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Abstract: To promote the utilization of distributed resources, this paper proposes a concept of a
micro energy system (MES) and its core structure with energy production, conversion, and storage
devices. In addition, the effect of demand–response on the operation of a MES is studied. Firstly,
based on uncertainties of a MES, a probability distribution model is introduced. Secondly, with the
objectives of maximizing operating revenue, and minimizing operational risk and carbon emissions,
a multi-objective coordinated dispatching optimization model was constructed. To solve this model,
this paper linearizes objective functions and constraints via fuzzy satisfaction theory, then establishes
the input–output matrix of the model and calculates the optimal weight coefficients of different
objective functions via the rough set method. Next, a comprehensive dispatching optimization
model was built. Finally, data from a MES in Longgang commercial park, Shenzhen City, were
introduced for a case study, and the results show that: (1) A MES can integrate different types of energy,
such as wind, photovoltaics, and gas. A multi-energy cycle is achieved via energy conversion and
storage devices, and different energy demands are satisfied. Demand–response from users in a MES
achieves the optimization of source–load interaction. (2) The proposed model gives consideration to
the multi-objectives of operating revenue, operational risk, and carbon emissions, and its optimal
strategy is obtained by using the proposed solution algorithm. (3) Sensitivity analysis results showed
that risks can be avoided, to varying degrees, via reasonable setting of confidence. Price-based
demand–response and maximum total emission allowances can be used as indirect factors to influence
the energy supply structure of a MES. In summary, the proposed model and solution algorithm are
effective tools for different decision makers to conceive of dispatching strategies for different interests.

Keywords: micro energy system; multi-objective; conditional value at risk (CVaR); weight calculation;
dispatching model

1. Introduction

Increasing energy demands, energy crises, and environmental pollution mean that energy
utilization efficiency improvement, pollution reduction, and environmental sustainability are popular
research topics. The concept of the “energy Internet” has integrated different types of independent
systems, such as power, heat, and gas, thus solving the problems of low utilization efficiency due to the
independence [1]. However, technical barriers and closure of traditional energy industries are current
challenges for the large energy Internet [2]. A micro energy system (MES), as an extension of a micro
power grid, will be a terminal energy supply system of the energy Internet [3], which is conducive to
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achieving multi-energy complementation and energy utilization efficiency improvement. Hence, it is
of great significance for healthy development of energy systems to study MESs.

To date, research on MES has mainly focused on coordinated planning and operational
optimization, that is, minimum operational costs or optimal environmental benefits were taken
as objectives to optimize the operation of equipment in systems. Reference [4] studied the coordinated
dispatch, operational optimization, and strategies of MES energy management for theorical research.
Reference [5] constructed a two-layer optimization model based on adjustable thermoelectric ratio
modes of cogeneration units. The first layer pursued the minimum energy cost and the second layer
considered energy efficiency as an objective, thus achieving the efficient and economical operation of a
MES. Reference [6] optimized the operation of a MES with the minimum costs of energy consumption
and environment. Reference [7] introduced carbon credits as a tradeable commodity and pursued the
minimum costs of power generation and carbon trading in system operation. Reference [8] integrated
photovoltaics, energy storage, and heat exchangers into an energy hub system of resident load and
optimized the operation of a MES by pursuing minimum energy cost. The above papers did not
consider uncertainties of MESs, which makes it difficult to ensure the security and reliability of systems.

The uncertainties of MESs are mainly due to wind/photovoltaic power; thus, it is important
to study the flexible applications of controllable units, energy storage devices, electric vehicles,
and flexible load to solve random changes of wind/photovoltaic power [4]. Reference [9] described the
uncertainties of wind/photovoltaic power via a robust stochastic optimization method and conducted
a two-level dispatching optimization for virtual power plants. Reference [10] proposed a robust
optimization method with energy hubs for energy management considering uncertainties of load
demands. Reference [11] established operational strategies for a MES in the United Kingdom via
deterministic planning, two-stage planning, and multi-stage planning methods, considering uncertainty
of wind power generation. Reference [12] solved the wind consumption problem based on the rapid
regulation of gas-fired generators. Robust optimization and stochastic programming optimization
are popular methods for handling uncertainties. However, the probability distribution on which
stochastic optimization depends is not easy to obtain, and robust optimization is characterized by
boundary parameters of uncertain factors; thus, selecting an appropriate robust set is usually hard and
conservative decision results are obtained.

Solving multi-objective optimization models is also a key problem of MES operation. Generally
speaking, multi-objective models are solved by related algorithms, but the introduction of uncertainties
and new scheduling objectives increases the complexity of the models. Solution algorithms mainly
include traditional solution algorithms and heuristic intelligent algorithms [13]. The former has
difficulties in parameter determination and constraint transformation, which leads to a low degree of
optimization [14], while the latter obtains a better solution set, but when an individual extremum is
selected without considering multi-objective programming principles, it is easy to make the algorithm
settle on a local extremum, and the search ability is limited [15]. Reference [16] solved an energy
dispatching problem of a MES via particle swarm optimization and the differential evolution algorithm.
Hence, transforming and solving a multi-objective model is a major problem in regard to establishing
optimal dispatching strategies of a MES.

Energy dispatching and multi-objective model solving are two popular points of the current
research on MESs. However, the analysis of operational risk caused by uncertain factors is absent in
current papers. Some papers have handled the uncertainties of wind power plants and photovoltaic
plants via robust methods and stochastic optimization methods, but there were either difficulties in
information collection and accuracy of probability distribution function or inhibiting effects of optimal
solutions by bad influences caused by every element in the set. Other papers solved the models
via intelligent algorithms, but the effectiveness is greatly affected when an individual extremum is
selected without considering multi-objective programming principles. Based on this, we propose an
optimization dispatching model of a MES. The contributions of this paper are concluded below.
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(1) The structure of the MES, with energy production, conversion, and storage devices,
was designed. Also, an incentive-based demand–response (IBDR) and a price-based demand–response
(PBDR) were introduced for optimizing the operation of the MES, and an operation model with
uncertainty variables was constructed after uncertainties of the MES were analyzed.

(2) Three objectives, namely maximizing operating revenue, minimizing carbon emissions,
and minimizing operational risk were pursued, and the constraints of supply–demand balance,
unit operation, DR mechanism operation, and spinning reserve were considered.

