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Abstract: A piping and instrumentation diagram (P&ID) is a key drawing widely used in the energy
industry. In a digital P&ID, all included objects are classified and made amenable to computerized
data management. However, despite being widespread, a large number of P&IDs in the image format
still in use throughout the process (plant design, procurement, construction, and commissioning)
are hampered by difficulties associated with contractual relationships and software systems. In this
study, we propose a method that uses deep learning techniques to recognize and extract important
information from the objects in the image-format P&IDs. We define the training data structure
required for developing a deep learning model for the P&ID recognition. The proposed method
consists of preprocessing and recognition stages. In the preprocessing stage, diagram alignment, outer
border removal, and title box removal are performed. In the recognition stage, symbols, characters,
lines, and tables are detected. The objects for recognition are symbols, characters, lines, and tables in
P&ID drawings. A new deep learning model for symbol detection is defined using AlexNet. We also
employ the connectionist text proposal network (CTPN) for character detection, and traditional image
processing techniques for P&ID line and table detection. In the experiments where two test P&IDs
were recognized according to the proposed method, recognition accuracies for symbol, characters,
and lines were found to be 91.6%, 83.1%, and 90.6% on average, respectively.
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1. Introduction

A piping and instrumentation diagram (P&ID) is a key drawing widely used in the energy industry
including petroleum and power plants. P&ID is drawn based on a process flow diagram (PFD), which
is a detailed schematic representation of the general flow of major equipment and materials involved
in each plant process and the working fluid. Thus, a P&ID provides the basic plant design and serves
as a basic resource for detail design, procurement, construction, and commissioning of a plant.

In a digital P&ID, all objects drawn are classified and made amenable to computerized data
management. Symbols are a critical component of any digital P&ID and are largely categorized into four
types: fitting, instrumentation, equipment, and diagram reference. Digital P&ID symbols are connected
by lines. Apart from these diagram symbols, a digital P&ID contains components such as outer borders,
title boxes, characters, and tables. A digital P&ID is assigned a tag ID, which is one of the attributes of a
symbol, and, thus, can be linked to the project database including 3D design models. For this networking
capability, a digital P&ID at industrial sites is also called an intelligent or smart P&ID.

A digital P&ID is used by most engineering, procurement, and construction (EPC) contractors
responsible for plant design, procurement, and construction. However, new plants often use
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image-format P&IDs that are drawn in the front-end engineering and design (FEED) stage or produced
by equipment and materials manufacturers. However, plant operators use digital P&IDs and archive
them as image files and large volumes of P&IDs in old plants.

To overcome these issues, P&IDs need to be converted from an image to a digital format in
the energy industry. In this case, digitalization is a process of recognizing high-level objects with
field-specific meanings among diagram images and extracting necessary information from them,
which is followed by replicating the original diagram images. Currently, the P&ID process is mostly
manual and its quality varies depending on the skills of the individual worker, which makes it a
time-consuming and error-prone undertaking.

To generate a digital P&ID from a diagram, a method to recognize and extract each individual
object contained in the P&ID drawings should be developed. In this paper, a deep learning-based
method to recognize and extract critical information contained in P&ID drawings is proposed. The
method consists of two stages—preprocessing and recognition. The preprocessing stage is further
divided into process steps such as diagram alignment and removal of outer borders and title boxes.
In the recognition stage, symbols, characters, lines, and tables are recognized. A deep learning model is
used for symbol and character recognition. To develop the deep learning model for P&ID recognition,
its training data structure must be properly defined.

The rest of this paper is organized as follows. Section 2 analyzes previous research on diagram
recognition. Section 3 analyzes the P&ID structure, identifies information necessary for object
recognition, and defines the deep learning training data structure. Section 4 presents the preprocessing
algorithm conducted prior to the P&ID object recognition stage. Section 5 presents the P&ID object
recognition algorithm. Section 6 discusses recognition experiments of symbols, characters, and lines
with two-test P&IDs. Lastly, conclusions are drawn in Section 7.

2. Brief Literature Review

Major components of a diagram include symbols carrying field-specific meanings, lines representing
inter-symbol connections, and attributes assigned to symbols and lines through texts or characters [1].
There have been studies on the recognition of diagrams such as electric diagram [2,3], engineering
diagram [4–6], and logic diagram [7]. These research studies used traditional image recognition methods
using geometric features of objects. After recognizing the discernible features from analog diagrams
using techniques such as edge detection [8], Hough transform [9], morphological operation [10], and
image feature extraction [11], symbols and lines within the image are searched by comparing the features
with those extracted from the predefined symbols and lines. These traditional recognition methods reach
their limitations when conducting robust recognition of various types of objects (symbols, lines, texts,
etc.) contained in analog diagrams. In addition, accuracy of object recognition is compromised in the
presence of inter-object interruptions, morphological changes, or noises such as stains.

