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Abstract: A mobile robot with no less than two powered caster wheels (PCWs) has the ability to
perform omnidirectional motions and belongs to a redundantly actuated system. Redundant actuation
will bring the issue of non-uniqueness of actuating torque distribution, and inappropriate choices
of torque distribution schemes will lead to unexpected large required actuating torques and extra
energy consumption. This paper proposes a new torque distribution optimization approach based on
a gradient projection method (GPM) for the omnidirectional mobile robot (OMR) with direct drive
PCWs. It can significantly reduce the maximal required actuating torque and the energy consumption
of the system. The modular kinematic and dynamic modeling method is presented first, which is
suitable for an arbitrary number of employed PCWs, as well as their install positions in the chassis.
The detailed energy consumption model of the OMR, including output energy consumption and
electrical energy loss, is formulated through experimental testing. The effectiveness of the proposed
algorithms is validated by simulation examples. Lastly, the computational efficiency of the method
is verified.

Keywords: omnidirectional mobile robot; torque distribution; mobile; energy consumption model

1. Introduction

Omnidirectional mobile robots (OMRs) are widely employed to perform tasks in narrow and
congested space for their ability to instantaneously move in any direction regardless of the current
poses. Among a variety of categories of OMRs, the mobile robot with powered castor wheels (PCWs)
has a simple and efficient wheel design to achieve omnidirectional motions [1]. It can carry a heavy
payload and is less sensitive to the ground conditions owing to the continuous contact between the
wheels and the ground [2]. For fully utilizing their maneuverability and agility, OMRs are powered by
onboard batteries. Energy-efficient becomes a vital performance index for OMRs as they are usually
restricted by the heavy and expensive batteries [3].

It is of great significance to study the energy consumption of the mobile robots, and energy-saving
strategies have been conducted by many researchers via different aspects, for example, trajectory
planning [4–6], motion control [7,8], and mechanical design [9]. In order to study the energy-efficient
strategies, a detailed and accurate energy consumption model needs to first be established for the
robot system. Hou et al. [10] propose an energy consumption model that incorporates three major

Energies 2019, 12, 4417; doi:10.3390/en12234417 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en12234417
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/12/23/4417?type=check_update&version=2


Energies 2019, 12, 4417 2 of 19

components: the sensor system, control system, and motion system. It is clarified by experiments
that the motion system part consumes the overwhelming majority of energy, with up to more than
90%. Xu et al. [11] present an energy consumption modelling method for an industry robot. Their
method does not have to measure the relevant parameters inside the robot and mainly concerns torque
modelling. A parameter estimation method is proposed for the torque modelling. Verstraten et al. [12]
study several modeling methods that are commonly adopted. They investigate how well these methods
can be used to describe the energy consumption of a DC motor while performing dynamic tasks.
The conclusion resulted from their work provides guidelines in determining which factors should be
included in the energy consumption model. In this paper, we aim to study the impacts of different
torque distribution schemes on the energy consumption of the OMR with PCWs. Hence, we focus
on formulating the energy consumption model based on the actuation torques. Besides theoretical
energy consumption modelling, the accurate experimental measurement of energy consumption is
necessary for the evaluation of energy consumption of a system combined with hardware and software.
Laopoulos et al. [13] present a current measurement method that monitors the instantaneous supply
current. The method can provide high-performance evaluation of energy consumption, especially for
low-power applications. Roennau et al. [14] propose an energy consumption estimation based on an
on-board current measurement for each joint individually and employ a non-linear function to fit the
measurement. There are two different motors integrated in a single PCW, which are responsible for
rolling and steering motions, respectively. The energy consumption modelling methods for the two
motors are unified; detailed specifications of the energy consumption models can be obtained through
separate energy consumption measurements.

The OMR with PCWs can be considered as a redundantly actuated parallel robot system. Though
its degree-of-freedom remains constant regardless of the number of PCWs engaged, the distribution
scheme for actuator torques remains non-unique. To obtain the torque distribution, the robot Jacobian
is widely employed. However, for the OMR with redundant PCWs, the Jacobian matrix cannot
be obtained directly in kinematics. Instead, the Jacobian matrix usually is computed through the
generalized inverse of the constraint matrix [15]. Different methods for computing the generalized
inverse of the constraint matrix are investigated to achieve better dynamic performance. Holmberg [16]
and Li [17] both employ the augmented object model (AOM) to obtain the operational space dynamics
of the OMR with PCWs. Holmberg uses the pseudoinverse to determine the Jacobian matrix for
minimizing the total perceived slip in a least-squares manner, and Li uses another pseudoinverse
for minimizing the joint velocity differences, also in a least-squares manner. With these torque
distribution schemes, the performances of slip-minimization and stability are improved to some
extent. However, the strategy of choosing the torque distribution scheme is simply based on the
Moore–Penrose pseudoinverse calculation, and it is difficult to further study its influence on dynamic
performances, for example, the actuating torque limits and the energy efficiency. Liu et al. [18] present a
controller for torque distribution of an OMR by identification of the status of the vehicle and the wheel
slip ratio. Zhao et al. [19] present an integrated scheme for motion control and internal force control for
an OMR with PCWs. The controller for the torque distribution minimizes the internal force occurring
during the robot motion. Though the torque distribution is a crucial issue for the redundantly actuated
OMR with PCWs, few studies have investigated the torque distribution optimization for minimum
energy consumption or maximal required actuating torque control.

