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Abstract: A mobile robot with no less than two powered caster wheels (PCWs) has the ability to 

perform omnidirectional motions and belongs to a redundantly actuated system. Redundant 

actuation will bring the issue of non-uniqueness of actuating torque distribution, and inappropriate 

choices of torque distribution schemes will lead to unexpected large required actuating torques and 

extra energy consumption. This paper proposes a new torque distribution optimization approach 

based on a gradient projection method (GPM) for the omnidirectional mobile robot (OMR) with 

direct drive PCWs. It can significantly reduce the maximal required actuating torque and the energy 

consumption of the system. The modular kinematic and dynamic modeling method is presented 

first, which is suitable for an arbitrary number of employed PCWs, as well as their install positions 

in the chassis. The detailed energy consumption model of the OMR, including output energy 

consumption and electrical energy loss, is formulated through experimental testing. The 

effectiveness of the proposed algorithms is validated by simulation examples. Lastly, the 

computational efficiency of the method is verified 

Keywords: omnidirectional mobile robot; torque distribution; mobile; energy consumption model 

 

1. Introduction 

Omnidirectional mobile robots (OMRs) are widely employed to perform tasks in narrow and 

congested space for their ability to instantaneously move in any direction regardless of the current 

poses. Among a variety of categories of OMRs, the mobile robot with powered castor wheels (PCWs) 

has a simple and efficient wheel design to achieve omnidirectional motions [1]. It can carry a heavy 

payload and is less sensitive to the ground conditions owing to the continuous contact between the 

wheels and the ground [2]. For fully utilizing their maneuverability and agility, OMRs are powered 

by onboard batteries. Energy-efficient becomes a vital performance index for OMRs as they are 

usually restricted by the heavy and expensive batteries [3]. 

It is of great significance to study the energy consumption of the mobile robots, and energy-

saving strategies have been conducted by many researchers via different aspects, for example, 

trajectory planning [4–6], motion control [7,8], and mechanical design [9]. In order to study the 

energy-efficient strategies, a detailed and accurate energy consumption model needs to first be 

established for the robot system. Hou et al. [10] propose an energy consumption model that 

incorporates three major components: the sensor system, control system, and motion system. It is 

clarified by experiments that the motion system part consumes the overwhelming majority of energy, 

with up to more than 90%. Xu et al. [11] present an energy consumption modelling method for an 
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industry robot. Their method does not have to measure the relevant parameters inside the robot and 

mainly concerns torque modelling. A parameter estimation method is proposed for the torque 

modelling. Verstraten et al. [12] study several modeling methods that are commonly adopted. They 

investigate how well these methods can be used to describe the energy consumption of a DC motor 

while performing dynamic tasks. The conclusion resulted from their work provides guidelines in 

determining which factors should be included in the energy consumption model. In this paper, we 

aim to study the impacts of different torque distribution schemes on the energy consumption of the 

OMR with PCWs. Hence, we focus on formulating the energy consumption model based on the 

actuation torques. Besides theoretical energy consumption modelling, the accurate experimental 

measurement of energy consumption is necessary for the evaluation of energy consumption of a 

system combined with hardware and software. Laopoulos et al. [13] present a current measurement 

method that monitors the instantaneous supply current. The method can provide high-performance 

evaluation of energy consumption, especially for low-power applications. Roennau et al. [14] propose 

an energy consumption estimation based on an on-board current measurement for each joint 

individually and employ a non-linear function to fit the measurement. There are two different motors 

integrated in a single PCW, which are responsible for rolling and steering motions, respectively. The 

energy consumption modelling methods for the two motors are unified; detailed specifications of the 

energy consumption models can be obtained through separate energy consumption measurements. 

The OMR with PCWs can be considered as a redundantly actuated parallel robot system. 

Though its degree-of-freedom remains constant regardless of the number of PCWs engaged, the 

distribution scheme for actuator torques remains non-unique. To obtain the torque distribution, the 

robot Jacobian is widely employed. However, for the OMR with redundant PCWs, the Jacobian 

matrix cannot be obtained directly in kinematics. Instead, the Jacobian matrix usually is computed 

through the generalized inverse of the constraint matrix [15]. Different methods for computing the 

generalized inverse of the constraint matrix are investigated to achieve better dynamic performance. 