(3) A multi-objective solution algorithm for MES optimal operation based on fuzzy satisfaction
theory and the rough set method was proposed. Firstly, the objective functions were processed using
fuzzy satisfaction theory, and optimal dispatching strategies were established under single-objective
functions. Then, a multi-objective input–output table was built and the functions’ weights were
determined via the rough set method, thus obtaining a comprehensive dispatching optimization model.
Finally, the effectiveness of the constructed model was verified by conducting a case study.

The remainder of this paper is laid out as follows. Section 2 introduces the core structure of the MES
and constructs a probability distribution model with the uncertainties of the MES. Section 3 establishes
a multi-objective coordinated dispatching optimization model for the MES, with the objectives of
maximum operating revenue, minimum operational risk, and minimum carbon emissions. In Section 4,
a multi-objective weighting method is established by combining the fuzzy satisfaction and rough set
methods to solve the constructed model, thus obtaining a comprehensive dispatching optimization
model. Next, data from Longgang commercial park in Shenzhen City are introduced for a case study
to verify the effectiveness of the constructed model in Section 5. Significant findings are concluded in
Section 6.

2. Description and Analysis of the MES

2.1. Structure Description

The MES in this paper contains energy production, conversion, and storage devices (EPD, ECD,
and ESD, respectively). The EPD includes wind power plants (WPP), photovoltaic plants (PV),
conventional gas turbines (CGT), and gas boilers (GB). The ECD consists of power-to-cooling (P2C),
power-to-gas (P2G), power-to-heat (P2H), and heat-to-cooling (H2C). The ESD is composed of cooling
storage equipment (CSE), heat storage equipment (HSE), gas storage equipment (GSE), and power
storage equipment (PSE). In addition, energy utilization in the system is mainly power, cooling, and
heat consumption. Figure 1 shows the structure of the MES.

According to Figure 1, the MES achieves the power–heat–cooling cascade supply via energy
inter-conversion; in particular, gas from the P2G is used by the CGT for power and heat generation.
Since there is flexible load, the PBDR and IBDR are introduced to guide users to engage in operational
optimization of the MES. The former encourages users to use energy rationally via the time-of-use
tariff, and the latter is to sign pre-protocols with users, which directly controls energy behaviors of
users, thus realizing multi-energy coordinated supply of power, heat, and cooling.
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2.2. Uncertainty Analysis

The uncertainties of the MES are from the WPP/PV outputs and load demands. One of the key
parts of establishing an optimal MES strategy is to simulate these uncertainties.

2.2.1. Uncertainty Analysis of the wind power plants (WPP)

Uncertainty of the WPP is caused by natural wind, which is hard to predict. Some literature has
verified that the Weibull distribution function is an excellent model for wind speed simulation [17].
The function is as follows.

f (v) =
ϕ

ϑ

( v
ϑ

)ϕ−1
e−(v/c)ϕ (1)

where v is the wind speed, and ϕ and ϑ are the shape and scale parameters, respectively, which can be
calculated by the mean and variance of wind speed during this period based on statistics. After the
simulation of wind speed via Equation (1), the WPP available output is given by:

g∗WPP,t =


0, vt ≤ vin
v−vin

vR−vin
gR, vin ≤ vt ≤ vR

gR, vR ≤ vt ≤ vout

0, vt ≥ vout

(2)

where gR is the WPP rated output; vin, vout, and vR are the cut-in, cut-out, and rated wind speeds,
respectively; vt is the real-time wind speed over time t, and g∗WPP,t is the available output over time t.

2.2.2. Uncertainty Analysis of the photovoltaic plants (PV)

The uncertainty of the PV is caused by solar radiation intensity. Some literature has verified
that the beta distribution function is an excellent model for solar radiation intensity stimulation [18].
The function is as follows.

f (θ) =

 Γ(ω)Γ(ψ)
Γ(ω)+Γ(ψ)θ

ω−1(1− θ)ψ−1, 0 ≤ θ ≤ 1,ω ≥ 0,ψ ≥ 0

0, otherwise
(3)
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where θ is the solar radiation, and ω and ψ are the shape parameters of the beta distribution function,
respectively, which can be calculated by the mean and variance of solar radiation intensity based on
historical data [19]. Then, the PV available output is given by:

g∗PV,t = ηPV × SPV × θt (4)

where g∗PV,t is the maximum PV output over time t, ηPV and SPV are the radiation efficiency and area,
respectively, and θt is the radiation intensity over time t.

2.2.3. Uncertainty Analysis of Load Demands

To simulate the uncertainty of load demands, it is divided into forecasting value and deviation,
as follows.

Lt = Lf
t + Le

t (5)

where Lt is the load demand over time t, and Lf
t and Le

t are the forecasting results and errors, respectively.
If the load forecasting errors obey the normal distribution Le

t ∼ [0, δ2
L,t] [4], then the load demands also

obey the normal distribution Lt ∼ [Lf
t, δ

2
L,t].

Equations (1), (3), and (5) were used to determine the uncertainty distribution function of the MES.
To analyze and control its uncertainties, existing papers have generated typical distribution scenarios
to establish an optimal dispatching strategy. In fact, such a simulation method has a certain error,
thus creating risks for the MES operation. Different from the existing research, this paper intends to
use a conditional risk value to measure the MES uncertainty risk, and to construct a multi-objective
coordinated dispatching model that considers revenue, risk, and carbon emissions.

3. Multi-Objective Dispatching Model

The WPP and PV in the MES have high economic and environmental benefits, yet their uncertainties
also give rise to the risk of load loss. In addition, environmental protection consciousness means that
carbon emissions are an important constraint in the MES operation. Carbon emissions are mainly from
the CGT and GB, thus the WPP, PV, and utility power grid (UPG) will be utilized more often to satisfy
load demands, which leads to a high operational risk and a high energy supply cost. Hence, the effects of
the operating revenue, carbon emissions, and operational risk need to be considered comprehensively.

3.1. Objective Functions

3.1.1. Maximizing the Operating Revenue

The revenue of the MES is from the operation of the EPD, ECD, ESD, etc.
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where 1obj  is the objective function; ,WPP tR , ,PV tR , ,CGT tR , and ,GB tR  are the operating revenues of 
the WPP, PV, CGT, and GB over time t, respectively; 2 ,P G tR , 2 ,P H tR , 2 ,P C tR , and 2 ,H C tR  are the 
operating revenues of the P2G, P2H, P2C, and H2C over time t, respectively; ,PS tR , ,GS tR , ,HS tR , and 

(6)

where obj1 is the objective function; RWPP,t, RPV,t, RCGT,t, and RGB,t are the operating revenues of the
WPP, PV, CGT, and GB over time t, respectively; RP2G,t, RP2H,t, RP2C,t, and RH2C,t are the operating
revenues of the P2G, P2H, P2C, and H2C over time t, respectively; RPS,t, RGS,t, RHS,t, and RCS,t are the
revenues from power, gas, heat, and cooling storage over time t, respectively; and RPBDR,t and RIBDR,t

are the revenues from the PBDR and IBDR over time t, respectively. The operating revenue of the EPD
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is the energy supply income minus the energy supply cost. Since the WPP and PV have almost zero
marginal cost, the energy supply cost is from the CGT.

