow the reference speed when there is sudden braking.
The MBAS and the pedal-position control schematic diagram are shown in Figure 9. The MBAS is
activated when the measured vehicle speed is greater than the reference value; the brake force is
first calculated through a PI controller and a limitation, and then applied onto a pair of double shoe
breakers on the wheels to reduce vehicle speed. Similar to mechanical brake control, vehicle-speed
control is also based on a PI controller and the control output is the pedal position within a preset
range whose value represents accelerating/decelerating demands.
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Table 5. Parameters of EV body.

Parameters (Notations) Values

Vehicle mass (m) 1625 (kg)
Frontal area (A) 2.711 (m2)

Drag coefficient (C) 0.26
Gravitational acceleration (g) 9.81 (m/s2)

Air density (ρ) 1.18 (kg/m3)
Rolling radius (r) 0.25 (m)

Rolling resistance ( f f ) 0
Follower (F) to base (B) teeth ratio (F/B) 4

Carrier (C) to driveshaft (D) teeth ratio (C/D) 2

×

×
v*

v

Reference 
cycle ≤0 on/off

-1

Data type 
convension

× PI Saturation
Brake force

Measured speed

PI Saturation
Pedal position

(a)

(b)

Figure 9. (a) Mechanical-brake-assist system control and (b) pedal-position control.

4.2. Simulation-Result Comparison and Analysis

Simulations were carried out on the FCEV simulator shown in Figure 7 with the proposed EMS
and speed reference shown in Figure 8. To validate the performance of the proposed EMS, the adopted
WLTP speed reference was also applied to the FCVPT example with its original EMS, which is based
on predefined rules to maintain battery SoC; the results of these two simulations were compared.

4.2.1. BPNN Training and Traffic-Condition-Prediction Results

According to the working flow of the BPNN-based traffic-condition predictor shown in Figure 2,
80 samples were extracted from the test cycle to train the neural network offline. From these samples,
40 belonged to the UCT, 22 belonged to the USNT and 18 belonged to the HCT; each sample included
11 feature parameters as its inputs and one target output indicating the traffic-condition type of
this sample. After training the BPNN with Levenberg–Marquardt backpropagation by applying
the MATLAB ’trainlm’ function, the target and actual outputs of the BPNN of these 80 samples are
shown in Figure 10. The maximum and minimum output errors were 0.1301 and −0.0448, respectively,
after training and mean square error was 0.0004.

Applying the trained BPNN in the simulation and the traffic-condition-type prediction, results
were obtained and are shown in Figure 11.
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Figure 10. Target and actual outputs of Back Propagation Neural Network (BPNN) after training.
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Figure 11. Traffic-condition-type prediction results by the trained BPNN.

4.2.2. FCEV Speed-Control-Simulation Results and Comparison

Vehicle reference speed, measured speed and their errors from the two simulations are shown in
Figures 12 and 13. It can be seen from the two figures that the measured speed overlays the reference
speed, which indicates that the FCEV followed the WLTP reference speed very well in both simulations.
During the 1800 s test cycle, the FCEV speed-control error with the proposed EMS was between −1.59
and 2.85 km/h with an average value of −0.0019 km/h, while error with the example EMS was
between −4.54 and 2.19 km/h with an average of −0.0046 km/h, which is bigger than the mean value
of the proposed method. These simulation results demonstrated that the proposed EMS could control
the FCEV velocity well by managing the hybrid-power sources.
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Figure 12. Vehicle reference speed, measured speed, and speed error (with proposed EMS).
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Figure 13. Vehicle reference speed, measured speed, and speed error (with example EMS).

4.2.3. Electrical-Power Simulation Results and Comparison

The electrical power of the motor, the output power of the fuel cell and the output power of the
battery from two simulations are shown in Figures 14–16 respectively. Mean, minimum and maximum
values of these power measurements are summarized in Table 6.