This paper proposes a torque distribution optimization for the OMR with PCWs by using the
gradient projection method (GPM). The OMR is designed in a modular way in that an arbitrary number
of PCWs can be installed in any position of the OMR’s chassis. Modular kinematic and dynamic
modelling methods are proposed. An energy consumption model is then presented to predict the
energy consumed by the motion of the OMR and the concurrent electrical loss; the coefficients of the
model are obtained from the experimental test. In the optimization algorithm, a performance criterion
combined with torque limits and energy consumption is proposed. The vital target of the OMR
performance indexes including energy endurance and tracking precision are successfully optimized by
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the proposed algorithm. Finally, the computational efficiency of the optimization method is verified
through simulation examples.

2. Design and Modelling of the OMR

The PCWs for the OMR are designed as a direct driving type. Two direct driving motors are
integrated in a PCW, as shown in Figure 1. The upper motor is responsible for the steering motion, and
the hub wheel motor is responsible for the rolling motion. All the PCWs are installed in the chassis of
the OMR, the control system and other devices, such as the battery and sensors, are installed inside
the mobile platform. By virtue of the direct driving PCWs, there is no transmission mechanism in the
system, and the efficiency and stability of motion of the OMR are improved. Moreover, the PCW is
integrated with less components, and the reliability of the direct driving PCW is also better than the
conventional ones. The prototype of the OMR with two direct driving PCWs is shown in Figure 2.
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Figure 2. Prototype of the omnidirectional mobile robot (OMR) with PCWs.

2.1. Kinematic Model of the OMR

The kinematic analysis of the OMR with PCWs will be presented in this section. Because the OMR
moves on a horizontal surface, its motion can be described in a 2D frame. The OMR is designed in a
modular pattern, which means we can choose the appropriate number of PCWs as well as their installing
positions according to specific task requirements. A schematic diagram that illustrates the kinematic
model of that modular designed OMR is presented in Figure 3. We assume that there are n-PCWs
installed in the chassis of the OMR, and the points Ai(i = 1, 2, · · · , n) represent the install positions for
the PCWs, which are also called support points. The support points can also be regarded as the distal
ends of the PCWs. A PCW is actuated by two active joints, which are responsible for the rolling motion

and steering motion, respectively. It can produce a driving wrench Fw
i =

(
fxi , fyi , mzi

)T
(i = 1, 2, · · · , n)
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to the support point in the platform. The resultant forces by all PCWs will drive the OMR to perform
the desired trajectory.
Energies 2019, 12, x FOR PEER REVIEW 4 of 21 

 

 
Figure 3. Modular design of the OMR with n  PCWs. 

The global reference frame XYZ is used to describe the configuration of the OMR, and , ,i j k
  

 
represent the three orthogonal axes of the local frame attached to the platform. As long as the number 
of PCWs is no less than two for singularity avoidance [20], the proposed kinematic analysis for the 
modular OMR is not restricted by the number of PCWs. Conventionally, the PCWs are arranged 
symmetrically for good dynamic performance and increasing the number of PCWs can improve the 
load capacity of the OMR. It should be noted that the kinematic model in this paper refers to the 
instantaneous kinematics, which maps the joint velocity q  to the operational space velocity x . As 

shown in Figure 3, ( )i 1, 2, ,i nρ =   are defined as the rolling angles of the wheels and ij  are 
defined as the steering angles; iσ  are defined as the angular displacements of the ith wheels with 
respect to the X-axis. r denotes the wheels’ radius and b denotes the offset of the PCW, l is the vector 

for the center of the OMR to the support point, and α is the angle between l and i


. Then for the ith 
PCW, the linear speed at the center of the platform can be derived by 

(sin cos )

(- cos sin )

( sin cos )

iC O i i i

i i i

i i

i i

r

b b h

l l

s w
r j j
s j j
w a a

= + ´ + ´

= + ´
+ ´ + +
+ ´ +

v v k O A k A C
i j k

k i j k
k i j





. (1) 

Note that ω , representing the angular velocity of the OMR, can be computed by 

w s j= +  . (2) 

Combining (1) and (2), the kinematics of a PCW can be expressed in a single matrix form written 
as 

- sin sin cos sin

cos cos sin cos

1 0 1

x i i i i i

y i i i i i

i

v b l r l

v b l r l

j a j a s
j a j a r

w j

é ù é ù é ù- -ê ú ê ú ê ú
ê ú ê ú ê ú= +ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê úë û ë û ë û





. (3) 

Equation (3) presents the forward kinematic model of wheel i  and the kinematic models of the 
rest of the wheels can be derived in the same manner. The single castor wheel Jacobian matrix iJ  is 
always full rank as its determinant remains a nonzero constant. Thus, the inverse matrix of iJ  
always exists. 