CCGT,t = Cfuel
CGT,t + Csd

CGT,t

=

 a
(
gCGT,t + θe

hQCGT,t

)2
+

b
(
gCGT,t + θe

hQCGT,t

)
+ c

+


[
µu

CGT,t(1− µ
u
CGT,t−1)

]
Cu

CGT,t+[
µd

CGT,s(1− µ
d
CGT,s+1)

]
Cd

CGT,s+1

 (7)

where Cfuel
CGT,t and Csd

CGT,t are the fuel and start–stop costs of the CGT over time t, respectively; gCGT,t
and QCGT,t are the CGT power and heating outputs over time t, respectively; θe

h is the power–heat
conversion coefficient of the CGT; a, b, and c are the coefficients of energy supply cost of the CGT; µu

CGT,t
represents the start-up status over time t; µd

CGT,s represents the shutdown status over time s; and Cu
CGT,t

and Cd
CGT,s+1 are the start-up cost over time t and the shutdown cost over time s + 1, respectively.

In terms of the ECD and ESD, the operating revenue is the energy supply income minus the
energy consumption (or the energy storage) cost, as follows.

REC,t = Qoutput
EC,t poutput

EC η
output
EC −Qinput

EC,t pinput
EC /ηinput

EC (8)

RES,t = Qdis
ES,tp

dis
ES η

dis
ES −Qchr

ES,tp
chr
ES /ηchr

ES (9)

where Qoutput
EC,t and Qinput

EC,t are the input and output of the ECD over time t, respectively; poutput
EC and

pinput
EC are the energy consumption and supply prices of the ECD over time t, respectively; ηoutput

EC and

η
input
EC are the energy consumption and supply efficiency, respectively; Qdis

ES,t and Qchr
ES,t are the energy

release and storage of the ESD over time t, respectively; pdis
ES and pchr

ES are the energy release and storage
prices of the ESD over time t, respectively; and ηdis

ES and ηchr
ES are the energy release and storage efficiency

of the ESD, respectively.
The operating revenue of DR covers the revenues from the PBDR and IBDR. The former gains

energy supply revenue while the latter reduces power shortage penalties.

RPBDR,t =
24∑

t=1

[
pbefore

t Lbefore
t − pafter

t Lafter
t

]
(10)

RIBDR,t =
∑

k∈{
power, heating,

cooling, gas
}

{
∆Lk,IB

t pk,IB
t − ∆Lk,shortage

t pk
t

}
(11)

where pbefore
t and pafter

t are the energy prices before and after the implementation of the PBDR over
time t, respectively; Lbefore

t and Lafter
t are the energy demands before and after the implementation of

the PBDR over time t, respectively; ∆Lk,shortage
t is the shortage of energy k over time t; and pk,IB

t and pk
t

are the energy supply price of the IBDR and the real-time energy price over time t, respectively.

3.1.2. Minimizing the Carbon Emissions

The carbon emissions are mainly from the CGT, GB, and UPG (since some energy demands are
satisfied by the UPG, its carbon emissions are considered as products of the MES). The objective
function is as follows.

minobj2 =
T∑

t=1


 aCGT + bCGT

(
gCGT,t + θe

hQCGT,t

)
+

cCGT
(
gCGT,t + θe

hQCGT,t

)2

+ QGB,tψ
CO2
GB + EUG,tψ

CO2
UG

 (12)
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where aCGT, bCGT, and cCGT are the coefficients of carbon emissions of the CGT; QGB,t is the heat supply
of the GB over time t; ψCO2

GB is the carbon emissions per unit from the GB; EUG,t is the energy supply of

the UPG over time t, including power, heat, cooling, and gas; and ψCO2
UG is the unit carbon emissions

of the UPG. Currently, coal-fired power generation in China, for example, has accounted for 70%
of overall power generation, and the coefficient of carbon emissions per unit power generation is
approximately 0.997.

3.1.3. Minimizing the Operational Risk

The uncertainties of the WPP and PV bring greater risks to the MES. Measuring the risk level of MES
operation is also one of the key parts of establishing an optimal scheduling strategy. This paper uses
the “conditional value at risk” (CVaR) as a risk measuring factor for MES operation. Compared with the
traditional “value at risk” (VaR) method, the CVaR can be used to describe the risk distribution outside
the confidence level, which is conducive to overcoming the limitations that VaR only expresses risk
situations at corresponding confidence levels without taking the risk tail into account. The introduction
of the CVaR is detailed in [19]. The objective function based on the CVaR is as follows.

min obj3 = α+
1

1− β

∫
e∈Rm

( f (E, e) − α)+p(e)de (13)

Equation (13) is used to calculate the CVaR of the MES, in which α is the MES operation loss’
critical value, which is for determination of MES operational risk situations; f (E, e) is the loss function
of MES operation, which equals −obj1; ET = [EMEG,t(1), gMEG,t(2), · · · , gMEG,t(T)] is a decision vector;
eT = [gWPP,t, gPV,t, Lt] is a multivariate random vector; and β is the confidence of MES operation. The
minimum α, namely, the VaR, is calculated by Equation (13). The expected value is replaced with N
samples of random vector e, namely, e1, e2, · · · , eN, because it is hard to obtain directly.

min obj3 = α+
1

N(1− β)

N∑
k=1

( f (E, e) − α)+k (14)

Above all, the uncertainties of the objective functions have been described by the CVaR method,
and the risk-avoiding optimization model has been built, which is an effective tool for different decision
makers to make dispatching strategies for different interests.

3.2. Constraints

Supply–demand balance, operation constraints of the EPD, ECD, and ESD, and system spinning
reserve need to be satisfied in the process of the MES operational optimization.