As can be seen from Figure 14 and Table 6, the demanded power of the motor frequently varies to
drive the FCEV to follow the WLTP reference speed; the higher the speed that is referred, the bigger the
power that is required. Statistically, the maximum required power was 62.83 kW in both simulations
and average power was 11.66 kW with the proposed EMS and 11.26 kW with the example EMS—very
close values.

Table 6. Power statistics of fuel cell, battery, and motor.

Statistics Motor Fuel Cell Battery

P. EMS E.EMS P.EMS E.EMS P.EMS E.EMS

Mean Value (kW) 11.66 11.26 13.54 11.92 −1.89 −0.66
Minimum Value (kW) −10.33 −12.64 2 2 −25.29 −13.75
Maximum Value (kW) 62.83 62.83 52.26 60.24 13.26 7.23

Note: The ’P. EMS’ and ’E. EMS’ in the table stand for the Proposed EMS and the Example EMS repectively.
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Figure 14. Comparison of electrical power of traction motor.
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Figure 15. Comparison of fuel-cell output power.
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From Figure 15 it can be seen that, during the first 600 s of the simulations when the referred
FCEV speed was low, fuel-cell output power by the proposed EMS was higher than the power by
the example EMS; during the last 600 s of the simulations, when reference speed was very high,
the fuel cell delivered less power through the proposed EMS than power through the example EMS.
These observations can also be seen from Table 6, the maximum power of the fuel cell was 52.26 kW
by the proposed EMS and 60.24 kW by the example EMS, which indicates that more power was
undertaken by the battery during peak power-demand periods with the management of the proposed
EMS; in the mean time, average fuel-cell power by the proposed EMS was 13.54 kW, higher than the
value of the example EMS (11.92 kW), which indicated that the principal power-supply role of the fuel
cell was strengthened by the proposed EMS and that the fuel cell delivered most power required by
the motor.

From Figure 16 it can be seen that, during the first 600 s of the simulations when there were many
instances of braking in the test cycles, the battery recovered more energy with the proposed EMS than
with the example EMS; in the last 600 s of the simulations, when the reference speed was very high,
the battery delivered higher power to support acceleration in high speed. These observations can also
be verified by Table 6, the maximum output power of the battery by the proposed EMS was 13.26 kW,
higher than the value of 7.23 kW by the example EMS, which indicated that the battery could support
more power in response to very high power demands. The absolute value of the minimum battery
power by the proposed EMS was 25.29 kW, which was also higher than that by the example EMS
(13.75 kW), which shows that the battery could absorb more braking energy through the proposed
EMS. By comparing Figures 15 and 16 it can also be found that the battery-power fluctuations were
more frequent than those of the fuel cell, which showed that the battery takes on higher-frequency
components of demanded power than the fuel cell does.

4.2.4. Hydrogen-Consumption Simulation Results and Analysis

Fuel-cell hydrogen consumption in two simulations is shown in Figure 17.
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Figure 17. Comparison of fuel-cell hydrogen consumption.

From Figure 17, it can be seen that the hydrogen consumption of the fuel cell was proportional
to its output power, shown in Figure 15 for the two simulations. In the low-speed section of the
test cycle, because the fuel cell delivered more power through the proposed EMS than through the
example EMS, hydrogen consumption by the proposed EMS was also higher; during the last 600 s
of the simulations, hydrogen consumption of the proposed EMS was lower in accordance with the
smaller power output of the fuel cell. During the entire simulations, average hydrogen consumption
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was 0.9113 L/s (by the proposed EMS) and 0.7946 L/s (by the example EMS). The higher mean value
also indicated that the proposed EMS could manage the fuel cell to undertake and deliver more power
during the simulations.

4.2.5. Battery SoC Maintenance Simulation Results and Analysis

Variations of battery SoC in the two simulations are shown in Figure 18.
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Figure 18. Comparison of battery State of Change (SoC).