In practice, it would be difficult to measure or control iσ  as it represents a passive rotational 
motion. This variable needs to be eliminated from the inverse kinematics of a single PCW. The 

Figure 3. Modular design of the OMR with n PCWs.

The global reference frame XYZ is used to describe the configuration of the OMR, and
→

i ,
→

j ,
→

k
represent the three orthogonal axes of the local frame attached to the platform. As long as the number
of PCWs is no less than two for singularity avoidance [20], the proposed kinematic analysis for the
modular OMR is not restricted by the number of PCWs. Conventionally, the PCWs are arranged
symmetrically for good dynamic performance and increasing the number of PCWs can improve the
load capacity of the OMR. It should be noted that the kinematic model in this paper refers to the
instantaneous kinematics, which maps the joint velocity

.
q to the operational space velocity

.
x. As shown

in Figure 3, ρi(i = 1, 2, · · · , n) are defined as the rolling angles of the wheels and ϕi are defined as the
steering angles; σi are defined as the angular displacements of the ith wheels with respect to the X-axis.
r denotes the wheels’ radius and b denotes the offset of the PCW, l is the vector for the center of the

OMR to the support point, and α is the angle between l and
→

i . Then for the ith PCW, the linear speed
at the center of the platform can be derived by

vC = vOi +
.
σk×OiAi +ωk×AiC

=
.
ρi(sinϕii + cosϕij) × rk

+
.
σk× (−b cosϕii + b sinϕij + hk)
+ωk× (l sinαii + l cosαij)

. (1)

Note that ω, representing the angular velocity of the OMR, can be computed by

ω =
.
σ+

.
ϕ. (2)

Combining (1) and (2), the kinematics of a PCW can be expressed in a single matrix form written as
vx

vy

ω

 =

−b sinϕi − l sinαi r cosϕi −l sinαi
b cosϕi + l cosαi r sinϕi l cosαi

1 0 1




.
σi
.
ρi.
ϕi

. (3)

Equation (3) presents the forward kinematic model of wheel i and the kinematic models of the rest
of the wheels can be derived in the same manner. The single castor wheel Jacobian matrix Ji is always
full rank as its determinant remains a nonzero constant. Thus, the inverse matrix of Ji always exists.
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In practice, it would be difficult to measure or control σi as it represents a passive rotational motion.
This variable needs to be eliminated from the inverse kinematics of a single PCW. The controllable
joint velocity denoted by qi, including steering and rolling variables only, can be expressed as

.
qi =

[ .
ρi.
ϕi

]
= Ci


vx

vy

ω

, (4)

where Ci is called the wheel constraint matrix [16] because it describes the constraints at each contact
point between the wheel and the ground. All wheels’ equations are combined to get the unified inverse
kinematics, as follows:

C =


C1

C2
...

Cn

,
.
q =


.
q1.
q2
...

.
qn

 = C
.
x. (5)

2.2. Joint Space Dynamic Model of the OMR

In order to formulate the dynamic model of the entire system, the dynamic model of a single PCW
should first be obtained. In Figure 4, the schematic model of the PCW is presented. A PCW consists of
three main components: a wheel, a bracket, and a “virtual” link from the upper side of the bracket to
the mass center of the OMR. We call the link “virtual” because it only exists conceptually. The PCWs
are installed directly in the chassis of the robot. The virtual link just provides the position information
of the support points from the mass center of the robot.
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The equation of motion for a PCW can be obtained through the Lagrangian method. The OMR
can only achieve planner motion, hence there only exists kinetic energy Ki. The rolling motion

.
ρi is

always orthogonal to the steering motion
.
ϕi, thus they can be decoupled and calculated by

Ki =
Ir

.
ρ

2
i

2
+

Is
.
ϕ

2
i

2
+

mw(
.
ρir)

2

2
, (6)

where Ir is the inertial moment of the wheel about its rolling axis, Is is the inertial moment of the PCW
about the steering axis, and mw is the mass of the PCW. The dynamic model of a PCW in the joint space
can be derived as

d
dt
∂Ki

∂
.
qi
−
∂Ki
∂qi

=

[
τρi

τϕi

]
. (7)

Because Ki is only in regard to
.
qi, ∂Ki/∂qi = 0 holds. The dynamic model of a single PCW can be

formulated as
Mi

..
qi = τi − τ fi + PT

i (−Fw
i ), (8)
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where

Mi =

[
Ir + mr2 0

0 Is

]
,

..
qi =

[ ..
ρi..
ϕi

]
,

PT
i =

[
−r cosϕi b sinϕi 0

0 0 1

]
.