Some studies on recognizing P&IDs have also been conducted recently [4,6,12,13]. To recognize
symbols, lines, and texts in P&IDs, these research studies also applied traditional image recognition
methods. Specifically, Reference [4] proposed a feature-based method recognizing symbols, lines,
and texts of a plant diagram, which is almost the same as P&IDs [12]. Tan et al. (2016) proposed
a new method based on branches of image feature extraction called local binary pattern (LBP) and
spatial pyramid matching (SPM) to recognize symbols and texts in a P&ID. Arroyo et al. (2016)
recognized symbols and texts using Hough transformation, generalized Hough transformation, and
optical character recognition (OCR). The recognized information was converted into a plant simulation
model [13]. These studies had to use simplified P&IDs since the performance of traditional feature
recognition methods highly vary with changes in conditions such as object rotations, flips, scaling, and
noises. Likewise, due to technological difficulties, the recognition of texts in P&IDs have also been
conducted restrictively with rule-based approaches. Recently, more advanced research on recognizing
complex P&IDs has been conducted using various feature-based methods and Tesseract OCR engine [6].
However, it is still difficult to overcome the inherent limitations of the traditional methods.
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Meanwhile, a convolutional neural network (CNN) [14], which is a class of deep neural networks
optimized for analyzing visual imagery, has emerged as an alternative way to overcome technological
limitations of the traditional image recognition methods. As a deep learning model for classifying
image classes or categories, GoogLeNet, which won the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2014 [15] with the top-5 error rate at 6.67% in images classification of 1000
categories, surpasses human-level performance in object recognition and classification. You only
look once (YOLO) [16], region-CNN (R-CNN) [17], and single shot detector (SSD) [18] are examples
of CNN-based deep learning models that detect the position of a specific class of a specific object
within the range of an overall image. Other image-classification deep learning models include image
detection methods employing a sliding window [19] or a fully convolutional layer [20]. There are a
variety of open-source tools such as TensorFlow [21], Keras [22], Pytorch [23], and Theano [24], and
the popularization of parallel processing using graphics processing units (GPUs) has accelerated the
spread of deep learning models in various fields including image processing.

Through enough training on data, CNN can overcome the limitations of the conventional methods
such as inter-object interruption, morphological change, and noise problems. This feature makes CNN
much more effective than the conventional methods in object recognition. The conventional methods
require detailed calibrations of pre-defined templates when changes such as rotations, interruptions,
and scaling are applied to target objects. However, if given enough data and computing resources,
CNN can deal with those unexpected conditional changes by itself. This is because CNN calculates an
object’s features with convolutional layers and sorts out only the features that distinguish each object
while input data is going through multiple layers of CNN [25].

To leverage the advances in deep learning techniques, several researchers have employed
CNN-based deep learning techniques in recognition-related studies [26,27]. However, Reference [26]
is a simple logic diagram for general use and, although it deals with the recognition of P&ID objects,
Reference [27] considers neither the stage of diagram preprocessing nor line and table recognition.
In contrast, the method proposed in this paper recognizes not only symbols and lines, which are key
components of P&ID objects, but also texts and tables. This study differentiates itself from previous
studies in that it improves the diagram recognition efficiency by providing a preprocessing stage.
In addition, a training data structure for P&ID object recognition is also proposed.

3. Training Data Definition for P&ID Recognition

In ISO 10628 [28], P&ID is defined as a diagram that, based on the process flow diagram, represents
the technical realization of a process by means of graphical symbols for equipment and piping together
with graphical symbols for process measurement and control functions. Most of the deep learning
models for image detection and classification with high accuracy are trained with common object
data such as human beings, animals, plants, and cars. Therefore, they cannot be directly applied for
P&ID object recognition, and should be upgraded with additional training data including symbols,
characters, and text data used in P&IDs. It is crucial to secure a sufficient amount of training data
in order to improve the P&ID recognition accuracy using a deep learning model. The training data
structure suitable for P&ID recognition needs to be defined in this sense to ensure the efficiency of
training data building by collecting all necessary data and consistently extracting relevant data from
all pertinent sources [29].

3.1. Training Data Requirement Analysis for P&ID Recognition

A P&ID is composed of outer borders and title boxes, as well as symbols, lines, characters,
and tables. This study defines symbols, texts, lines, and tables as the objects to be recognized. Key
information elements for symbol recognition using a deep learning model are class, bounding box, and
orientation. A bounding box is expressed in terms of the coordinates of the top-left and bottom-right
corners, and orientation is expressed in terms of the four cardinal directions rather than angles. Key
information elements for character recognition are character count, bounding box, and orientation.
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Key information elements for line recognition are class, start point, end point, the line, point, edge
morphologies, and the position orientation of the flow sign. Line, point, and edge morphologies
indicate whether the starting and ending points of a line are connected via an arrow. The flow sign
indicates the fluid flow direction along the pipe. Its position is expressed by the coordinates at the
top-left and bottom-right corners of the bounding box surrounding it. The orientation of the flow sign
is expressed in terms of the four cardinal directions.