Holmberg [16] and Li [17] both employ the augmented object model (AOM) to obtain the operational 

space dynamics of the OMR with PCWs. Holmberg uses the pseudoinverse to determine the Jacobian 

matrix for minimizing the total perceived slip in a least-squares manner, and Li uses another 

pseudoinverse for minimizing the joint velocity differences, also in a least-squares manner. With 

these torque distribution schemes, the performances of slip-minimization and stability are improved 

to some extent. However, the strategy of choosing the torque distribution scheme is simply based on 

the Moore–Penrose pseudoinverse calculation, and it is difficult to further study its influence on 

dynamic performances, for example, the actuating torque limits and the energy efficiency. Liu et al. 

[18] present a controller for torque distribution of an OMR by identification of the status of the vehicle 

and the wheel slip ratio. Zhao et al. [19] present an integrated scheme for motion control and internal 

force control for an OMR with PCWs. The controller for the torque distribution minimizes the internal 

force occurring during the robot motion. Though the torque distribution is a crucial issue for the 

redundantly actuated OMR with PCWs, few studies have investigated the torque distribution 

optimization for minimum energy consumption or maximal required actuating torque control. 

This paper proposes a torque distribution optimization for the OMR with PCWs by using the 

gradient projection method (GPM). The OMR is designed in a modular way in that an arbitrary 

number of PCWs can be installed in any position of the OMR’s chassis. Modular kinematic and 

dynamic modelling methods are proposed. An energy consumption model is then presented to 

predict the energy consumed by the motion of the OMR and the concurrent electrical loss; the 

coefficients of the model are obtained from the experimental test. In the optimization algorithm, a 

performance criterion combined with torque limits and energy consumption is proposed. The vital 

target of the OMR performance indexes including energy endurance and tracking precision are 

successfully optimized by the proposed algorithm. Finally, the computational efficiency of the 

optimization method is verified through simulation examples. 
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2. Design and Modelling of the OMR  

The PCWs for the OMR are designed as a direct driving type. Two direct driving motors are 

integrated in a PCW, as shown in Figure 1. The upper motor is responsible for the steering motion, 

and the hub wheel motor is responsible for the rolling motion. All the PCWs are installed in the 

chassis of the OMR, the control system and other devices, such as the battery and sensors, are 

installed inside the mobile platform. By virtue of the direct driving PCWs, there is no transmission 

mechanism in the system, and the efficiency and stability of motion of the OMR are improved. 

Moreover, the PCW is integrated with less components, and the reliability of the direct driving PCW 

is also better than the conventional ones. The prototype of the OMR with two direct driving PCWs is 

shown in Figure 2. 

  
(a) (b) 

Figure 1. The designed direct driving powered caster wheel (PCW). (a) Schematic figure of the PCW; 

(b) prototype of the PCW. 

 

Figure 2. Prototype of the omnidirectional mobile robot (OMR) with PCWs. 

2.1. Kinematic Model of the OMR 

The kinematic analysis of the OMR with PCWs will be presented in this section. Because the 

OMR moves on a horizontal surface, its motion can be described in a 2D frame. The OMR is designed 

in a modular pattern, which means we can choose the appropriate number of PCWs as well as their 

installing positions according to specific task requirements. A schematic diagram that illustrates the 

kinematic model of that modular designed OMR is presented in Figure 3. We assume that there are 

n-PCWs installed in the chassis of the OMR, and the points  i 1,2, ,iA n  represent the install 

positions for the PCWs, which are also called support points. The support points can also be regarded 

as the distal ends of the PCWs. A PCW is actuated by two active joints, which are responsible for the 

rolling motion and steering motion, respectively. It can produce a driving wrench 

   , , i 1,2, ,
i i i

Tw
i x y zF f f m n   to the support point in the platform. The resultant forces by all 

PCWs will drive the OMR to perform the desired trajectory. 
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Figure 3. Modular design of the OMR with n  PCWs. 

The global reference frame XYZ  is used to describe the configuration of the OMR, and , ,i j k  

represent the three orthogonal axes of the local frame attached to the platform. As long as the number 

of PCWs is no less than two for singularity avoidance [20], the proposed kinematic analysis for the 

modular OMR is not restricted by the number of PCWs. Conventionally, the PCWs are arranged 

symmetrically for good dynamic performance and increasing the number of PCWs can improve the 

load capacity of the OMR. It should be noted that the kinematic model in this paper refers to the 

instantaneous kinematics, which maps the joint velocity q  to the operational space velocity x . As 

shown in Figure 3,  i 1,2, ,i n   are defined as the rolling angles of the wheels and i  are 

defined as the steering angles; i  are defined as the angular displacements of the thi  wheels with 

respect to the X-axis. r  denotes the wheels’ radius and b  denotes the offset of the PCW, l  is the 

vector for the center of the OMR to the support point, and   is the angle between l  and i . Then 

for the thi  PCW, the linear speed at the center of the platform can be derived by 