3.2.1. Supply–Demand Balance

gCGT,t + gWPP,t + gPV,t + goutput
P2G,t + gdis

PS,t = Le
t + gchr

PS,t + ginput
P2G,t + ginput

P2H,t + gc,input
P2C,t + ∆Lp,PB

t + ∆Lp,IB
t (15)

QCGT,t + QGB,t + Qoutput
P2H,t + Qdis

HS,t = Lh
t + Qchr

HS,t + Qinput
H2C,t + ∆Lh,PB

t + ∆Lh,IB
t (16)

Qoutput
P2C,t + Qoutput

H2C,t + Qdis
CS,t = Lc

t + Qchr
CS,t + ∆Lc,PB

t + ∆Lc,IB
t (17)

where QGB,t is the GB heating output over time te; ginput
P2G,t and goutput

P2G,t are the power consumption

and gas generation of the P2G over time te, respectively; ginput
P2H,t and gc,input

P2C,t are the P2H and P2C

power consumptions over time te, respectively; Qoutput
P2H,t is the P2H heating output over time t; Qinput

HS,t

and Qoutput
HS,t are the HSE heat storage and release over time t, respectively; Qinput

H2C,t is the H2C heat
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consumption over time t; ∆Lh,PB
t is the PBDR heating output over time t; Qoutput

P2C,t and Qoutput
H2C,t are the

cooling outputs of the P2C and H2C over time t, respectively; Qinput
CS,t and Qoutput

CS,t are the cooling storage

and release of the CSE over time t, respectively; ∆Lp,IB
t is the IBDR power output over time t, ∆Lh,IB

t is
the IBDR heating output over time t; and ∆Lc,PB

t is the PBDR cooling output over time t. The PBDR is
given by the price elasticity of demand [20].

Est =
∆Qs/Q0

s

∆Pt/P0
t

{
Est ≤ 0, s = t
Est ≥ 0, s , t

(18)

where ∆Qs and ∆Pt are the changes in demand and price following the implementation of PBDR. The
variations of power, heating, and cooling load following the implementation of the PBDR are given by:

∆L(p,h,c),PB
t = Qe,h,c

t ×


Ep,h,c

tt ×

[
Pp,h,c

t − P(p,h,c),0
t

]
P(p,h,c),0

t

+
24∑

s = 1
s , t

Ep,h,c
st ×

[
Pp,h,c

s − P(p,h,c),0
s

]
P(p,h,c),0

s


(19)

where ∆L(p,h,c),PB
t and Qe,h,c

t are the load variations and initial load, respectively; Pp,h,c
t and P(p,h,c),0

t
are power, heating, and cooling prices before and after the implementation of the PBDR over time t,
respectively; and Ep,h,c

tt represents the price elasticities of power, heating, and cooling demands. When

s = t, Ep,h,c
tt is called self-elasticity, otherwise it is known as cross-elasticity. The description is detailed

in [20].

3.2.2. Operation Constraints of the demand response (DR)

∆Lt =
(
uIB

t ∆LIB
t + uPB

t ∆LPB
t

)
(20)

ut∆L− ≤ ∆Lt − ∆Lt−1 ≤ ut∆L+ (21)

(Ton
t−1 −Mon)(ut−1 − ut) ≥ 0 (22)

(Toff
t−1 −Moff)(ut − ut−1) ≥ 0 (23)

where ∆Lt is the energy supply of the DR over time t, including the PBDR and IBDR; ∆L− and ∆L+

are the ramping power restrictions; Ton
t−1 is the operational duration of the DR over time t − 1; Mon is

the minimum start-up time of the DR; Toff
t−1 is the duration when the DR has been off before time t;

and Moff is the minimum time it takes to stop the DR.

3.2.3. Operation Constraints of the Energy Production Device (EPD)

The EPD includes the WPP, PV, CGT, and GB, all of which need to satisfy the maximum output
constraints, which are detailed in [20]. In terms of CGT, the relationship between power output
and heating output is called “electrothermal characteristics”. Under the given heating output, the
power generation has adjustability. This is because CGT adjusts its power output by adjusting the
steam generation of condensate under the given extraction capacity. The larger the extraction capacity,
the smaller the proportion of adjustable condensate generating steam, and the smaller the adjustment
range. The constraints are as follows.

max
{
gmin

CGT − cminQCGT, cm
(
QCGT −Q0

CGT

)}
≤ gCGT ≤ gmax

CGT − cmaxQCGT (24)

uCGT,t∆g−CGT ≤
(
gCGT,t + θe

hQCGT,t

)
−

(
gCGT,t−1 + θe

hQCGT,t−1

)
≤ uCGT,t∆g+CGT (25)
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where cmin and cmax are the c values under the minimum and maximum power output, respectively;
c is the reduction of power generation under the condition of extracting more units of heat when
the intake of steam is constant; cm = ∆gCGT/∆QCGT is the power/heating elasticity coefficient during
back pressure operation; Q0

CGT is a constant; Qmax
CGT is the maximum CGT heating output; Qmin

CGT is the
heating output while the CGT generates minimum electric power; gmin

CGT and gmax
CGT are the minimum

and maximum CGT power outputs under the condition of pure condensation, respectively; ∆g−CGT and
∆g+CGT are the ramping restrictions; and uCGT is the CGT operation status. The CGT and GB also need
to satisfy the ramping constraints, as well as start-up and shutdown time constraints, which are similar
to Equations (20)–(23).

3.2.4. Operation Constraints of the energy conversion device (ECD)

The ECD contains the P2H, P2C, H2C, and P2G. Equation (8) is used to determine the energy
conversion relationships among different devices. Although the conversion efficiency is variable,
it does not change significantly when the devices operate stably. According to [20], the efficiency is
considered as a constant, and the mathematical model is as follows.

VP2G,t
QP2C,t
QP2H,t
QH2C,t

 =


gP2G,t 0 0 0
0 gP2C,t 0 0
0 0 gP2H,t 0
0 0 0 QH2C,t



ηP2G

ηP2C

ηP2H

ηH2C

 (26)

where QP2C,t is the P2C cooling output over time t; QP2H,t is the P2H heating output over time t; QH2C,t
is the H2C cooling output over time t; gP2C,t and gP2H,t are the power consumptions of the P2C and
P2H over time t, respectively; QH2C,t is the H2C heat consumption over time t; and ϕP2C, ϕP2H, and
ϕH2C are the energy conversion efficiencies of the P2C, P2H, and H2C, respectively.

uoutput
EC,t Eoutput,min

EC,t ≤ Eoutput
EC,t ≤ uoutput

EC,t Eoutput,max
EC,t (27)

uinput
EC,t Einput,min

EC,t ≤ Einput
EC,t ≤ uinput

EC,t Einput,max
EC,t (28)

where Eoutput,min
EC,t and Eoutput,max

EC,t are the ECD energy supply boundaries over time t, respectively;

Einput,min
EC,t and Einput,max

EC,t are the ECD energy consumption boundaries over time t, respectively; and

uoutput
EC,t and uinput

EC,t are the ECD status variables over time t, respectively.