As mentioned in the previous section, the initial value of the battery SoC was 40.3% in the
simulations. It can be seen from Figure 18 that the SoC varied from 40.3% to 66.30% in the proposed
EMS and from 40.32% to 49.56% in the example EMS. Although SoC fluctuations in the two simulations
were both within the expected range of 40%–80%, with the same test-cycle reference, the proposed EMS
allowed battery charge and discharge in a wider SoC range, which means that battery capacity could
be better utilized to meet high power-density requirements during rapid acceleration or deceleration
operations. A potential problem related to this result is that a wider SoC variation range may negatively
impact the charging and discharging cycles of a battery, and this may lead to a choice-making problem
in practice on the better dynamic characteristics or a longer battery lifetime.

From the above simulation-result comparison and analysis, it can be seen that the proposed
EMS could manage hybrid-power sources and allow the FCEV to track reference speed with
negligible control errors. The EMS can adapt to different traffic conditions contained in the WLTP
test cycle and have better utilization of the fuel cell and the battery in compliance with their
output-power characteristics.

5. Conclusions and Future Studies

This paper proposed a novel energy-management method combining the neural-network
technique, the hull moving-average algorithm and the fuzzy-inference system to realize
traffic-condition-based energy management for an FCEV powered by a fuel cell and a battery.

In this method, a BPNN was designed to identify and predict the traffic-condition type and the
predicted result was used to adjust the width of the HMA filter window; with this parameter-adaptive
mechanism, the HMA filtering effect could be improved to adapt to different power demands in
various driving conditions. The filtering result keeps the low-frequency parts of the demanded power
with consideration of the traffic situation and is then forwarded to an FIS. The FIS employs the fuzzified
values of the filtered power and the estimated battery SoC for fuzzy-implication calculations and
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obtains the reference power of the fuel cell. The rest of the demanded power with high-frequency parts
is undertaken by the battery; meanwhile, the SoC of the battery can be maintained within a particular
range for battery protection. Finally, a simulation platform was built on the basis of the FCVPT example.
The same WLTP test cycle was applied to this simulation platform with the proposed EMS and to the
example with its own EMS for comparison simulations. Simulation results were analyzed to verify the
effectiveness of the proposed EMS.

The proposed EMS has the advantages of simple calculation and good adaptability, which can
deal with deficiencies of existing frequency-decoupling- or fuzzy-logic-based energy-management
methods. However, there are still problems open for further research and discussion, such as
computational-complexity analysis of the proposed method to validate its availability for practical
real-time applications; and battery lifetime should be given more consideration in the proposed EMS
to compromise for charging/discharging cycles with the wider SoC variation range. These problems
will be important research targets for further studies.

Author Contributions: Conceptualization, G.Y.; methodology, Q.G. and H.J.; software, C.D.; validation, Y.W.;
formal analysis, M.A.-A.; supervision, L.M.

Funding: This research was funded by the Zhejiang Provincial Natural Science Foundation of China with Grant
No. LR17F030005, the Shanghai Science and Technology Committee Foundation with Grant No. 19040501700,
and the National Natural Science Foundation of China with Grant No. 61603246.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Leuchter, J.; Quang, H.D.; Popela, M. Development of mobile electrical vehicle for EMI applications. J. Eng.
2019, 2019, 3660–3664. [CrossRef]

2. International Energy Agency (IEA). Global EV Outlook 2019—Scaling-up the Transition to Electric Mobility;
Report; IEA: Paris, France, 2019.

3. Silva, F.A. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, Third Edition [Book News]. IEEE Ind.
Electron. Mag. 2018, 12, 46–48. [CrossRef]

4. Lomonova, E.A.; Paulides, J.J.H.; Wilkins, S.; Tegenbosch, J. ADEPT ’ADvanced electric powertrain
technology’ Virtual and hardware platforms. In Proceedings of the 2015 Tenth International Conference on
Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 31 March–2 April 2015; pp. 1–10.
[CrossRef]

5. International Energy Agency (IEA). The Future of Hydrogen; Report Prepared by the IEA for the G20, Japan;
IEA: Paris, France, 2019.