In (8), τi represents the actuating torques and τ fi denotes the friction torques, which consist of
Coulomb friction and viscous friction. Pi is the matrix that maps the ith joint velocity to the support
point velocity, and −Fi is the external wrench applied by the platform.

The platform of the OMR can then be regarded as a manipulated object by the PCWs. The
force resulted from the distal end of ith PCW is Fw

i . The dynamic model of the platform only can be
expressed as

Λp
..
x + µp(x,

.
x) = Fw

o , (9)

where Λp = diag
[

mo mo Io
]

is the inertial term of the platform, and µp(x,
.
x) is the Coriolis and

centrifugal term. Fw
o is the resultant force applied by all the PCWs.

2.3. Operational Space Dynamic Model of the OMR

The operational space dynamic model of a PCW is expressed in the form as

Λi
..
x + µi = Fi, (10)

where Λi = CT
i MiCi is the operational space mass matrix, µi = CT

i Mi
.
Ci is the operational space Coriolis

and centripetal terms, and Fi is the operational space wrench. The OMR is assumed to move in a plane
surface, so the gravity component is neglected here.

After deriving the dynamic models of the PCWs, the augmented object model (AOM) [21] can be
employed to obtain the dynamic model of the entire system. The AOM declares that the systematic
dynamic model of the entire system in operational space can be obtained by adding all the operational
space dynamics of the PCWs and the platform only at the operational space frame. Thus, the augmented
mass matrix Λ⊕ and Coriolis and centripetal terms µ⊕ of the OMR are given as

Λ⊕ =
n∑

i=1

Λi + Λp, (11)

µ⊕ =
n∑

i=1

µi + µp, (12)

where Λp and µp are the mass matrix and the Coriolis and centripetal terms of the platform only
expressed in the operational space, respectively. F is the resultant wrench applied to the OMR, expressed
in the operational space frame. Finally, the operational dynamics of the OMR can be written as

Λ⊕
..
x + µ⊕ = F. (13)

3. Energy Consumption Model of the OMR

The intact energy consumption model of the OMR consists of three parts: the sensors, the control
system, and the motion system. The motion system consumes the overwhelming majority of energy
in the OMR [10]. Hence, we mainly focus on the study of the influence of torque distributions to the
energy consumption. The energy consumptions of the sensor system and the control system will not
be discussed here. The formulation of energy consumption model is for predicting and evaluating the
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amount of energy consumed by the actuators in the OMR. The energy consumption can be calculated
by integrating the power consumption about time. The power consumption model usually consist of
output power consumption Poutput and the subordinate electrical power loss Ploss [22,23].

Ptotal = Poutput + Ploss, (14)

where the output power consumption is the power consumed to attain and sustain the desired motion
of the OMR, and refers to the mechanical power. Poutput can be computed by

Poutput =
n∑

i=1

[
τi

.
qi

]∗
. (15)

The definition of [a]∗ is that, if a is larger than zero, the value of [a]∗ is a. If a is smaller than zero, the
outcome value of the function is zero. It means that the negative output power cannot be regenerated
and is dissipated as heat [24].

The electrical power loss often contains three parts: coil loss, conduction loss, and switching loss.
The coil loss results from the heat dissipation as the current flows through the resistances of a circuit. It
is formulated as follows:

Pcoil =
n∑

i=1

RiI2
i , (16)

where Ri is the resistance of the coil in the ith actuator. Ii is the current the of the ith actuator. The other
two types of electrical power loss that happen in servo-amplifiers or servo-drives, including conduction
loss and switching loss. Each loss happens when the current flows in an insulated-gate bipolar transistor
of the servo-amplifier [25]. The conduction loss and switching loss are often formulated according
to the voltage and current information. The literature of [25] provides a scheme for calculating the
conduction and switching loss only dependent on the current information. The conduction loss and
the switch loss can be expressed, respectively, by:

Pconduction =
n∑

i=1

µa
i Ii + µb

i I2
i , (17)

Pswitching =
n∑

i=1

ηiIi, (18)

where µa
i and µb

i are the coefficients for the conduction loss. The conduction loss is formulated in a
quadratic polynomial manner with respect to the current. ηi is the constant coefficient of switching
with respect to the current. Hence, the electrical power loss can be computed by summing the coil loss,
conduction loss, and switching loss.

Ploss = Pcoil + Pconduction + Pswitching. (19)

All kinds of losses are formulated as the functions of current. By summing the coefficients
according to the power of the current, the power loss can be expressed as

Ploss =
n∑

i=1

(
λa

i Ii + λb
i I2

i

)
, (20)

where λa
i = µa

i + ηi, and λb
i = µb

i +Ri. λa
i and λb

i are the coefficients of the power loss of the ith actuator
in terms of the current.