3.2.5. Operation Constraints of the energy storage device (ESD)

The ESD contains the PSE, HSE, CSE, and GSE. Different types of ESD can store and release energy
according to supply–demand relationships. The operation model is as follows.

SES,t =
(
1− ηloss

ES,t

)
SES,t−1 +

[
ESinput

t η
input
ES − ESoutput

t /ηoutput
ES

]
(29)

Smin
ES,t ≤ SES,t ≤ Smax

ES,t (30)

SES,T0
= SES,T (31)

where SES,t is the ESD energy storage over time t; ηloss
t is the ESD energy loss rate over time t; ESinput

t

and ESoutput
t are the energy storage and release of the ESD over time t, respectively; ηinput

ES and ηoutput
ES

are the ESD energy storage and release efficiencies over time t, respectively; and Smin
ES,t and Smax

ES,t are
the ESD energy storage boundaries over time t, respectively. To reserve some adjustment margin,
the devices are restored to the initial storage energy after one cycle of operation. T0 and T are the
beginning and end of adjustment cycle, respectively.
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3.2.6. Constraints of Carbon Emissions

The maximum total emission allowance (MTEA) is introduced to limit carbon emissions.

obj2 ≤META (32)

where META is the maximum allowable carbon emissions.

3.2.7. Spinning Reserve Constraints

The MES is set to run in “following thermal load” mode, so it is necessary to reserve some power
capacity and cooling capacity. Moreover, reserve capacity is required due to the WPP/PV uncertainties.
The constraints are as follows.

gp,max
MEG,t − gp

MEG,t + gdis
PS,t + ∆Lp,IB

t +
[
Lp,after

t − Lp,before
t , 0

]+
≥ rpLp

t + rup
WPPgWPP,t + rup

PV gPV,t (33)

gp
MEG,t − gp,min

MEG,t + gchr
PS,t +

[
Lp,after

t − Lp,before
t , 0

]−
≥ rdn

WPPgWPP,t + rdn
PV gPV,t (34)

gc,max
MEG,t − gc

MEG,t + gdis
CS,t +

[
Lc,after

t − Lc,before
t , 0

]+
≥ rcLc

t (35)

where gMEG,t is the MES power output over time t; gp,max
MEG,t and gp,min

MEG,t are the MES power output
boundaries over time t, respectively; re and rc are the upper spinning reserve coefficients of the power
and cooling loads, respectively; rup

WPP/rup
PV and rdn

WPP/rdn
PV are the WPP and PV’s upper and lower spinning

reserve coefficients, respectively.

4. Solution Algorithms

4.1. Fuzzy Linearization

4.1.1. Objective Function Fuzzification

In multi-objective optimization, the objective functions are jointly transformed into a
comprehensive single-objective optimization model, usually by weighting them. The objective functions
of this paper include the maximum operating revenue, minimum operational risk, and minimum
carbon emissions. Different dimensions and optimizing directions of the objectives make it difficult
to directly weight them, thus preprocessing is performed. Fuzzy satisfaction theory is used to
transform the numerical optimization into the degree optimization by analyzing the distance between
the objective function value and the ideal value [21]. A semi-linear membership function and
semi-gradient membership function are introduced in this paper, and the former is used to maximize
the operating revenue, while the latter is used to minimize the operational risk and carbon emissions.
The process is as follows.

ρ(obji) =


0, obji ≤ obj∗i
obj∗i+ϑi−obji

ϑi
, obj∗i < obji < obj∗i + ϑi

1, obji > obj∗i + ϑi

(36)

Equation (36) is the semi-linear membership function, and ρ(obji) is the membership function of
obji. In addition, obji, obj∗i , and ϑi are the actual value, ideal value, and acceptable added value of the
i-th objective function, respectively (ϑi therein is used to scale the objective).

ρ(obji) =


1, obji ≥ obj∗i
obji−(obj∗i+ϑi)

ϑi
, obj∗i < obji < obj∗i + ϑ

0, obji ≤ obj∗i

(37)
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Equation (37) is the semi-gradient membership function. Figure 2 shows the semi-linear
membership and the semi-gradient membership functions.
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4.1.2. Linearization of Mathematical Models

Equations (6), (12), and (14) are used to determine the multi-objective dispatching optimization
model for the MES. There are quadratic terms in the objective functions and the operation constraints,
which makes the constructed model a mixed integer nonlinear programming problem (MINLP).
The MINLP is hard to directly solve and its solutions may not be optimum, so the constraints and
objectives were linearized before solving the model. Taking Equation (7) for example, this means g′CGT,t

is set equal to ge
CHP,t + θe

hQh
CHP,t, belonging to

[
gmin

CHP, gmax
CHP

]
, and g′CGT,t is divided into N segments.

Then, the length of each segment is ∆gCGT, so C(gCGT) can be expressed as a piecewise function when
gCGT,t ∈

[
gmin

CGT,t + n∆gCGT, gmax
CGT,t + (n + 1)∆gCGT

]
.

C(gCGT,t) = f ′
(
gmin

CGT + n∆gCGT

)
+

(
gCGT,t − gmin

CGT − n∆gCGT

)
×

[
bCGT + (2n + 1)cCGT · ∆gCGT + 2cCGT gmin

CGT

]
(38)

where n = 0, 1, . . . , N − 1 and ∆gCGT = (gmax
CGT − gmin

CGT)/N. Similarly, the outputs of other quadratic
terms are the same as for Equation (15). The maximum relative error does not exceed 1%, and most
often it is below 0.5%, when N ≥ 5. Figure 3 shows the linearization process.Energies 2019, 12, x FOR PEER REVIEW 12 of 27 
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Similarly, Equations (21)–(23) can be linearized, and the process is as follows.