3.2. Training Data Structure Definition for P&ID Recognition

Figure 1 illustrates the training data structure used for the P&ID recognition deep learning model.
The P&ID folder is the layer on top of the folder. It consists of the files containing the lists of symbol
and character classes. The symbol class includes the symbol type and orientation as well as character
class, count, size, and orientation. Projector folders are placed under the P&ID folder layer. Training
data are generally stored at the project unit because each project uses its own symbols and legend.
A project folder, thus, stores files containing the list of the diagrams created in that project and actual
image format diagrams.
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In the project folder layer, there are four training data folders assorted by task area including
symbol detection, symbol classification, character detection, and line detection. In the training data
folders for character detection and line detection, each diagram has an annotation file with data needed
to meet the requirements explained in Section 3.1.

For the definition of the annotation file data structure, we benchmarked the data structure used
at the Visual Object Classes (VOC) challenge held by Pattern Analysis, Statistical Modelling, and
Computational Learning (PASCAL) [30]. In the training data folder for symbol classification, symbols
cut out from the diagram are stored by class because symbol images themselves are training data.

4. P&ID Recognition Accuracy Improvement through Preprocessing

4.1. Diagram Alignment

Prior to the popularization of digital P&IDs, most diagrams were drawn on paper or as image files,
whereby the latter was generated by scanning hand-drawn diagrams. When the diagrams are scanned in
an inclined state, depending on the environment or condition, more training data will be required to
process various inclined angles of the scanned images. In the case where the amount of training data
is limited, preprocessing must be conducted to realign the inclined diagram, in order to improve the
diagram recognition accuracy. In other words, an inclined diagram must be realigned in the preprocessing
stage to improve the diagram recognition accuracy using a limited amount of training data.
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To realign the inclined P&IDs (Figure 2a), the degree of inclination or tilt angle must be measured.
Given that the longer the straight line used for the angle calculation, the smaller the angle calculation
error is, the horizontal line of the outer border, which is the longest line of a diagram at the outer
boundary, is used for calculating the rotation angle. To identify the outer border horizontal line, the
bottom one-fifth of the diagram is cut out as shown in Figure 2b, in which the longest horizontal line is
identified as shown in Figure 2c. A detailed method for horizontal line recognition is described in
Section 5.3. The inclined angle, as shown in Figure 2d, can be calculated using an arc-sine function after
obtaining the coordinates of both ends of the longest horizontal line of the diagram. After calculating
its inclined angle, the diagram is realigned by image rotation, as shown in Figure 2e. The inclined
angle θ is calculated using Equation (1).

θ = sin−1(y2 − y1)/
√
(y2 − y1)

2 + (x2 − x1)
2 (1)
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4.2. Removal of Outer Borders and Title Boxes

Preprocessing for P&ID recognition includes the outer border and title removal, as well as diagram
realignment. If the outer borders and the title boxes are included in a diagram, they will affect the
character and table recognition process whereas no significant morphological differences will be
observed in symbols, lines, and tables. Accordingly, to enhance the accuracy of the diagram object
recognition, it is necessary to remove them in the preprocessing stage itself.

The morphologies of the outer borders and the title boxes in a P&ID may vary from project to
project. An outer border is marked by a single or double solid line, often lined with minor ticks. A title
box is placed in the bottom left, center, or right. Annotations inserted in a P&ID may be in a note area
usually placed at the right corner of the diagram.

Figure 3 illustrates the border and title box removal process. After cutting out the bottom one-fifth
of a diagram (Figure 3b), all horizontal lines on this part of the diagram are clipped out. Among the
extracted horizontal lines, the longest line is selected, and the second longest line is also selected if the
length error is within a 5% range (Figure 3c). Once a horizontal line is selected, all lines connected
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to this line are identified by detecting all the black pixels on the diagram image connected to the
line (Figure 3d). Since a title box is connected to the outer border, the title box can be identified by
extracting the black pixels on the image corresponding to the outer border. A morphology operation is
then applied to the extracted black pixels to identify the outer border and title box (Figure 3e). Lastly,
the identified areas are removed from the P&ID image (Figure 3f).
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Morphology operation is a technique commonly used for image preprocessing or postprocessing.
The common basic morphology operations include erosion and dilation operations, in which the
respective minimum and maximum values of the pixels in the kernel area are assigned to the value of
the current pixel. There are also open and close operations, in which the basic operations are combined.
The combination has the effect of removing minor areas and filling empty spaces, respectively, while
retaining the overall morphology. We used the open operation to extract the outer borders and title boxes.