(sin cos )

(- cos sin )

( sin cos )

iC O i i i

i i i

i i

i i

r

b b h

l l

v v k O A k A C

i j k

k i j k

k i j

. (1) 

Note that  , representing the angular velocity of the OMR, can be computed by 

. (2) 

Combining (1) and (2), the kinematics of a PCW can be expressed in a single matrix form written 

as 

- sin sin cos sin

cos cos sin cos

1 0 1

x i i i i i

y i i i i i

i

v b l r l

v b l r l . (3) 

Equation (3) presents the forward kinematic model of wheel i  and the kinematic models of the 

rest of the wheels can be derived in the same manner. The single castor wheel Jacobian matrix iJ  is 

always full rank as its determinant remains a nonzero constant. Thus, the inverse matrix of iJ  

always exists. 

In practice, it would be difficult to measure or control i  as it represents a passive rotational 

motion. This variable needs to be eliminated from the inverse kinematics of a single PCW. The 
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controllable joint velocity denoted by iq , including steering and rolling variables only, can be 

expressed as 

=
x

i
i i y

i

v

q C v , (4) 

where iC  is called the wheel constraint matrix [16] because it describes the constraints at each 

contact point between the wheel and the ground. All wheels’ equations are combined to get the 

unified inverse kinematics, as follows: 

1 1

2 2,

n n

C q

C q
C q Cx

C q

. (5) 

2.2. Joint Space Dynamic Model of the OMR 

In order to formulate the dynamic model of the entire system, the dynamic model of a single 

PCW should first be obtained. In Figure 4, the schematic model of the PCW is presented. A PCW 

consists of three main components: a wheel, a bracket, and a “virtual” link from the upper side of the 

bracket to the mass center of the OMR. We call the link “virtual” because it only exists conceptually. 

The PCWs are installed directly in the chassis of the robot. The virtual link just provides the position 

information of the support points from the mass center of the robot. 

 

Figure 4. Simplified PCW model subjected to driving torques. 

The equation of motion for a PCW can be obtained through the Lagrangian method. The OMR 

can only achieve planner motion, hence there only exists kinetic energy iK . The rolling motion i  

is always orthogonal to the steering motion i , thus they can be decoupled and calculated by 

2 2 2( r)

2 2 2

r i s i w i

i

I I m
K

  
   , (6) 

where rI  is the inertial moment of the wheel about its rolling axis, sI  is the inertial moment of the 

PCW about the steering axis, and wm  is the mass of the PCW. The dynamic model of a PCW in the 

joint space can be derived as 

i

i

i i

i i

K Kd

dt q q
. (7) 

Because iK  is only in regard to iq , / 0i iK q    holds. The dynamic model of a single PCW 

can be formulated as 
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( )
i

T w
i i i f i iM q P F     , (8) 

where 
2 0

0

r
i

s

I mr
M

I

 
  
   , 

i
i

i

q




 
  
 

, 

cos sin 0

0 0 1

i iT

i

r b
P

  
  
 

. 

In (8), i  represents the actuating torques and 
if

  denotes the friction torques, which consist 

of Coulomb friction and viscous friction. iP  is the matrix that maps the thi  joint velocity to the 

support point velocity, and iF  is the external wrench applied by the platform. 

The platform of the OMR can then be regarded as a manipulated object by the PCWs. The force 

resulted from the distal end of thi  PCW is w

iF . The dynamic model of the platform only can be 

expressed as 

( , ) w
p p ox x x F   , (9) 

where  p o o odiag m m I   is the inertial term of the platform, and ( , )p x x  is the Coriolis and 

centrifugal term. w
oF  is the resultant force applied by all the PCWs. 

2.3. Operational Space Dynamic Model of the OMR 

The operational space dynamic model of a PCW is expressed in the form as 

i i ix F   , (10) 

where T
i i i iC MC  is the operational space mass matrix, 

T
i i i iC MC  is the operational space 

Coriolis and centripetal terms, and iF  is the operational space wrench. The OMR is assumed to 

move in a plane surface, so the gravity component is neglected here. 