6. Hu, X.; Zou, C.; Tang, X.; Liu, T.; Hu, L. Cost-optimal energy management of hybrid electric vehicles using fuel
cell/battery health-aware predictive control. IEEE Trans. Power Electron. 2019. [CrossRef]

7. Saib, S.; Hamouda, Z.; Marouani, K. Energy management in a fuel cell hybrid electric vehicle using a fuzzy
logic approach. In Proceedings of the 2017 5th International Conference on Electrical Engineering-Boumerdes
(ICEE-B), Boumerdes, Algeria, 29–31 October 2017; pp. 1–4. [CrossRef]

8. Marzougui, H.; Kadri, A.; Amari, M.; Bacha, F. Improvement of energy management algorithm for fuel cell
electrical vehicle with fuzzy logic. In Proceedings of the 2017 18th International Conference on Sciences and
Techniques of Automatic Control and Computer Engineering (STA), Monastir, Tunisia, 21–23 December 2017;
pp. 212–217. [CrossRef]

9. Pany, P.; Singh, R.K.; Tripathi, R.K. Power management of fuel cell and battery fed DC motor drive for electric
vehicle application. In Proceedings of the IEEE-International Conference on Advances in Engineering, Science
And Management (ICAESM-2012), Nagapattinam, Tamil Nadu, India, 30–31 March 2012; pp. 363–368.

10. 2019 Toyota Mirai Fuel Cell Electric Vehicle Full Specification. Available online: https://ssl.toyota.com/
mirai/fullspecs.html (accessed on 4 October 2019).

11. Qi, X.; Wu, G.; Boriboonsomsin, K.; Barth, M.J. Development and Evaluation of an Evolutionary
Algorithm-Based OnLine Energy Management System for Plug-In Hybrid Electric Vehicles. IEEE Trans.
Intell. Transp. Syst. 2017, 18, 2181–2191. [CrossRef]

http://dx.doi.org/10.1049/joe.2018.8046
http://dx.doi.org/10.1109/MIE.2018.2874371
http://dx.doi.org/10.1109/EVER.2015.7112976
http://dx.doi.org/10.1109/TPEL.2019.2915675
http://dx.doi.org/10.1109/ICEE-B.2017.8192197
http://dx.doi.org/10.1109/STA.2017.8314963
https://ssl.toyota.com/mirai/fullspecs.html
https://ssl.toyota.com/mirai/fullspecs.html
http://dx.doi.org/10.1109/TITS.2016.2633542


Energies 2019, 12, 4426 20 of 21

12. Solano, J.; Hissel, D.; Pera, M. Fail-Safe Power for Hybrid Electric Vehicles: Implementing a Self-Sustained
Global Energy Management System. IEEE Veh. Technol. Mag. 2018, 13, 34–39. [CrossRef]

13. Reddy, N.P.; Pasdeloup, D.; Zadeh, M.K.; Skjetne, R. An Intelligent Power and Energy Management System
for Fuel Cell/Battery Hybrid Electric Vehicle Using Reinforcement Learning. In Proceedings of the 2019
IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019; pp. 1–6.
[CrossRef]

14. Amamou, A.; Ziadia, M.; Kelouwani, S.; Agbossou, K.; Dube, Y. Fuel-Cell and Battery Hybrid Source
Optimal Power Management for Electric Mobility. In Proceedings of the 2018 IEEE Vehicle Power and
Propulsion Conference (VPPC), Chicago, IL, USA, 28–31 August 2018; pp. 1–5. [CrossRef]

15. Han, J.; Charpentier, J.F.; Tang, T. An energy management system of a fuel cell/battery hybrid boat. Energies
2014, 7, 2799–2820. [CrossRef]

16. Roumila, Z.; Rekioua, D.; Rekioua, T. Energy management based fuzzy logic controller of hybrid system
wind/photovoltaic/diesel with storage battery. Int. J. Hydrogen Energy 2017, 42, 19525–19535. [CrossRef]