5. Object Recognition on an Image-Format P&ID

5.1. Symbol Detection

Before proceeding to symbol recognition, the image-classification deep learning model learns how
to classify images with the symbol image training data extracted from the diagram. It then detects the
types and positions (bounding box) of the symbols included in the P&ID image, by applying the sliding
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window technique to the trained deep learning model. Lastly, the overlapping symbol recognition
results are merged through the process of grouping.

A new deep learning model for symbol image classification is defined based on AlexNet [14].
AlexNet is a CNN model that won the 2012 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) for classifying an image with 1000 classes. This model consists of eight layers, and its
recognition accuracy is lower than those of GoogLeNet [15], VGGNet [31], and ResNet [32], which
have more than 20 layers. However, considering the limited volume of data in the engineering sector
compared with other fields where thousands of pages of training data are available, we defined the
deep learning model for symbol image classification based on AlexNet, which can be trained with a
relatively small amount of data.

The convolutional layer calculates the output value for each input image at each output node
over the entire image pixel area, using a convolutional filter of a specific size, and transmit the value
to the next neuron. The convolutional layer’s parameters are the filter size, number, stride, padding,
and activation function. Filter size is the size of filter running through the input image pixels. The
filter number is the number of filters used per one image. Stride is the distance covered by the filter to
move from pixel to pixel in the image. Padding is the range of image expansion in the four cardinal
directions by the filter prior to image scanning. The padding value in image recognition is generally
set as the “same,” which means an input data size expansion such that the data size after passing
the convolutional layer remains the same as before passing it. An activation function is the function
that delivers an input value of the neuron surpassing the reference value to the next neuron. A fully
connected layer is the layer connected to all neurons in an adjacent layer. The parameters of a fully
connected layer are the number of output data values and the activation function.

Figure 4 presents the structure of the image classification’s deep learning model defined in
this study. Like AlexNet, this model has five convolutional layers and three fully connected layers.
However, the training image used in AlexNet is a three-channel red, green, blue (RGB) image. One
color channel was sufficient for our model because the P&ID drawing used in this study was a black
and white image. Thus, the size of input data was set to 227 × 227 × 1. The parameters of the first
CNN were filter count (32), size (11), stride (4 × 4), and padding (same). After the first CNN layer,
a pooling layer (size: 3 × 3, stride: 2 × 2) was applied. The parameters of the second CNN layer were
filter count (86), size (5 × 5), stride (1 × 1), and padding (same), to which the same pooling layer as in
the first CNN layer was applied. The parameters of the third and fourth CNN layers were filter count
(128), size (3 × 3), stride (1 × 1), and padding (same), and no pooling was applied. The parameters
of the last CNN layer were filter count (86), size (3 × 3), stride (2 × 2), and padding (same), to which
the same pooling layer as in the first CNN layer was applied. The first and second fully connected
layers consisted of the number of output data (1364), to which 1/2 dropout was applied. The parameter
of the third fully connected layer—the output layer—was the number of output data (9), which is
the number of classes of the image to be recognized. Using softmax as the activation function in the
last fully-connected layer, the probability that the input image would correspond to nine classes was
derived. ReLU was used as the activation function of the CNN layers and the fully connected layers
except for the output layer. The image-classification deep-learning model training was implemented
using softmax as the activation function of the last layer. However, post-training prediction using the
model was performed without softmax in the last layer, to improve the operation speed.

For this study, four types of symbols were selected: pump, instrument, valve, and diagram
reference (DR). Considering the possible symbol alignment orientations on the diagram, the recognition
objects were categorized into nine classes: pump, DR I (inlet) east, DR I west, DR O (outlet) east, DR O
west, instrument north, instrument west, valve north, and valve east. The reason for selecting these
particular types of symbols is the largely varying morphology, size, and aspect ratio of each of these
symbols and the importance of their accurate recognition for the success of the proposed deep learning
model through training data expansion.
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In general, there is a large variety and amount of training data available for general usage, such
as the Modified National Institute of Standards and Technology (MNIST) [33] and the Canadian
Institute for Advanced Research (CIFAR) [34]. However, there are hardly any open-access training
data in specialized fields such as P&ID. In addition, there has not been any significant research on
data extraction. Therefore, in this study, some of the P&ID symbols were set as recognition objects,
and the image and class of the symbols selected for training were matched manually. To construct
the training data, we extracted 28 symbol images for each class from 68 P&IDs provided by the ‘S’
engineering company in Korea. To increase the number of training data, a rotation transformation
between −10◦ and +10◦ was performed on each extracted symbol image. Furthermore, a translation
transformation between 0% and 5% on the size of each symbol image along the x and y directions was
also performed, followed by the conversion of each symbol image to 227 × 227. It yielded 140 symbol
images per class, of which 100 were used for training and the remaining 40 were used for validation, as
shown in Figure 5.
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In the training process, cross entropy was used as the loss function. The adam optimizer, which
has a learning rate of 0.0001 and a decay rate of 0.000001, was chosen as the optimizer. The batch size
and epoch were set to 50 and 150, respectively, and the training data was configured to be shuffled
after every epoch. The classification accuracy for the post-training verification data was 99%. Table 1
presents the prediction score by classifying each recognition symbol, whereby the prediction score is the
output of the predicted value without having to use softmax in the last layer of the deep learning model.
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Table 1. Prediction scores for trained symbol types.