Because we mainly investigate the relationship between the torque distributions and the energy
consumption in this paper, it is desired to express the power consumption in the manner of joint torques.
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Fortunately, for the torque motors employed in the PCWs, their outputs are linearly proportional to
the current in the circuit. Therefore, the current term Ii and I2

i in (20) can be replaced by the torque
term τi and τ2

i with their corresponding linear coefficients. Equation (20) can be reformulated as

Ploss =
n∑

i=1

(
κa

i |τi|+ κb
i τ

2
i

)
, (21)

where κa
i and κb

i are the coefficients for the electrical power loss of the absolute value of torque and the
square of torque in the ith actuator, respectively. The new electrical power loss model (21) in terms of
the torque represents a combination of the electrical power loss model in terms of the current and the
linear proportional relationship between the current and the torque in the actuator.

After obtaining the output power consumption model of the OMR, the coefficients of the model
have to be specified via experimental measurement. For accuracy, the angular velocities of the actuators
are set to be constant, and photoelectric encoders on the motors can be used to measure the velocities
of motors and provide feedback to the control system in real time [10]. A strain-gauge sensor [24]
is employed to measure the torque of each actuator. The coefficients in (21) are acquired through
the power measurement while different static loads are applied to each actuator, and the experiment
is executed as shown in Figure 5. The power measurement is implemented by a dynamometer
(SUGAWARA PC-MCT6). The tested actuator is connected to the dynamometer by a shaft coupling.
The industrial personal computer (IPC) is responsible for controlling and sending commands to the
dynamometer. The actuator is commanded to rotate in constant angular velocity with several static
loads induced by the dynamometer, and the real-time voltage and current of the actuator are shown
in the oscilloscope (YOKOGAWA WT1800). The output power of the actuator can be calculated by
multiplying its angular velocity and the output torque applied by the dynamometer. Figure 6a,b shows
the experimental result of electrical power loss of the rolling actuator and the steering actuator with
respect to different loads, respectively. The markers are measurement points of the experiment. The
coefficients of the power consumption models are obtained through mathematical curve fitting by
MATLAB by (21), and the results are shown in Table 1.Energies 2019, 12, x FOR PEER REVIEW 9 of 21 
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Table 1. Experimental results for the coefficients of the power loss model.

Class of Actuators κa
i κb

i

Steering actuator 2.98 1.40
Rolling actuator 3.39 2.31

From the above, the total power consumption of the motion system can be written as

Ptotal =
n∑

i=1

[
τi

.
qi

]∗
+

n∑
i=1

(
κa

i |τi|+ κb
i τ

2
i

)
. (22)

The energy consumption model for the OMR can be calculated by

E(τ) =

t f∫
t0

 n∑
i=1

[
τi

.
qi

]∗
+

n∑
i=1

(
κa

i |τi|+ κb
i τ

2
i

). (23)

Each PCW has two motors for rolling and steering motions, respectively, so the number n is 2m
for the OMR with m PCWs.
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4. Torque Distribution Schemes for the OMR

The torque distribution schemes of robots can be derived from the forward kinematic model by

τ = JTF, (24)

where τ is the actuating torques applied by the joints and J is the Jacobian matrix of the robot. In the
analysis of the torque distribution for the OMR, because the PCWs are direct driven, the impact of the
transmission system in the PCWs and the dynamics of the motors are neglected. We assume that the
torques produced by the actuators are the same torques applied to the joints. Owing to the parallel
structure and redundant actuation of the OMR, the Jacobian matrix cannot be derived directly through
kinematics analysis. Instead, it is obtained by computing the generalized inverse of the constrained
matrix C of the OMR [15]. This means that if the task space velocity of the OMR is given, the joint
velocity can be directly calculated by the constraint matrix. However, the task space velocity cannot be
obtained from arbitrary joint velocity because of the kinematic constraints. The constraint matrix maps
the operational space velocity

.
x to the joint space velocity

.
q by

.
x = C

.
q. (25)

The Jacobian matrix of the OMR can be obtained by computing the generalized inverse matrix of
the constraint matrix:

J = C+. (26)

Because the OMR is redundantly actuated, the constraint matrix C is not square. Hence, there
exists a non-unique Jacobian matrix for the OMR, and the different choices of the generalized inverse
will lead to different torque distribution schemes.

4.1. Torque Distribution Schemes Resulting from the Generalized Inverse of the Jacobian

Two reasonable determinations of torque distribution schemes proposed by the published
research [17] are first presented. The kinematics of the OMR with PCWs can be expressed in an
equivalent way as

A
.
x = B

.
q, (27)

where B is a diagonal matrix and A is a non-square matrix. The first torque distribution scheme is
expressed as

τ =
(
B−1A

)T

LPI
F, (28)

where
(
B−1A

)
LPI

means computing the left Moore–Penrose pseudo-inverse of B−1A. Using this model,
the joint torque differences are minimized in a least-squares manner. The second torque distribution
scheme is expressed as

τ = BTAT
LPIF, (29)

where ALPI means computing the left Moore–Penrose pseudo-inverse of A. Using this model, the
joint torque as well as the interaction forces between different contact points are minimized, in a
least-squares manner.