After deriving the dynamic models of the PCWs, the augmented object model (AOM) [21] can 

be employed to obtain the dynamic model of the entire system. The AOM declares that the systematic 

dynamic model of the entire system in operational space can be obtained by adding all the operational 

space dynamics of the PCWs and the platform only at the operational space frame. Thus, the 

augmented mass matrix  and Coriolis and centripetal terms  of the OMR are given as 

1

n

i p
i

, (11) 

1

n

i p
i

, (12) 

where p  and p  are the mass matrix and the Coriolis and centripetal terms of the platform only 

expressed in the operational space, respectively. F  is the resultant wrench applied to the OMR, 

expressed in the operational space frame. Finally, the operational dynamics of the OMR can be 

written as 

x F . (13) 

3. Energy Consumption Model of the OMR 
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The intact energy consumption model of the OMR consists of three parts: the sensors, the control 

system, and the motion system. The motion system consumes the overwhelming majority of energy 

in the OMR [10]. Hence, we mainly focus on the study of the influence of torque distributions to the 

energy consumption. The energy consumptions of the sensor system and the control system will not 

be discussed here. The formulation of energy consumption model is for predicting and evaluating 

the amount of energy consumed by the actuators in the OMR. The energy consumption can be 

calculated by integrating the power consumption about time. The power consumption model usually 

consist of output power consumption 
outputP  and the subordinate electrical power loss lossP  [22,23]. 

total output lossP P P  , (14) 

where the output power consumption is the power consumed to attain and sustain the desired 

motion of the OMR, and refers to the mechanical power. 
outputP  can be computed by 

 
*

1

n

output i i

i

P q


 . (15) 

The definition of  
*

a  is that, if a  is larger than zero, the value of  
*

a  is a . If a  is smaller 

than zero, the outcome value of the function is zero. It means that the negative output power cannot 

be regenerated and is dissipated as heat [24]. 

The electrical power loss often contains three parts: coil loss, conduction loss, and switching loss. 

The coil loss results from the heat dissipation as the current flows through the resistances of a circuit. 

It is formulated as follows: 

2

1

n

coil i i

i

P R I


 , (16) 

where iR  is the resistance of the coil in the thi  actuator. iI  is the current the of the thi  actuator. 

The other two types of electrical power loss that happen in servo-amplifiers or servo-drives, including 

conduction loss and switching loss. Each loss happens when the current flows in an insulated-gate 

bipolar transistor of the servo-amplifier [25]. The conduction loss and switching loss are often 

formulated according to the voltage and current information. The literature of [25] provides a scheme 

for calculating the conduction and switching loss only dependent on the current information. The 

conduction loss and the switch loss can be expressed, respectively, by: 

2

1

n
a b

conduction i i i i

i

P I I 


  , (17) 

1

n

switching i i

i

P I


 , (18) 

where a

i  and b

i  are the coefficients for the conduction loss. The conduction loss is formulated in 

a quadratic polynomial manner with respect to the current. i  is the constant coefficient of switching 

with respect to the current. Hence, the electrical power loss can be computed by summing the coil 

loss, conduction loss, and switching loss. 

loss coil conduction switchingP P P P   . (19) 

All kinds of losses are formulated as the functions of current. By summing the coefficients 

according to the power of the current, the power loss can be expressed as 

 2

1

n
a b

loss i i i i

i

P I I 


  , (20) 

where a a

i i i    , and b b

i i iR   . a

i  and b

i  are the coefficients of the power loss of the thi

actuator in terms of the current. 
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Because we mainly investigate the relationship between the torque distributions and the energy 

consumption in this paper, it is desired to express the power consumption in the manner of joint 

torques. Fortunately, for the torque motors employed in the PCWs, their outputs are linearly 

proportional to the current in the circuit. Therefore, the current term iI  and 2

iI  in (20) can be 

replaced by the torque term i  and 2

i  with their corresponding linear coefficients. Equation (20) 

can be reformulated as 

 2

1

n
a b

loss i i i i

i

P    


  , (21) 

where a

i  and b

i  are the coefficients for the electrical power loss of the absolute value of torque 

and the square of torque in the thi  actuator, respectively. The new electrical power loss model (21) 

in terms of the torque represents a combination of the electrical power loss model in terms of the 

current and the linear proportional relationship between the current and the torque in the actuator. 