Class (Label) Instrument
North

Instrument
West

DR I
East

DR I
West

DR O
East

DR O
West Pump Valve

North
Valve
East

Prediction
score

instrument north 17.05 * 6.36 0.45 −4.54 −4.10 −4.40 0.84 −6.95 −5.3
instrument west −1.67 26.48 −10.82 3.51 −12.44 3.73 1.19 −6.71 −4.55

DR I east 1.41 −2.32 19.39 −3.28 2.26 0.35 −4.96 −11.21 1.83
DR I west −6.16 5.35 −8.24 19.82 −8.32 1.68 4.08 −12.69 2.69
DR O east −1.50 −4.81 3.06 −1.88 17.14 0.99 −8.05 −2.15 −6.49
DR O west −6.71 −0.67 −6.97 5.70 2.33 16.15 −7.63 −0.97 −7.26

pump 10.53 5.86 −3.57 −6.28 −14.71 −17.82 31.13 −10.78 6.83
valve north −0.62 −0.43 −12.55 −7.51 3.05 3.04 −2.50 17.73 −7.05
valve east −2.78 0.41 2.04 7.14 −9.81 −11.62 7.07 −13.82 24.67

* XX.XX: the highest prediction score in each row.

The results of the correct answers for predicting the symbols trained using the classification model
suggests that the pump symbol scored the highest with 31.13 points, while the DR O west symbol
scored the lowest with 16.15 points. When filtering the symbol prediction results according to the
score, the predicted value should be normalized to ensure that its importance does not change with the
symbol type. Therefore, the prediction value was normalized with Equation (2). PCn is the normalized
prediction score (PC), PC is the prediction score, and PCm is the maximum PC in a specific class.

PCn = PC/PCm (2)

For instance, if the prediction value for a given image to be classified as the pump class is 23,
then the normalized value will be 0.74 because the maximum predicted value of the pump class
is 31.13. In the in-image object detection method using a sliding window, image classification was
performed, while a window with a specific size slid over all the pixels inside an image. However, an
image with a high resolution, such as 5000 × 3000, inevitably takes a longer operation time. To address
this problem, candidate areas likely to have symbols were identified in a high-resolution diagram,
and a sliding window was applied to those areas, which reduced the amount of operation required.
Especially, to identify an area containing a symbol in a P&ID drawing, a close morphological operation
was performed and the empty spaces inside the symbol were filled, which was followed by an open
morphological operation to remove elements such as piping. Figure 6 illustrates the results of the
symbol area detection.
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After identifying the areas likely to contain symbols, a sliding window was applied to the identified
areas. From each pixel inside that area, an image corresponding to the size of the symbol of each class
was extracted. In this study, five images of different sizes were extracted at each pixel over which the
sliding window passes, because the instrument west and instrument east have the same size, as do DR
I east, DR I west, DR O east, and DR O west. Five prediction values could be obtained from each pixel
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by classifying the extracted images with the image-classification deep learning model. These values
were then normalized using Equation (1). Lastly, among the normalized prediction values, the one
with the highest value was used.

Image-based object detection using a sliding window results in multiple windows (bounding
boxes) with high prediction values. Pixels where a symbol is located and adjacent pixels have high
prediction values as well. To ensure accurate detection of the target object from multiple identified
windows, it is necessary to group the prediction results together and select the one with the highest
probability of being the position of the target object. The grouping of the adjacent predicted windows is
performed using intersection of union (IOU), as described in Figure 7. IOU is a metric used to evaluate
how similar one predicted window (bounding box) is to another predicted window. An IOU score of 1
means that two predicted windows precisely match each other and an IOU score of 0 means that two
predicted windows do not overlap at all. IOU is defined using Equation (3). Ao is the area of overlap
and Au is the area of union.