17. Garcia, P.; Fernandez, L.M.; Garcia, C.A.; Jurado, F. Energy management system of fuel-cell-battery hybrid
tramway. IEEE Trans. Ind. Electron. 2009, 57, 4013–4023. [CrossRef]

18. Li, Q.; Chen, W.; Liu, Z.; Li, M.; Ma, L. Development of energy management system based on a power
sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway. J. Power Sources 2015, 279, 267–280.
[CrossRef]

19. Ibrahim, M.; Jemei, S.; Wimmer, G.; Steiner, N.Y.; Kokonendji, C.C.; Hissel, D. Selection of mother wavelet and
decomposition level for energy management in electrical vehicles including a fuel cell. Int. J. Hydrogen Energy
2015, 40, 15823–15833. [CrossRef]

20. Marzougui, H.; Kadri, A.; Amari, M.; Bacha, F. Frequency separation based energy management strategy for
fuel cell electrical vehicle with super-capacitor storage system. In Proceedings of the 2018 9th International
Renewable Energy Congress (IREC), Hammamet, Tunisia, 20–22 March 2018; pp. 1–6.

21. Zhang, X.; Liu, L.; Dai, Y.; Lu, T. Experimental investigation on the online fuzzy energy management of
hybrid fuel cell/battery power system for UAVs. Int. J. Hydrogen Energy 2018, 43, 10094–10103. [CrossRef]

22. Zhang, R.; Tao, J. GA-Based Fuzzy Energy Management System for FC/SC-Powered HEV Considering H 2
Consumption and Load Variation. IEEE Trans. Fuzzy Syst. 2018, 26, 1833–1843. [CrossRef]

23. Yin, H.; Zhou, W.; Li, M.; Ma, C.; Zhao, C. An adaptive fuzzy logic-based energy management strategy on
battery/ultracapacitor hybrid electric vehicles. IEEE Trans. Transp. Electrif. 2016, 2, 300–311. [CrossRef]

24. Yang, L.; Markert, E.; Heinkel, U. Fuzzy logic based energy management algorithm of a hybrid electric
vehicle with range-extender. In Proceedings of the 2014 IEEE 11th International Multi-Conference on Systems,
Signals & Devices (SSD14), Barcelona, Spain, 11–14 February 2014; pp. 1–5.

25. Erdinc, O.; Vural, B.; Uzunoglu, M. A wavelet-fuzzy logic based energy management strategy for a fuel
cell/battery/ultra-capacitor hybrid vehicular power system. J. Power Sources 2009, 194, 369–380. [CrossRef]

26. Yu, H.; Tarsitano, D.; Hu, X.; Cheli, F. Real time energy management strategy for a fast charging electric
urban bus powered by hybrid energy storage system. Energy 2016, 112, 322–331. [CrossRef]

27. Xiao, Y.; Liao, H.; Zhou, Y.; Wang, R.; Gao, K.; Huang, Z. A wavelet-fuzzy based energy management for
fuel cell hybrid power train. In Proceedings of the 2018 13th World Congress on Intelligent Control and
Automation (WCICA), Changsha, China, 4–8 July 2018; pp. 1184–1189.

28. Meng, D.; Zhang, Y.; Zhou, M.; Na, R. Intelligent fuzzy energy management research for a uniaxial parallel
hybrid electric vehicle. Comput. Electr. Eng. 2017, 58, 447–464.

29. Gao, C.; Zhao, J.; Wu, J.; Hao, X. Optimal fuzzy logic based energy management strategy of
battery/supercapacitor hybrid energy storage system for electric vehicles. In Proceedings of the 2016
12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 12–15 June 2016;
pp. 98–102.