After obtaining the output power consumption model of the OMR, the coefficients of the model 

have to be specified via experimental measurement. For accuracy, the angular velocities of the 

actuators are set to be constant, and photoelectric encoders on the motors can be used to measure the 

velocities of motors and provide feedback to the control system in real time [10]. A strain-gauge 

sensor [24] is employed to measure the torque of each actuator. The coefficients in (21) are acquired 

through the power measurement while different static loads are applied to each actuator, and the 

experiment is executed as shown in Figure 5. The power measurement is implemented by a 

dynamometer (SUGAWARA PC-MCT6). The tested actuator is connected to the dynamometer by a 

shaft coupling. The industrial personal computer (IPC) is responsible for controlling and sending 

commands to the dynamometer. The actuator is commanded to rotate in constant angular velocity 

with several static loads induced by the dynamometer, and the real-time voltage and current of the 

actuator are shown in the oscilloscope (YOKOGAWA WT1800). The output power of the actuator 

can be calculated by multiplying its angular velocity and the output torque applied by the 

dynamometer. Figure 6a,b shows the experimental result of electrical power loss of the rolling 

actuator and the steering actuator with respect to different loads, respectively. The markers are 

measurement points of the experiment. The coefficients of the power consumption models are 

obtained through mathematical curve fitting by MATLAB by (21), and the results are shown in Table 

1. 

Table 1. Experimental results for the coefficients of the power loss model. 

Class of 

Actuators 
a
i  b

i  

Steering actuator 2.98 1.40 

Rolling actuator 3.39 2.31 
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Figure 5. Power measurement of the OMR’s actuator. 
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(a) 

 
(b) 

Figure 6. Experimental results of the electrical power loss: (a) function fitting for the rolling motor; 

(b) function fitting for the steering motor. 

From the above, the total power consumption of the motion system can be written as 

   
*

2

1 1

n n
a b

total i i i i i i

i i

P q    
 

    . (22) 

The energy consumption model for the OMR can be calculated by 

     
0

*

2

1 1

ft
n n

a b

i i i i i i

i it

E q     
 

 
    

 
  . (23) 

Each PCW has two motors for rolling and steering motions, respectively, so the number n  is 

2m  for the OMR with m  PCWs. 

4. Torque Distribution Schemes for the OMR  

The torque distribution schemes of robots can be derived from the forward kinematic model by 

TJ F  ,

 

(24) 

where   is the actuating torques applied by the joints and J  is the Jacobian matrix of the robot. In 

the analysis of the torque distribution for the OMR, because the PCWs are direct driven, the impact 

of the transmission system in the PCWs and the dynamics of the motors are neglected. We assume 

that the torques produced by the actuators are the same torques applied to the joints. Owing to the 

parallel structure and redundant actuation of the OMR, the Jacobian matrix cannot be derived 
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directly through kinematics analysis. Instead, it is obtained by computing the generalized inverse of 

the constrained matrix C  of the OMR [15]. This means that if the task space velocity of the OMR is 

given, the joint velocity can be directly calculated by the constraint matrix. However, the task space 

velocity cannot be obtained from arbitrary joint velocity because of the kinematic constraints. The 

constraint matrix maps the operational space velocity x  to the joint space velocity q  by 

x Cq . (25) 

The Jacobian matrix of the OMR can be obtained by computing the generalized inverse matrix 

of the constraint matrix: 

J C . (26) 

Because the OMR is redundantly actuated, the constraint matrix C  is not square. Hence, there 

exists a non-unique Jacobian matrix for the OMR, and the different choices of the generalized inverse 

will lead to different torque distribution schemes. 

4.1. Torque Distribution Schemes Resulting from the Generalized Inverse of the Jacobian 

Two reasonable determinations of torque distribution schemes proposed by the published 

research [17] are first presented. The kinematics of the OMR with PCWs can be expressed in an 

equivalent way as 

Ax Bq , (27) 

where B  is a diagonal matrix and A  is a non-square matrix. The first torque distribution scheme 

is expressed as 

 1
T

LPI
B A F  , (28) 

where  1

LPI
B A  means computing the left Moore–Penrose pseudo-inverse of 1B A . Using this 

model, the joint torque differences are minimized in a least-squares manner. The second torque 

distribution scheme is expressed as 

= T T

LPIB A F , (29) 

where LPIA  means computing the left Moore–Penrose pseudo-inverse of A . Using this model, the 

joint torque as well as the interaction forces between different contact points are minimized, in a least-

squares manner. 
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4.2. Gradient Projection-Based Torque Optimization 

 

Figure 7. Flowchart of the optimization algorithm. 