IOU = Ao/Au (3)

In the grouping process, the leftmost prediction result in the diagram was detected and grouped
together with the adjacent ones. The adjacent prediction results are defined as those with an IOU
greater than or equal to a predefined threshold value (i.e., 0.3). After the prediction result farthest
from the first selected prediction result in the group has been selected, the process is iterated until
there is no adjacent prediction result left in that group. After the grouping process of a group has been
terminated, the whole process is applied to the next ungrouped prediction results and is iterated until
there are no more ungrouped prediction results left.
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The method of grouping the adjacent prediction results was verified by applying a sliding window
to detect the pump symbol in the P&ID and performing the grouping of prediction results, as shown in
Figure 8.
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5.2. Character Detection

To find the character position, the connectionist text proposal network (CTPN) [35], which is a
text detection deep learning model, was used. CTPN first predicts the text and non-text areas in the
input image using a CNN to recognize a text area. In this process, it may take text-like patterns, such
as bricks and leaves, for the text areas. To solve this problem, CTPN applies a long short-term memory
network (LSTM) [36], which is a type of recurrent neural network (RNN), along with CNN, which
improves the text detection accuracy of verifying whether both ends of the detected area are connected
to the characters.

Data used for training CTPN include approximately 3000 images, including those provided by
the International Conference on Document Analysis and Recognition (ICDAR) 2013 [37], and those
collected by the CTPN developers themselves.

5.3. Line Detection

In a P&ID, lines as objects are divided continuously and dotted lines are divided by type, while
horizontal, vertical, and diagonal lines are divided by orientation. In general, in a P&ID, a continuous
line represents a pipeline and a dotted line represents a signal line. For line detection training, the
continuous line type and the horizontal and vertical line orientations were chosen. Additionally, the
lines pertaining to symbols were excluded from the recognition objects.

The P&ID line detection was performed in three steps. First, the thickness of the line most
frequently used was determined and the thickness of all P&ID lines was compressed to one pixel.
The coordinates and lengths of the line objects were then extracted by identifying the black pixels
connected to each other in the thickness-compressed P&ID. Lastly, the lines separated in the thickness
compression process were merged based on the thickness of the most frequently used line.

Figure 9 depicts the method to identify the thickness of lines frequently used in a P&ID. The
number of connected black pixels was recorded while moving pixel by pixel from the leftmost one
toward the right-hand side of the image. Likewise, the number of connected black pixels was recorded
while moving pixel by pixel from the topmost pixel toward the bottom of the image. Lastly, the two
records were combined and the distribution of the pixel count over length was calculated. Since a
considerable portion of the line objects constituting the P&ID were continuous lines (pipelines) or dotted
lines (signal lines), the approximate thicknesses of the continuous and dotted lines could be determined
by checking the pixel length that occupied the largest proportion in the pixel length distribution.
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Figure 10 illustrates the method to compress the thickness of the lines in the P&ID to one pixel.
First, the kernel for line thickness compression was defined. When (x, y) is the coordinate of the target
pixel, a 1 × 2 kernel makes the target pixel white if the (x + 1, y) pixel is black. By applying the 1 × 2
kernel to all pixels of a P&ID image, horizontal lines are eliminated, and an image with a line thickness
of one pixel can be obtained with the remaining lines. When (x, y) is the coordinate of the target pixel,
a 2 × 1 kernel makes the target pixel white if the (x, y + 1) pixel is black. By applying the 2 × 1 kernel to
all pixels of a P&ID image, horizontal lines are eliminated and an image with a line thickness of one
pixel can be obtained with the remaining lines.
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The coordinates and length of a line object can be extracted from the compressed P&ID through
the following steps. In the case of a vertical line object, black pixels are investigated by moving from the
topmost pixel toward the bottom of the image obtained after the horizontal lines have been removed.
If a black pixel is detected, its coordinates are recorded and the vertical line detection kernel is applied.
If the current kernel position is (x, y), the vertical line detection kernel checks the values of the (x, y
+ 1), (x − 1, y + 1), and (x + 1, y + 1) pixels and moves to the next black pixel, repeating the process until
there are no more black pixels. After the termination of the vertical line detection kernel, the starting
and ending points of the line can be defined by recording the coordinates of the last pixel. In the case of
a horizontal line object, black pixels are investigated while moving from the leftmost pixel toward the
right-hand side of the image obtained after the vertical lines have been removed. If the current kernel
position is (x, y), the horizontal line detection kernel checks the values of the (x + 1, y), (x + 1, y − 1),
and (x + 1, y + 1) pixels. Other process steps are the same as in the vertical line detection method.