T1∑
τ=t

uCGT,t ≥ Ton
CGT,tM

on
CGT, T1 = t + Mon

CGT − 1, ∀t = L + 1, . . . . . . , T −Mon
CGT + 1 (39)

T2∑
τ=t

[1− uCGT,t] ≥ To f f
CGT,tM

o f f
CGT, T2 = t + Mo f f

CGT − 1, ∀t = D + 1, . . . . . . , T −Mo f f
CGT + 1 (40)

T∑
τ=t

[
uCGT,t − Ton

CGT

]
≥ 0 ∀t = T −Mo f f

CGT + 2, . . . . . . , T (41)

T∑
τ=t

[
1− uCGT,t − To f f

CGT,t

]
≥ 0 ∀t = T −Mo f f

i + 2, . . . . . . , T (42)

where L is the number of the CGTs in the initial state. L = 0 if it is not in the initial state. D is the
number of the CGTs which are not in the initial state. After that, the MINLP has been changed into a
mixed integer programming model.

4.2. Rough Set Weighting Method

The objective functions’ optimal weights need to be determined next. In general, the weighting
method includes subjective weighting and objective weighting methods. The former is mainly based
on subjective experience, which can make the best of decision makers’ empirical knowledge, but it is
subject to the subjective influence of decision makers; thus, the weights may have errors. The latter
relies on objective data, and the weights can be determined using mathematical theories and methods,
which overcomes the shortcomings of subjective weighting methods. To calculate weights, this paper
proposes a concept of a payoff table. Not only are obji (i = 1, 2, . . . , I) taken as optimizing objectives
to solve the constructed model, but also other objective values are obtained under this objective.
The multi-objective function payoff table is shown below.

Based on Table 1, the preprocessed decision matrix [objik]I × I is determined. The rough set
weighting method is used to gain the optimal weights. This method processes incomplete and
inaccurate data through learning, induction, and mining, and finally a clear and concise data system is
established [22]. Figure 4 shows the weighting process of multi-objective functions.

Table 1. Payoff table of multi-objective functions.

Objective Function Function Value
obj1 obj2 . . . objI

obj1 obj11 obj12 . . .

obj2 obj21
. . .

...
...

...
. . .

objI objI1 objI2 . . . objII
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4.2.1. Constructing the Relational Data Model

The weight of function fi is set to 1/I, and F̃ of the comprehensive objective is calculated. Here,
F̃ is the decision attribute and D =

{
F̃
}

is the decision attribute set. U =
{
u1, u2, . . . , u j

}
is the sample

set, u j = ( f1 j, f2 j, . . . , fmj; F̃ j), and uk is the comprehensive objective’s optimal value, which represents
information on object F. The attribute of uk is fi(u j) = vi j, and Fi(u j) = F̃ j.

4.2.2. Calculating the Dependence of RV on RD

rRV (RD) =

∑
ρ[RV([F̃]RD

)]

ρ(U)
(43)

where RV and RD are knowledge bases, rRV (RD) is the dependence of RV on RD, ρ(·) is the set base,
and pv(D) represents all the knowledge classified by using U/C in U, which is used to determine the
equivalent classification of the objective set in U/D.
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4.2.3. Calculating the Dependence of RV on RV−|vi |

rRV−|vi |
(RD) =

∑
ρ[RV−|vi |([F̃]RD

)]

ρ(U)
(44)

where rRV−|vi |
(RD) is the dependence of RV on RV−|vi |, and pV−|vi |(D) represents all the knowledge

classified by using U/C in U after index Vi is dropped.

4.2.4. Calculating the Weight of Object i

σD(D) = rRV (D) − rRV−|vi |
(D) (45)

λi = σD(vi)/
I∑

i=1

σD(vi) (46)

where σD(D) is the importance degree of object i, and λi is the weight of each objective function.
The comprehensive single-objective function is given by:

OBJ =
I∑

i=1
λiµ(obji)

s.t.



Equation (15) − Equation (20)
Equation (24) − Equation (35)
Equation (39) − Equation (42)
zk = f (E, e) − α
zk ≥ 0
other constriants

(47)

where OBJ is the comprehensive function, and its solution is the most satisfactory solution of the MES
dispatch when considering all objective functions.

5. Case Study

5.1. Basic Data

To verify the effectiveness of the constructed model and solution algorithm, data from Longgang
commercial park in Shenzhen City were selected for a case study [17]. This park employs WPP 1600 kW,
PV 1000 kW, CGT 3200 kW, and GB 500 kW. The CGT includes a TAURUS60 CGT (CATERPILLAR,
Beijing, China) with rated power of 2000 kW and a CENTAUR40 CGT (CATERPILLAR, Beijing, China)
with rated power of 1200 kW. The CGT power generation cost is linearized into two parts, according
to [22], which are 0.239 ¥/kW and 0.273 ¥/kW (TAURUS60 CGT), and 0.137 ¥/kW and 0.342 ¥/kW
(CENTAUR40 CGT). The P2H with a capacity of 1500 kW, the P2C with 2000 kW, the H2C with
1500 kW, and the P2G with 200 kW were employed to achieve cascade utilization of multiple energy
resources. Based on [22], power, heating, and cooling demands on a typical day, as well as the WPP
and PV available outputs, were determined. The maximum demands of power, heating, and cooling
were 2400 kW, 3640 kW, and 3696 kW, respectively. Figure 5 shows the demands and prices of power,
heating, and cooling, as well as the available outputs of the WPP and PV, on a typical day.
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This paper considers that the EPD, ECD, and ESD belong to the same owner. The energy prices
in the MES are executed according to the prices at different times during a typical day (see Figure 5).
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According to [22], the parameters of the WPP are set to vin = 3 m/s, vrated = 14 m/s, and vout = 25 m/s;
the parameters α and β of the PV are 0.39 and 8.54. Sampling WPP and PV power generation scenarios,
10 typical scenarios are generated, and the scenario with maximum occurrence probability is selected
as the actual value. The on-grid power prices of the WPP and PV are set to be 0.54 ¥/kW·h and
0.83 ¥/kW·h, and the power supply price and heating price of the CGT are 0.35 ¥/kW·h and 0.25 ¥/kW·h.
To promote WPP/PV on-grid connection, the power consumption price for energy conversion is set
to be 0.25 ¥/kW·h, and the heat consumption price is 0.2 ¥/kW·h. Figure 6 shows the WPP and PV
available outputs on a typical day.
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Figure 6. Available outputs of the wind power plants (WPP) and photovoltaic plants (PV) on a
typical day.