4.2. Gradient Projection-Based Torque Optimization

The gradient projection method is an efficient and widely-employed optimization method in the
control of redundant robots [26,27]. It fully utilizes the null space of the Jacobian matrix to optimize
varieties of performance criteria, such as manipulability, obstacle avoidance, and joint limit avoidance.
It is approached by projecting the steepest descent direction of the performance criterion onto the
null space and finding the best solution along the projected vector. The flowchart of the proposed
torque distribution optimization algorithm is shown in Figure 7. For the torque distribution of the
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redundant actuated OMR, as mentioned before, the joint space torque is not directly projected from the
operational space force by the transpose of the Jacobian matrix, but instead of the constraint matrix C,
written by

CTτ = F. (30)
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As the 3-DOF OMR is actuated by m(m ≥ 4) actuators, the joint torques can be expressed as

τ = (CT)
+

F +
[
I − (CT)

+
CT

]
v, (31)

where v ∈ Rm is an arbitrary vector. On the basis of GPM, it can be replaced by the gradient of a
performance criterion H(τ), which yields

τ = (CT)
+

F + k
[
I − (CT)

+
CT

]
∇H(τ), (32)

where k is the searching step size and ∇H(τ) is the gradient of H(τ). Note that scalar k is positive if
H(τ) needs to be maximized and is negative if H(τ) needs to be minimized. The detailed construction
of H(τ) for the optimization will be presented later.
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In order to implement GPM to the torque distribution of the OMR, the torque limits have to be
determined first. The limit of the torque τmax and τmin is determined by two factors: the maximum
and minimum produced torques of the actuator τmotormax and τmotormin; and the maximum ground
traction τtraction, which is expressed below:

τtraction = N · (µc + µvv) · sign(vc)

τmax = min(τmotormax, τtraction)

τmin = max(τmotormin,−τtraction)

, (33)

where N is the ground contact force of the wheel, µc is the Coulomb friction coefficient, µv is the viscous
friction coefficient, and vc is the velocity of the wheel at the wheel-ground contact point. In practice, the
maximum ground traction is smaller than the maximum produced torque, which means that, during
the motions of the OMR, the actuating torques may exceed the ground traction and, consequently,
slippage happens to the wheels. Employing the limit of the actuating torques and rewriting (22), it
yields the following:

τ− (CT)
+F = k

[
I − (CT)

+CT
]
∇H(τ)

τmin − (CT)
+F ≤ k

[
I − (CT)

+CT
]
∇H(τ) ≤ τmax − (CT)

+F
. (34)

Let τ′ = τ− (CT)
+F, where τ′ is a point in the null space of CT, then the optimization problem

can be expressed as

Objective function : H(τ′)

Subjected to : C+τ′ = 0
τmin − (CT)

+F ≤ τ′ ≤ τmax − (CT)
+F

.

(35)
Resolving the optimization problem of (35) will produce an optimal solution τ′g in the null space

of CT. After that, the optimal solution of τg can be obtained by τg = τ′g +
(
CT

)+
F.

After defining the optimization problem of the actuating torques of the OMR, the performance
criterion H(τ′) need to be formulated. The boundary conditions in (35) declare that τ′ must be within
the feasible zone, which is away from the actuating torque limit. It can be expressed as

τ′min ≤ τ
′
≤ τ′max(

τ′min = τmin − (CT)
+F, τ′max = τmax − (CT)

+F
) . (36)

The performance criterion used to generate the feasible zone can be given as

H f easible zone(τ
′)i =

1
[(τ′max)i − (τ

′)i][(τ
′)i − (τ

′
min)i]

, (37)

where i refers to the ith component of the corresponding torque vector. For such a performance
criterion, the value of the function goes to infinity, while the actuating torque approaches either a
maximal or minimal limit, and goes to minimal while the actuating torque reaches the midpoint of the
feasible torque interval. This indicates that, while searching for the minimal point, the performance
criterion will retain the actuating torque within the feasible torque zone and away from either the
maximum or minimal limit. Hence, using this performance criterion, the maximal (or absolute value
of minimal) required actuating torque of the OMR for a specific trajectory will be reduced.
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In addition, it is our main purpose to take the energy consumption into account for the torque
distribution of the OMR. Therefore, another term that resulted from (22) is introduced into the
performance criterion, which is given as

H(τ′) =
m∑

i=1
H(τ′)i

H(τ′)i =
1

[(τ′max)i−(τ
′)i][(τ

′)i−(τ
′
min)i]

∗

[[
τ′i

.
qi

]∗
+

(
κa

i |τ
′
i|+ κb

i τ
′2
i

)] . (38)

The modified performance criterion is used to optimize for a preference of better energy efficiency.
It should be noted that the performance criterion function must be continuous while applying GPM,
but the function in (38) is discontinuous at the point τ′i = 0. This issue can be solved by using a curve
fitting polynomial function to replace the original function at a small interval [−0.1, 0.1] around τ′i = 0,
with an acceptable sacrifice of accuracy.