The method of merging the lines separated in the line thickness compression process is
implemented in the following steps. The starting point of all vertical line objects detected in the
previous stage is above the ending point. Likewise, the starting point of all horizontal line objects is to
the left of the ending point. Therefore, the lines can be merged by comparing the gap between the
ending point of the currently selected line object and the starting point of another line object, and
merging the line objects whose gap is less than or equal to the reference gap. The reference gap was set
to three times the thickness of the line. In the case of intersecting lines frequently appearing in the
P&ID, the reference gap must be larger than the line thickness because the remaining vertical lines
after the thickness compression in the horizontal direction incur a gap as thick as the horizontal line.
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In consideration of the varying thickness of line objects in the P&ID, the reference gap was set to three
times the thickness of the line.

As shown in Figure 10c, several lines pertaining to the symbol object were recognized line objects.
Therefore, line detection accuracy can be improved by removing these misrecognized lines based on
the position and size information of symbols recognized in the previous stage.

5.4. Table Detection

Some P&IDs contain tables listing detailed attributes of equipment included in the diagram, such
as materials, registration, and allowable temperature and pressure. A table and the text inside it can act
as noise, interfering with the recognition of symbols, lines, and texts that are the key recognition objects
of the P&ID. Therefore, tables should be detected and removed. A table can widely morphologically
vary. However, this study deals with the most basic form of the table in which all the lines are
continuous lines. The target table has a rectangular shape made up of vertical and horizontal lines,
with several vertical and horizontal lines inside it and no lines connected to outside elements.

The method to recognize a table in a P&ID is presented in Figure 11. The first step is to identify
the line combinations that form a table based on the same starting and ending points of those lines
when connected in the vertical and horizontal directions (Figure 11a). The second step is to generate a
rectangular kernel with the identified line combinations, setting the line thickness to three times the
thickness of the P&ID lines (Figure 11b) and checking whether there are lines protruding from the
generated kernel and connected to other elements in the diagram (Figure 11c). Lastly, the identified
line combination with no line connected to any outside element is defined as a table (Figure 11d).
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6. Implementation and Experiments

To prove the validity of the proposed method, a prototype system that recognizes symbols,
characters, and lines from a P&ID was implemented in Python 3.7 on Windows 10 operating system.
The deep learning model to recognize symbols was developed using TensorFlow 1.14.0. Computers
performing the recognition of P&IDs were equipped with AMD Ryzen 7 2700X CPU, 64GB RAM, and
two NVidia GeForce RTX 2080 Ti graphic cards.

Two test P&IDs are prepared for the experiments, as shown in Figure 12. They are modelled by
referring to P&IDs provided by ‘S’ engineering company in Korea. Test P&IDs 1 and 2 have resolutions
of 1460 × 840 and 1360 × 780, respectively.

Sliding window sizes during symbol recognition were set to 70 × 70 for instruments, 40 × 200 for
DRs, 120 × 120 for pumps, 40 × 25 for valve north, and 25 × 40 for valve east. A normalized prediction
score value used for determining whether a specific symbol exists inside a sliding window at a specific
position was set to 0.8. A threshold IOU value used for grouping adjacent predicted windows was set
to 0.33.
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Preprocessing of P&IDs and recognition of symbols, characters, and lines from P&IDs were
proceeded automatically without human intervention using the prototype system. Time required to
train the deep learning model used for symbol recognition was approximately 12 min. It took less than
one minute to remove the outer border and title box at the preprocessing stage. It took 36.5 min, 5.53 s,
and 3.25 s on average respectively to recognize symbols, characters, and lines at the recognition stage.

Recognition results are summarized in Table 2 and Figure 13. In Table 2, two metrics of recognition
accuracy R and misidentification rate M were defined to measure the performance with Equations
(4) and (5). NOd is the number of objects detected, NOs is the number of objects of a specific type in
a P&ID, Nm is the number of misidentified objects, and NOi is the number of objects identified as a
specific type. Recognition accuracy indicates the ratio of detected objects in all objects of a specific
type in a P&ID, and the misidentification rate indicates the ratio of misidentified objects in all objects
identified as a specific type.

R = NOd/NOs (4)

M = Nm/NOi (5)

Table 2. Recognition accuracies and misidentification rates for test P&IDs.