Energy is stored during valley periods and released during peak periods to make the net load
demand curve smoother. The PSE, HSE, and CSE capacities are all 1500 kW·h with the maximum
storage/release power of 300 kW, and the capacity of the GSE is 800 m3 with the maximum storage/release
of 150 m3. To study the DR’s optimizing effect on the MES, a day is divided into peak, valley, and flat
periods for power, heating, and cooling demands according to [14]. Prices in peak periods increase by
25%, in valley periods prices decrease by 25%, and in flat periods prices remain the same. The price
elasticities of power, heating, and cooling are set according to [14]. For the IBDR, the upper and lower
spinning reserve prices are set to be 0.85 ¥/kW·h and 0.25 ¥/kW·h (power), 0.55 ¥/kW·h and 0.15 ¥/kW·h
(heating), and 0.45 ¥/kW·h and 0.15 ¥/kW·h (cooling), respectively. To avoid the phenomenon of
“peak-valley upside down” caused by users’ over-response, the total outputs of the PBDR and IBDR
are set to be within 10% of the original load, and neither of their maximum outputs are allowed to
exceed 100 kW.

Since the general algebraic modeling system (GAMS) software has superiority in solving linear
models, this paper uses it to solve the proposed model. Equations (36)–(42) are used to linearize the
model and Equations (43)–(47) are used to transform it into a comprehensive single-objective model.
The constructed model is solved by the CPLEX11.0 solver, and the required calculation time to solve
three above scenarios is less than 20 s using a Lenovo IdeaPad 450 series notebook with a Core T6500
processor and 4 GB RAM, which shows that the linearization process can improve the solving efficiency.

5.2. Study Results

5.2.1. Dispatching Results Based on the Maximum Operating Revenue

This section establishes the dispatching strategy for maximizing the operating revenue. Priority
of satisfying load demands is given to the WPP and PV, which are high-revenue units. Optimally
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satisfying the power and cooling demands is a key problem, especially when the CGT operates in
“power determined by heat” mode. Table 2 shows the dispatching results based on the maximum
operating revenue.

Table 2. Dispatching results based on the maximum operating revenue.

Energy
Type

Energy Production/kW·h
GB GST

Energy Conversion/kW·h

WPP PV CGT P2H P2G P2C H2C

Power 23,556.20 8271.46 38,461.14 - 1479.726 35,292.10 −2189.86 −43.35 -
Heating - - 41,314.30 12,000.00 - 33,527.50 - - 56,140.71
Cooling - - - - - - - 130.04 75,789.95

Energy
type

Energy Storage/kW·h UEG/kW·h Objective Value

PS HS CS UPG UHG UCG Revenue/¥ Carbon/ton CVaR/¥

Power ±3300 - - 5051.2 - - 26,205.43 5.64 11,792.44
Heating - ±3600 - - 6188 - 8684.18 3.90 3039.46
Cooling - - −2400 - - 7112 7605.00 2.10 1368.90

According to Table 2, the optimal supplies of power, heat, and cooling were achieved via energy
complementarity, when maximizing operating revenue was the optimization objective. Without
considering carbon emissions and operational risk, the power supply revenue, heating revenue,
and cooling revenue were 26,205.43 ¥, 8648.18 ¥, and 7605.00 ¥, respectively. The power supply revenue
was higher than that of the heating and the cooling. The WPP and PV satisfied power demands,
and the surplus output was converted to supply heat and cooling. The P2G converted power and
CO2 into CH4, and the CH4 was consumed by the CGT and GB, thus forming a power–gas–power (or
heat/cooling) cycle and gaining revenue. Next, all kinds of output at different times were analyzed
under this objective. Figure 7 shows the output distribution based on the maximum operating revenue.
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In terms of power load, supplies were mainly from the WPP and CGT, and the PV generated
more electric power during peak periods. The IBDR provided positive output during peak periods
and negative output during valley periods, and the PSD stored electric power during valley periods
and released it during peak periods. Both were reserved for the WPP and PV. The P2G was employed
to convert the surplus power to generate CH4 during valley periods, and the CH4 was used for power
supply and heating during peak periods.

In terms of heating load, the CGT was the main supply source, the P2H satisfied the residual
demands, and the IBDR and HSD provided positive and negative outputs for reliable supply.
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In terms of cooling load, under the objective of maximizing operational revenue, the WPP and PV
preferentially satisfied the power load, so the cooling load was mainly satisfied by the H2C, and the
residual demands by the P2C. The surplus power was sold to the UPG for more revenue.

5.2.2. Dispatching Results Based on the Minimum Carbon Emissions

This section establishes the dispatching strategy for minimizing the carbon emissions. The main
carbon emission sources in the MES are the CGT, GB, and UEG. In particular, the output of CGT will
be directly constrained by its carbon emissions. Table 3 shows the dispatching results based on the
minimum carbon emissions.

Table 3. Dispatching results based on the minimum carbon emissions.

Energy
type

Energy Production/kW·h
GB GST

Energy Conversion/kW·h

WPP PV CGT P2H P2G P2C H2C

Power 21,562.83 7625.00 29,950.54 - 220.295 −7807.92 −366.75 −13,686.56 -
Heating - - 43,108.43 12,000 - 3467.82 - - −25,822.45
Cooling - - - - - - - 41,059.69 34,860.31

Energy
type

Energy Storage/kW·h UEG/kW·h Objective Value

PS HS CS UPG UHG UCG Revenue/¥ Carbon/ton CVaR/¥

Power ±2700 - - 0 - - 22,749.96 3.8 10,237.48
Heating - ±3300 - - 0 - 5857.63 2.5 2050.17
Cooling - - −1800 - - 0 11,697.97 1.4 2105.63

According to Table 3, although the WPP and the PV are clean energy resources, their output was
still reduced, under the objective of minimizing carbon emissions. On one hand, the uncertainties of
WPP and PV required reserve services provided by the CGT and UPG which were potential carbon
emission sources, so the WPP and PV output was reduced. On the other hand, in order to reduce
carbon emissions, the MES did not interact with the UPG, so the WPP and PV cannot sell the surplus
power to the UPG. Because of this, the revenue of power supply decreased, while both the carbon
emissions and the CVaR values also decreased, which indicated that the three objective functions were
incompatible with each other. Next, all kinds of output are analyzed under this objective. Figure 8
shows the output distribution based on the minimum carbon emissions.Energies 2019, 12, 4414 19 of 27 
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The output distribution under this objective has great changes compared with that of maximizing
the operating revenue. In terms of power load, the WPP and CGT were still the main supply sources,
but did not interact with the UPG, and the surplus power was used for cooling. In terms of heating load,
the CGT was the main supply source, and a little heat was used for cooling by the H2C, thus reducing
carbon emissions in the heating process. In terms of cooling load, the P2C was the main supply
source, and it converted the surplus power from the WPP and PV into cooling with no carbon
emissions generated, compared with the H2C in the “optimal operating revenue” scenario. In general,
the minimum carbon emissions objective makes great changes in the energy supply structure, yet the
operating revenue and operational risk were not in optimal states.