30. Pan, M.; Yan, J.; Tu, Q.; Jiang, C. Fuzzy control and wavelet transform-based energy management strategy
design of a hybrid tracked bulldozer. J. Intell. Fuzzy Syst. 2015, 29, 2565–2574. [CrossRef]

31. Wang, T.; Li, Q.; Han, Y.; Hong, Z.; Liu, T.; Chen, W. Fuel Cell Hybrid Power Generation System Equivalent
Hydrogen Consumption Instantaneous Optimization Energy Management Method. Proc. CSEE 2018, 38,
4173–4182.

http://dx.doi.org/10.1109/MVT.2017.2776670
http://dx.doi.org/10.1109/ITEC.2019.8790451
http://dx.doi.org/10.1109/VPPC.2018.8605030
http://dx.doi.org/10.3390/en7052799
http://dx.doi.org/10.1016/j.ijhydene.2017.06.006
http://dx.doi.org/10.1109/TIE.2009.2034173
http://dx.doi.org/10.1016/j.jpowsour.2014.12.042
http://dx.doi.org/10.1016/j.ijhydene.2015.06.055
http://dx.doi.org/10.1016/j.ijhydene.2018.04.075
http://dx.doi.org/10.1109/TFUZZ.2017.2779424
http://dx.doi.org/10.1109/TTE.2016.2552721
http://dx.doi.org/10.1016/j.jpowsour.2009.04.072
http://dx.doi.org/10.1016/j.energy.2016.06.084
http://dx.doi.org/10.3233/IFS-151959


Energies 2019, 12, 4426 21 of 21

32. Nüesch, T.; Cerofolini, A.; Mancini, G.; Cavina, N.; Onder, C.; Guzzella, L. Equivalent Consumption
Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle.
Energies 2014, 7, 3148–3178. [CrossRef]

33. Lei, S.; Lin, X.; Lin, G. Energy Management Strategy Based on Type Recognition and Multivariate Nonlinear
Regression Optimization. China Mech. Eng. 2017, 28, 2695–2700.

34. Tremblay, O.; Dessaint, L.A. Experimental validation of a battery dynamic model for EV applications.
World Electr. Veh. J. 2009, 3, 289–298. [CrossRef]

35. Dang, L.; Bernard, N.; Bracikowski, N.; Berthiau, G. Design optimization with flux weakening of high-speed
PMSM for electrical vehicle considering the driving cycle. IEEE Trans. Ind. Electron. 2017, 64, 9834–9843.
[CrossRef]

36. Sepulchre, L.; Fadel, M.; Pietrzak-David, M.; Porte, G. Flux-weakening strategy for high speed PMSM for
vehicle application. In Proceedings of the 2016 International Conference on Electrical Systems for Aircraft,
Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference
(ESARS-ITEC), Toulouse, France, 2–4 November 2016; pp. 1–7.

37. Liu, T.t.; Tan, Y.; Wu, G.; Wang, S.m. Simulation of PMSM vector control system based on Matlab/Simulink.
In Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation,
Zhangjiajie, China, 11–12 April 2009; Volume 2, pp. 343–346.

38. Sun, Y.; Wang, X.; Li, L.; Shi, J.; An, Q. Modelling and control for economy-oriented car-following problem
of hybrid electric vehicle. IET Intell. Transp. Syst. 2019, 13, 825–833. [CrossRef]

39. Cao, Y.; Kroeze, R.C.; Krein, P.T. Multi-timescale Parametric Electrical Battery Model for Use in Dynamic
Electric Vehicle Simulations. IEEE Trans. Transp. Electrif. 2016, 2, 432–442. [CrossRef]

40. Tabari, M.; Yazdani, A. A Mathematical Model for Stability Analysis of a DC Distribution System for Power
System Integration of Plug-In Electric Vehicles. IEEE Trans. Veh. Technol. 2015, 64, 1729–1738. [CrossRef]

41. Thounthong, P.; Davat, B.; Rael, S.; Sethakul, P. Fuel cell high-power applications. IEEE Ind. Electron. Mag.
2009, 3, 32–46. [CrossRef]

42. Hames, Y.; Kaya, K.; Baltacioglu, E.; Turksoy, A. Analysis of the control strategies for fuel saving in the
hydrogen fuel cell vehicles. Int. J. Hydrog. Energy 2018, 43, 10810–10821. [CrossRef]