Diagram Name
Recognition Accuracy Misidentification Rate

Symbol Character Line Symbol Character Line

Test P&ID 1 92.3% 84.2% 93.7% 25% 18.8% 17.9%
Test P&ID 2 90.9% 82% 87.5% 22.2% 19.6% 6.25%

Average 91.6% 83.1% 90.6% 23.6% 19.2% 12.1%

Symbol recognition accuracy was 91.6% on average. Character recognition accuracy was 83.1%
on average and line recognition accuracy was 90.6% on average. Regarding the symbol recognition
result, some of the target symbols were not recognized from the test P&IDs (error case 1 of Figure 13a).
However, almost all targeted symbols of nine types were recognized from the test P&IDs. High
recognition accuracy was achieved because a small number of symbol types were targeted, sliding
window sizes were set to fit each symbol type, and there was little interference between objects
contained in the tested P&IDs. Regarding the character recognition result, several character strings
were recognized incorrectly as a one-character string (error case 3 of Figure 13b). In addition, an
inclined character string was recognized as several independent character strings (error case 1 of
Figure 13b) and a vertical character string showed low recognition accuracy compared to horizontal
character strings (error case 4 of Figure 13b). The line recognition result showed difficulty in detecting
dotted and diagonal lines (error case 1 of Figure 13c). The problem of recognizing dotted lines should
be solved by determining the reference gaps between the line pieces forming a dotted line. This can be
done by calculating the distribution of gaps between the horizontal line or the vertical line located on
the same line. The problem of recognizing diagonal lines can be solved by determining the inclination
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of the line at the outset, moving along the black pixels adjacent to the target black pixel, and grouping
the adjacent black pixels together, which recognizes them as diagonal lines.

The symbol misidentification rate was 23.6% on average. The character misidentification rate
was 19.2% on average. The line misidentification rate was 12.1%. The symbol recognition result
revealed that symbols of a specific type were identified as an incorrect type (false positives) (error
case 2 of Figure 13a). This problem can be solved by increasing the type and amount of training data
and reinforcing the layers of the image-classification deep learning model accordingly. The character
recognition result revealed that a symbol was recognized as a character (error case 2 of Figure 13b).
This problem of multiple false positives can be solved by further training the CTPN using the character
data extracted from the P&ID and modifying the CTPN model, considering the specificity of character
strings included in P&ID. Regarding the line recognition result, several character strings were identified
incorrectly as lines (error case 2 of Figure 13c).
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7. Conclusions

In this paper, we proposed a method to detect and extract various objects included in an
image-format P&ID, which is crucial to converting it to a digital P&ID. The method consists of the
preprocessing and recognition stages. In the preprocessing stage, diagram alignment, outer border
removal, and title box removal are performed. In the recognition stage, symbols, characters, lines, and
tables are detected. We used deep learning techniques in the process of symbol and character detection
in a P&ID. Accordingly, we defined the training data structure required to develop a deep learning
model for P&ID recognition. A new deep learning model for symbol detection is defined based on
AlexNet. We also employed the connectionist text proposal network (CTPN) for character detection,
and traditional image processing techniques for the P&ID line and table detection.

The main contributions of this study include: (a) the proposal of a general and comprehensive
method for the recognition of the main objects used in P&ID drawings, (b) the development and
application of P&ID object detection techniques tailored to each individual object type, and (c) the
definition of the input data structure for efficient training of the deep learning model for P&ID
recognition. We expect that this study contributes to the digitization of tons of paper-based P&IDs in
the energy industry. In addition, this study can be employed in advanced maintenance technology
using augmented reality, which recognizes objects from paper-based P&IDs [38].

The proposed method, however, has several limitations. To overcome these problems, we suggest
the following measures.

• Limit the symbol types for detection of four types and nine classes. Considering that there are
hundreds of symbol types used in P&IDs, there is a need to expand the symbol types intended for
detection. In addition to the method that applies a sliding window to the image-classification
deep learning model, it is necessary to examine the application of an image-detection deep
learning model.

• With regard to character detection, expand the training data for a conventional text-detection deep
learning model using text data extracted from P&IDs or improve the conventional deep learning
models considering the particularity of the texts included in P&IDs.

• With regard to line detection, develop efficient methods to recognize dotted lines in addition
to continued lines, and recognize diagonal lines in addition to horizontal and vertical
lines. Furthermore, in the case where several lines intersect, a technique to determine their
interconnectedness must be put in place. The proposed method is also prone to line recognition
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errors when there are noises in the P&ID. Therefore, methods to apply a deep learning technique
for line detection should be explored.

• For table detection, develop a method to recognize various table types and shapes, in addition to
the most basic form used in this study.

• The training data used in the study was manually extracted from a real P&ID drawing. The
absolute amount of training data was, therefore, far from being sufficient. This entailed constraints
on the selection of applicable deep learning models. A follow-up study is needed to develop
algorithms for automated detection and extraction of training data required for P&ID recognition.

For the analog to digital conversion of a P&ID, the following tasks must be tackled: (1) integration of
characters associated with lines, (2) integration of characters associated with symbols, (3) identification
of the line–symbol connection, (4) creation of structured P&IDs, (5) Tag ID and line number processing
as per the item numbering system, (6) application of symbol catalogs, and (7) automated input of key
attributes by symbol type using symbols, characters, lines, and tables detected in P&IDs.
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