Now, with the objective function given in (38), the optimization problem expressed in (35) becomes
a convex optimization problem because both the objective function and the inequality constraints are
convex. In this situation, using the GPM can always find the global optimal solution. The GPM is
executed by the following equation:

τ′lg = τ′start − k
([

I − (CT)
+CT

]
∇H(τ′start)

)
unit

= τ′start − k(Pv)unit
, (39)

where τ′lg is the local optimal solution along the unit projective vector (Pv)unit, τ
′
start is the starting

point in the null space of CT, and k is the step size along (Pv)unit. On the basis of the definition of
gradient, (Pv)unit is obtained by projecting the steepest descent direction of the objective function onto
the null space of CT. In order to get the global optimal solution, set τ′start = τ′lg and repeat (39) again
and again. The global optimal solution τ′g will be obtained when the iteration stops at (Pv)unit = 0,
indicating that the performance criterion has already come to its “lowest position”.

The last problem that needs to be coped with is the determination of the starting point τ′start. The
GPM will have a low computational cost and converge more rapidly if τ′start is closer to the global
optimal solution. A simple, but effective method is to project the torque distribution in (29) onto the
null space of CT, and to set the result as the starting point for each motion in the entire trajectory, as
the result in (29) has already been optimized in a least-squares manner. However, a more reasonable
starting point in the current motion j of the planned trajectory can be obtained by projecting the optimal
solution of last motion j− 1 onto the null space of the current motion j, expressed as

τ′start_ j =
(
I −

(
CT

j

)+
CT

j

)
τ′g_ j−1. (40)

As F and CT are continuous, τ′start_ j will be very close to the new optimal solution τ′g_ j if τ′g_ j is
the optimal solution in the last motion j− 1.

5. Simulation Examples and Results Analysis

The simulation is presented in this section for validating the effectiveness of the proposed
optimization method by MATLAB (r-2015b version, MathWorksS, Natick, US). The OMR used for
simulation is shown in Figure 8. All PCWs in the OMR are identical. The platform of the OMR is
designed in squared shape, and each PCW locates at one of the four corners of the platform. The
parameters of the OMR are given as follows: the mass of the platform without any PCWs is 52 kg, the
side length L of the platform is 0.5 m, the radius of each wheel is 0.05 m, the offset of the castor wheel
is 0.046 m, and the mass of each PCW is 5 kg. The coefficients of the electrical power loss are referred
from the experimental results in Figure 6. The lower and upper bounds of the actuating torque are
±6N ·m for the rolling motors and ±8N ·m for the steering motors.
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In order to further illustrate the results of the torque distribution optimization for the OMR with
PCWs, a curvilinear trajectory is proposed next. The path is shown in Figure 9; the OMR moves
from the original point to the endpoint, then turns around at the endpoint and moves back to the
original point. The OMR is commanded to track the path with self-rotation for taking full advantage of

holonomicity, and the red arrows in Figure 9 represent the head directions (vector
→

i in Figure 8) of the
OMR. The function of the trajectory is expressed as follows:

x = 4− 4 cos(t/20) ; (meter)
y = 3− 3 cos(t/10) ; (meter)
θ= 3− 3 cos(t/15) ; (rad)

. (41)
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Compared with the series manipulators, the mobile robots usually have much larger tracking
errors, and one of the primary reasons for the tracking errors is the slippage between the wheels and the
ground. The slippage is often difficult to predict because of the uncertainty of the ground conditions.
However, because the phenomenon often occurs when the actuating torques of the wheels exceed the
traction limit of the ground, reducing the maximal required actuating torques of the wheels during the
performance of a specific trajectory can decrease the tendency of slippage. According to the normal
indoor ground condition and the limits of the actuators, the maximal torque limits are calculated
by (33) and set to be ±5.3N ·m and ±4.6N ·m for the rolling and steering actuators, respectively.
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Figure 10 shows the maximal required actuating torque among all PCWs during the motion, with
both forward and backward rotation. The maximal positive actuating torque is significantly reduced
by the optimization, by approximately 11% at the highest point compared with the former torque
distribution Schemes 1 and 2 expressed in (28) and (29), respectively. The maximal negative actuating
torque is also reduced by 6% at the highest point. Moreover, the red dotted lines represent the maximal
positive and negative torque limits of the motors in the PCW. The maximal torque resulted from the
former two torque distribution schemes exceed the torque limit. As it is difficult to simultaneously
consider the torque limits when using the pseudoinverse method. In contrast, the optimized torque is
totally below the limit. For such a trajectory, the actuators are commanded to produce less torques
for the backward rotation, so that all three torques’ distributions have kept the maximal negative
torques within the torque limits. For other joints with less actuating torques, the differences between
the optimization outcomes and the results from pseudoinverse are not as significant as the differences
shown in Figure 10. However, the torques of the other joints are still decreased to a smaller extent, and
the data are not listed for concision. Figure 11 shows the power consumption of the OMR following
the curvilinear trajectory adopting the three kinds of torque distribution schemes. As shown in
Figure 11b,c, the power consumption is reduced by using the optimized torque distribution compared
with the other two schemes, basically owing to the saving in electrical power loss part. The output
power consumptions for the three torque distribution schemes are the same; because the OMR is
commanded to follow the same trajectory by using the three different torque distribution schemes, the
output power consumption that attains and sustains the motion of the OMR will be the same for the
three cases. Besides being transferred into kinetic energy, the actuating torques are partly consumed to
produce internal forces. The internal forces will be counteractive to each other and do not contribute
to the motion of the OMR; the portion of the actuating torques corresponding to the internal forces
still consumes energy in the actuators and is transformed to different kinds of losses expressed in (27).
The total energy consumption as well as energy loss are presented in Table 2. By using the proposed
optimization method, the total energy consumption can be reduced by 9.3% for the given trajectory.