The gradient projection method is an efficient and widely-employed optimization method in the 

control of redundant robots [26,27]. It fully utilizes the null space of the Jacobian matrix to optimize 

varieties of performance criteria, such as manipulability, obstacle avoidance, and joint limit 

avoidance. It is approached by projecting the steepest descent direction of the performance criterion 

onto the null space and finding the best solution along the projected vector. The flowchart of the 

proposed torque distribution optimization algorithm is shown in Figure 7. For the torque distribution 

of the redundant actuated OMR, as mentioned before, the joint space torque is not directly projected 

from the operational space force by the transpose of the Jacobian matrix, but instead of the constraint 

matrix C , written by  

TC F  . (30) 

As the 3-DOF OMR is actuated by  4m m   actuators, the joint torques can be expressed as 

( ) ( )T T TC F I C C v     
 

, (31) 

where mv R  is an arbitrary vector. On the basis of GPM, it can be replaced by the gradient of a 

performance criterion  H  , which yields 
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 ( ) ( )T T TC F k I C C H      
 

, (32) 

where k is the searching step size and  H   is the gradient of  H  . Note that scalar k  is 

positive if  H   needs to be maximized and is negative if  H   needs to be minimized. The 

detailed construction of  H   for the optimization will be presented later. 

In order to implement GPM to the torque distribution of the OMR, the torque limits have to be 

determined first. The limit of the torque max  and min  is determined by two factors: the maximum 

and minimum produced torques of the actuator maxmotor  and minmotor ; and the maximum ground 

traction traction , which is expressed below: 

   

 

 

max motor max

min motor min

min ,

max ,

traction c v c

traction

traction

N v sign v  

  

  

   



 

, (33) 

where N  is the ground contact force of the wheel, c  is the Coulomb friction coefficient, v  is 

the viscous friction coefficient, and cv  is the velocity of the wheel at the wheel-ground contact point. 

In practice, the maximum ground traction is smaller than the maximum produced torque, which 

means that, during the motions of the OMR, the actuating torques may exceed the ground traction 

and, consequently, slippage happens to the wheels. Employing the limit of the actuating torques and 

rewriting (22), it yields the following: 

 

 min max

              ( ) ( )

( ) ( ) ( )

T T T

T T T T

C F k I C C H

C F k I C C H C F

 

  

 

  

    
 

      
 

. (34) 

Let ( )TC F     , where    is a point in the null space of TC , then the optimization 

problem can be expressed as 

 

min max

 function : H

 to: C 0

                     ( ) ( )T T

Objective

Subjected

C F C F





  



 



 

   

. (35) 

Resolving the optimization problem of (35) will produce an optimal solution g   in the null 

space of TC . After that, the optimal solution of g  can be obtained by  T
g g C F 


  . 

After defining the optimization problem of the actuating torques of the OMR, the performance 

criterion  H    need to be formulated. The boundary conditions in (35) declare that    must be 

within the feasible zone, which is away from the actuating torque limit. It can be expressed as  

 
min max

min min max max

                       

( ) , ( )T TC F C F

  

    

   

    
. (36) 

The performance criterion used to generate the feasible zone can be given as 

 
       

 zone

max min

1
feasible i

i i ii

H 
   

 
         

, (37) 

where i  refers to the thi  component of the corresponding torque vector. For such a performance 

criterion, the value of the function goes to infinity, while the actuating torque approaches either a 

maximal or minimal limit, and goes to minimal while the actuating torque reaches the midpoint of 

the feasible torque interval. This indicates that, while searching for the minimal point, the 

performance criterion will retain the actuating torque within the feasible torque zone and away from 



Energies 2019, 12, 4417 14 of 21 

 

either the maximum or minimal limit. Hence, using this performance criterion, the maximal (or 

absolute value of minimal) required actuating torque of the OMR for a specific trajectory will be 

reduced.  

In addition, it is our main purpose to take the energy consumption into account for the torque 

distribution of the OMR. Therefore, another term that resulted from (22) is introduced into the 

performance criterion, which is given as 

   

 
       

   

1

* 2

max min

1
*

m

i
i

a b
i i i i i ii

i i ii

H H

H q
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The modified performance criterion is used to optimize for a preference of better energy 

efficiency. It should be noted that the performance criterion function must be continuous while 

applying GPM, but the function in (38) is discontinuous at the point 0i   . This issue can be solved 

by using a curve fitting polynomial function to replace the original function at a small interval 

[ 0.1,  0.1]  around 0i   , with an acceptable sacrifice of accuracy. 

Now, with the objective function given in (38), the optimization problem expressed in (35) 

becomes a convex optimization problem because both the objective function and the inequality 

constraints are convex. In this situation, using the GPM can always find the global optimal solution. 