43. Joung, K.W.; Kim, T.; Park, J.W. Decoupled frequency and voltage control for stand-alone microgrid with
high renewable penetration. IEEE Trans. Ind. Appl. 2019, 55, 122–133. [CrossRef]

44. Parwal, A.; Fregelius, M.; Temiz, I.; Göteman, M.; de Oliveira, J.G.; Boström, C.; Leijon, M. Energy
management for a grid-connected wave energy park through a hybrid energy storage system. Appl.
Energy 2018, 231, 399–411. [CrossRef]

45. Isufi, E.; Loukas, A.; Simonetto, A.; Leus, G. Autoregressive moving average graph filtering. IEEE Trans.
Signal Process. 2016, 65, 274–288. [CrossRef]

46. Tseng, F.; Hsueh, J.; Tseng, C.; Yang, Y.; Chao, H.; Chou, L. Congestion Prediction With Big Data for Real-Time
Highway Traffic. IEEE Access 2018, 6, 57311–57323. [CrossRef]

47. Hull, A. How to Reduce Lag in a Moving Average. Report prepared by Alan Hull. 2005. Available online:
https://alanhull.com/hull-moving-average (accessed on 23 February 2017).

48. Saw, L.; Somasundaram, K.; Ye, Y.; Tay, A. Electro-thermal analysis of Lithium Iron Phosphate battery for
electric vehicles. J. Power Sources 2014, 249, 231–238. [CrossRef]

49. Jafari, M.; Malekjamshidi, Z.; Lu, D.D.C.; Zhu, J. Development of a Fuzzy-Logic-Based Energy Management
System for a Multi-Port Multi-Operation Mode Residential Smart Micro-grid. IEEE Trans. Power Electron.
2018. [CrossRef]

50. Arcos-Aviles, D.; Pascual, J.; Marroyo, L.; Sanchis, P.; Guinjoan, F. Fuzzy logic-based energy management
system design for residential grid-connected microgrids. IEEE Trans. Smart Grid 2016, 9, 530–543. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/en7053148
http://dx.doi.org/10.3390/wevj3020289
http://dx.doi.org/10.1109/TIE.2017.2726962
http://dx.doi.org/10.1049/iet-its.2018.5421
http://dx.doi.org/10.1109/TTE.2016.2569069
http://dx.doi.org/10.1109/TVT.2014.2336854
http://dx.doi.org/10.1109/MIE.2008.930365
http://dx.doi.org/10.1016/j.ijhydene.2017.12.150
http://dx.doi.org/10.1109/TIA.2018.2866262
http://dx.doi.org/10.1016/j.apenergy.2018.09.146
http://dx.doi.org/10.1109/TSP.2016.2614793
http://dx.doi.org/10.1109/ACCESS.2018.2873569
https://alanhull.com/hull-moving-average
http://dx.doi.org/10.1016/j.jpowsour.2013.10.052
http://dx.doi.org/10.1109/TPEL.2018.2850852
http://dx.doi.org/10.1109/TSG.2016.2555245
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	FCEV Structure and Its Power System
	Traffic-Condition-Prediction-Based HMA-FIS Energy-Management Strategy
	Traffic-Condition Categorizing
	Neural-Network-Based Traffic-Condition Predictor
	Hull-Moving-Average-Based Frequency Decoupling
	Fuzzy-Inference-System-Based Fuel-Cell Energy Management

	Simulation and Result Analysis
	Simulation Platform and Parameter Configurations
	Simulation-Result Comparison and Analysis
	BPNN Training and Traffic-Condition-Prediction Results
	FCEV Speed-Control-Simulation Results and Comparison
	Electrical-Power Simulation Results and Comparison
	Hydrogen-Consumption Simulation Results and Analysis
	Battery SoC Maintenance Simulation Results and Analysis


	Conclusions and Future Studies
	References