Table 2. Simulation results of total energy consumption for the curvilinear trajectory.

Torque Distribution Scheme Energy Loss (Joule) Energy Consumption (Joule)

Optimized torque distribution 7.24 × 103 1.26 × 104
Torque distribution 1 8.37 × 103 1.38 × 104
Torque distribution 2 8.39 × 103 1.39 × 104

Furthermore, the torque distribution optimization has to be computationally efficient if it is
applied in real-time dynamic control. Because the optimization algorithm is iteration-based, the
computational time is determined by the number of iterations per step. The step size of the continuous
motion is discretized in every 0.1 second, and the average numbers of iterations per motion step are
shown in Table 3. In order to reveal the superiority of the proposed method for determining the starting
point expressed in (40), the results of the number of iterations from two other choices of starting point
are also presented as a contrast. The first choice is an arbitrary simple point, and the second choice is
the pseudo-inverse solution resulting from (29). The computational efficiency of the proposed method
for determining the starting point is apparently approved.
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Table 3. Number of iterations per step.

Starting Point [1,1,1,1,1,1,1,1]T

(An Arbitrary Choice)
Pseudo-Inverse

Solution Proposed Method

Average number of
iterations per step 79.24 19.57 4.86



Energies 2019, 12, 4417 17 of 19

Energies 2019, 12, x FOR PEER REVIEW 18 of 21 

 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Power consumption of the OMR following the trajectory: (a) total power consumption; (b) 
output power consumption; (c) electrical power loss. 

Table 2. Simulation results of total energy consumption for the curvilinear trajectory. 

Torque Distribution Scheme Energy Loss (Joule) Energy Consumption 
(Joule) 

Optimized torque distribution 7.24 × 103 1.26 × 104 

Torque distribution 1 8.37 × 103 1.38 × 104 

Torque distribution 2 8.39 × 103 1.39 × 104 

Figure 11. Power consumption of the OMR following the trajectory: (a) total power consumption; (b)
output power consumption; (c) electrical power loss.

6. Conclusions and Future Work

This paper presents the optimization of the torque distribution for the redundantly actuated OMR
with PCWs based on GPM. The kinematic and dynamic models of the OMR are firstly formulated.
In this paper, although the model used in simulation is an OMR with four PCWs, the modelling
approach is in a modular way, which is suitable for the OMR with an arbitrary number of PCWs,
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as well as their mounting positions in the chassis. The detailed energy consumption model of the
OMR including output energy consumption and electrical energy loss is then formulated, the the
coefficients of the model are obtained by experimental test. Besides the energy consumption, the
maximal required actuating torque to perform a specific trajectory is also non-negligible, as slippage
often occurs when the actuating torques of the wheels exceed the ground traction limits. A performance
criterion combined with torque limits and energy consumption is proposed in the GPM. Compared
with two torque distribution schemes, which result from the Moore–Penrose pseudo-inverse method,
the optimized torque distribution can significantly decrease the maximal required actuating torque
as well as the total energy consumption, by 11% and 9.3%, respectively. Finally, the computational
efficiency of the proposed optimization algorithm is validated. In further research, we intend to extend
the torque distribution optimization method to an omnidirectional mobile manipulator, which means a
serial manipulator is mounted on the OMR. While performing a task, the torque limit for each actuator
of the PCW may change in real-time because the ground contact force of each PCW is related to the
current configuration and motion of the manipulator. Moreover, the trajectory planning will become
more complicated for that case, the motion of the OMR has to be decoupled from the motion of the
entire system, and a multi-objective optimization method is expected to cope with the issues.
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