The GPM is executed by the following equation: 
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where lg   is the local optimal solution along the unit projective vector  v unit
P , start   is the starting 

point in the null space of TC , and k  is the step size along  v unit
P . On the basis of the definition of 

gradient,  v unit
P  is obtained by projecting the steepest descent direction of the objective function 

onto the null space of TC . In order to get the global optimal solution, set lgstart    and repeat (39) 

again and again. The global optimal solution g   will be obtained when the iteration stops at 

  0v unit
P  , indicating that the performance criterion has already come to its “lowest position”. 

The last problem that needs to be coped with is the determination of the starting point start  . 

The GPM will have a low computational cost and converge more rapidly if start   is closer to the 

global optimal solution. A simple, but effective method is to project the torque distribution in (29) 

onto the null space of TC , and to set the result as the starting point for each motion in the entire 

trajectory, as the result in (29) has already been optimized in a least-squares manner. However, a 

more reasonable starting point in the current motion j  of the planned trajectory can be obtained by 

projecting the optimal solution of last motion 1j   onto the null space of the current motion j , 

expressed as 

 _ _ 1
T T

start j j j g jI C C 



    
 

. (40) 

As F  and TC  are continuous, _start j   will be very close to the new optimal solution g_ j   if 

g_ j   is the optimal solution in the last motion 1j  . 

5. Simulation Examples and Results Analysis 

The simulation is presented in this section for validating the effectiveness of the proposed 

optimization method by MATLAB (r-2015b version, MathWorksS, Natick, US). The OMR used for 
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simulation is shown in Figure 8. All PCWs in the OMR are identical. The platform of the OMR is 

designed in squared shape, and each PCW locates at one of the four corners of the platform. The 

parameters of the OMR are given as follows: the mass of the platform without any PCWs is 52 kg, 

the side length L of the platform is 0.5 m, the radius of each wheel is 0.05 m, the offset of the castor 

wheel is 0.046 m, and the mass of each PCW is 5 kg. The coefficients of the electrical power loss are 

referred from the experimental results in Figure 6. The lower and upper bounds of the actuating 

torque are 6N m   for the rolling motors and 8N m   for the steering motors. 

 

Figure 8. Structure of the OMR with four PCWs. 

 

Figure 9. Cosine-functional curvilinear path. 

In order to further illustrate the results of the torque distribution optimization for the OMR with 

PCWs, a curvilinear trajectory is proposed next. The path is shown in Figure 9; the OMR moves from 

the original point to the endpoint, then turns around at the endpoint and moves back to the original 

point. The OMR is commanded to track the path with self-rotation for taking full advantage of 

holonomicity, and the red arrows in Figure 9 represent the head directions (vector i  in Figure 8) of 

the OMR. The function of the trajectory is expressed as follows: 

x=4 4cos(t/20) ; (meter)

y=3 3cos(t/10) ; (meter)

=3 3cos(t/15) ;  (rad)





 

. (41) 



Energies 2019, 12, 4417 16 of 21 

 

 
(a) 

 
(b) 

Figure 10. Maximal required actuating torque during the motion (a) Forward rotation (b) Backward 

rotation. 

Compared with the series manipulators, the mobile robots usually have much larger tracking 

errors, and one of the primary reasons for the tracking errors is the slippage between the wheels and 

the ground. The slippage is often difficult to predict because of the uncertainty of the ground 

conditions. However, because the phenomenon often occurs when the actuating torques of the 

wheels exceed the traction limit of the ground, reducing the maximal required actuating torques of 

the wheels during the performance of a specific trajectory can decrease the tendency of slippage. 

According to the normal indoor ground condition and the limits of the actuators, the maximal torque 

limits are calculated by (33) and set to be 5.3N m   and 4.6N m   for the rolling and steering 

actuators, respectively. Figure 10 shows the maximal required actuating torque among all PCWs 

during the motion, with both forward and backward rotation. The maximal positive actuating torque 

is significantly reduced by the optimization, by approximately 11% at the highest point compared 

with the former torque distribution schemes 1 and 2 expressed in (28) and (29), respectively. The 

maximal negative actuating torque is also reduced by 6% at the highest point. Moreover, the red 

dotted lines represent the maximal positive and negative torque limits of the motors in the PCW. The 

maximal torque resulted from the former two torque distribution schemes exceed the torque limit. 

As it is difficult to simultaneously consider the torque limits when using the pseudoinverse method. 

In contrast, the optimized torque is totally below the limit. For such a trajectory, the actuators are 

commanded to produce less torques for the backward rotation, so that all three torques’ distributions 

have kept the maximal negative torques within the torque limits. For other joints with less actuating 

torques, the differences between the optimization outcomes and the results from pseudoinverse are 

not as significant as the differences shown in Figure 10. However, the torques of the other joints are 

still decreased to a smaller extent, and the data are not listed for concision. Figure 11 shows the power 
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consumption of the OMR following the curvilinear trajectory adopting the three kinds of torque 

distribution schemes. As shown in Figure 11b,c, the power consumption is reduced by using the 

optimized torque distribution compared with the other two schemes, basically owing to the saving 

in electrical power loss part. The output power consumptions for the three torque distribution 

schemes are the same; because the OMR is commanded to follow the same trajectory by using the 

three different torque distribution schemes, the output power consumption that attains and sustains 

the motion of the OMR will be the same for the three cases. Besides being transferred into kinetic 

energy, the actuating torques are partly consumed to produce internal forces. The internal forces will 

be counteractive to each other and do not contribute to the motion of the OMR; the portion of the 

actuating torques corresponding to the internal forces still consumes energy in the actuators and is 

transformed to different kinds of losses expressed in (27). The total energy consumption as well as 

energy loss are presented in Table 2. By using the proposed optimization method, the total energy 

consumption can be reduced by 9.3% for the given trajectory. 
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(a) 

 
(b) 

 
(c) 

Figure 11. Power consumption of the OMR following the trajectory: (a) total power consumption; (b) 

output power consumption; (c) electrical power loss. 

Table 2. Simulation results of total energy consumption for the curvilinear trajectory. 

Torque Distribution Scheme Energy Loss (Joule) 
Energy Consumption 

(Joule) 

Optimized torque distribution 7.24 × 103 1.26 × 104 

Torque distribution 1 8.37 × 103 1.38 × 104 

Torque distribution 2 8.39 × 103 1.39 × 104 
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Furthermore, the torque distribution optimization has to be computationally efficient if it is 

applied in real-time dynamic control. Because the optimization algorithm is iteration-based, the 

computational time is determined by the number of iterations per step. The step size of the 

continuous motion is discretized in every 0.1 second, and the average numbers of iterations per 

motion step are shown in Table 3. In order to reveal the superiority of the proposed method for 

determining the starting point expressed in (40), the results of the number of iterations from two 

other choices of starting point are also presented as a contrast. The first choice is an arbitrary simple 

point, and the second choice is the pseudo-inverse solution resulting from (29). The computational 

efficiency of the proposed method for determining the starting point is apparently approved. 

Table 3. Number of iterations per step. 

Starting Point 
[1,1,1,1,1,1,1,1] T 

(An Arbitrary Choice) 

Pseudo-Inverse 

Solution 
Proposed Method 

Average number of 

iterations per step 
79.24 19.57 4.86 

6. Conclusions and Future Work 

This paper presents the optimization of the torque distribution for the redundantly actuated 

OMR with PCWs based on GPM. The kinematic and dynamic models of the OMR are firstly 

formulated. In this paper, although the model used in simulation is an OMR with four PCWs, the 

modelling approach is in a modular way, which is suitable for the OMR with an arbitrary number of 

PCWs, as well as their mounting positions in the chassis. The detailed energy consumption model of 

the OMR including output energy consumption and electrical energy loss is then formulated, the the 

coefficients of the model are obtained by experimental test. Besides the energy consumption, the 

maximal required actuating torque to perform a specific trajectory is also non-negligible, as slippage 

often occurs when the actuating torques of the wheels exceed the ground traction limits. A 

performance criterion combined with torque limits and energy consumption is proposed in the GPM. 

Compared with two torque distribution schemes, which result from the Moore–Penrose pseudo-

inverse method, the optimized torque distribution can significantly decrease the maximal required 

actuating torque as well as the total energy consumption, by 11% and 9.3%, respectively. Finally, the 

computational efficiency of the proposed optimization algorithm is validated. In further research, we 

intend to extend the torque distribution optimization method to an omnidirectional mobile 

manipulator, which means a serial manipulator is mounted on the OMR. While performing a task, 

the torque limit for each actuator of the PCW may change in real-time because the ground contact 

force of each PCW is related to the current configuration and motion of the manipulator. Moreover, 

the trajectory planning will become more complicated for that case, the motion of the OMR has to be 

decoupled from the motion of the entire system, and a multi-objective optimization method is 

expected to cope with the issues. 
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