5.2.3. Dispatching Results Based on the Minimum Operational Risk

This section establishes the dispatching strategy with the objective of minimizing the operational
risk. Since there are strong uncertainties in the WPP and PV outputs, their power generation will be
reduced and the CGT output will increase when the minimum operational risk is considered, so as to
ensure the supply–demand balance; thus, the revenue of the MES decreases and the revenue of carbon
emissions increases. Table 4 shows the dispatching results based on the minimum operational risk.

Table 4. Dispatching results based on the minimum operational risk.

Energy
Type

Energy Production/kW·h
GB GST

Energy Conversion/kW·h

WPP PV CGT P2H P2G P2C H2C

Power 15,294.00 5217.60 34,097.44 - 0 0.00 0.00 −18,170.22 -
Heating - - 38,363.58 12,000 - 0.00 - - 12,451.37
Cooling - - - - - - - 54,510.65 16,809.35

Energy
type

Energy Storage/kW·h UEG/kW·h Objective Value

PS HS CS UPG UHG UCG Revenue/¥ Carbon/ton CVaR/¥

Power ±2400 - - 0 - - 18,532.63 4.8 8339.68
Heating - ±3000 - - 0 - 5036.36 3.9 1762.73
Cooling - - ±1000 - - 0 12,583.07 2.1 2264.95

According to Table 4, under the objective of minimizing carbon emissions, the WPP and PV
outputs were reduced to avoid the operational risk. Even energy conversion via the P2H was not
considered, since the outputs of the WPP and PV had strong uncertainties. Accordingly, the CGT
and GB provided the main heat supply. Compared with heating and cooling loads, the revenue and
risk of the power load are much higher. However, when the operational risk of the MES is taken
as a constraint, the structure of power sources will have a great change. Figure 9 shows the output
distribution based on the minimum operational risk.

In terms of power load, the outputs of the CGT, WPP, and PV were obviously reduced, especially
in peak periods when supplies barely satisfied demands. To reduce operational risks, WPP did not
generate power. Compared with the situation with the objective of minimum carbon emissions,
a portion of power (as a flexible resource) was converted into heat and cooling via the P2H and P2C,
to reduce the heating risk and cooling risk in the MES.

In terms of heating load, the CGT flexibly satisfied the demand instead of operating at rated
power, and the H2C converted heat into cooling in valley periods to make the heating curve smoother.
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In terms of cooling load, the main sources of cooling were the H2C in peak periods and the P2C in
valley periods. Cooperative operation of the two realized the optimal cooling supply.

5.3. Calculation of the Optimal Weights

By comparing the optimal dispatching strategies under different objective functions, there are
mutual influences and conflicting relationships among different objective functions. Determining
the objective functions’ weights and solving the comprehensive objective function are key processes.
In order to verify the proposed method’s effectiveness, this section determines optimal weights of the
objective functions using the weight calculation method proposed in Section 4. Table 5 shows the
optimal dispatching results of the MES under each objective function.

Table 5. Dispatching results of the MES under different objectives.

WPP PV
CGT

GB
ES Objective Value

Power Heating PS HS CS obj1/¥ obj2/ton obj1/¥

obj1 23,556.20 8271.46 38,461.14 41,314.30 0 ±3300 ±3600 −2400 42,494.61 11.64 16,200.80
oj2 21,562.83 7625.00 29,950.54 43,108.43 12,000 ±2700 ±3300 −1800 40,305.56 7.70 14,393.28
obj3 15,294.00 5217.60 34,097.44 38,363.58 12,000 ±2400 ±3000 ±1000 36,152.06 10.80 12,367.36

The minimum and maximum values of different objective functions are obtained by calculating
the optimal dispatching strategies of the MES under different single-objective functions. Then,
Equations (36) and (37) were used to blur the functions. The objective functions’ weights were
calculated using Equations (43)–(46), which were 0.388, 0.284, and 0.328, respectively. Further,
the comprehensive objective function of the MES was established using Equation (47). Finally, the MES
optimal dispatching strategy under the comprehensive objective function was established. Figure 10 is
the output distribution based on the comprehensive objective function.

In terms of power load, the main supply sources were the WPP and CGT, and the PS and IBDR
provided reserve services. The output distribution was basically the same as that under the maximum
operating revenue objective.

In terms of heating load, the main supply sources were the CGT and P2H. The surplus heat was
converted into cooling via the H2C, and the UHG provided heat for the MES, to balance the heating
supply and demand.
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In terms of cooling load, the main supply sources were the P2C in peak periods and the H2C in
valley periods, and the H2C output had a large portion, so the situation was basically the same as that
under the minimum operational risk objective.
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In general, obtaining the comprehensive function by weighting different optimization objectives
can establish an optimal dispatching strategy with consideration for power, heating, and cooling
demands. Table 6 shows the dispatching results based on the comprehensive objective.

Table 6. Dispatching results based on the comprehensive objective.

Energy
Type

Energy Production/kW·h
GB GST

Energy Conversion/kW·h

WPP PV CGT P2H P2G P2C H2C

Power 23,450.80 8000.32 33,775.71 - 8.355 −18,543.63 −3723.47 −6155.24 -
Heating - - 57,600.00 0.00 - 17,616.45 - - −45,456.50
Cooling - - - - - - - 18,465.72 61,366.28

Energy
type

Energy Storage/kW·h UEG/kW·h Objective Value

PS HS CS UPG UHG UCG Revenue/¥ Carbon/ton CVaR/¥

Power ±3000 - - 2511.045 - - 24,716.96 4.75 11,122.63
Heating - ±3000 - - 6188 - 7521.64 3.40 2632.58
Cooling - - ±1800 - - 7112 9829.77 1.87 1769.36

Comparing the single-objective scenarios, the MES made full use of the WPP and PV by taking
control of their uncertainties, and gave consideration to carbon emissions of the CGT, GB, and UPG,
thus achieving optimization with different objectives. It can be seen from Table 5 that each objective
function’s value was close to the mean in the corresponding optimization scenario. Since the weight of
the maximum operating revenue objective function was higher than others, the results were biased
towards this objective. In general, when the MES pursued the optimal comprehensive objective,
MES’s dispatching strategy is more balanced.

5.4. Results Analysis

This section determines the optimal weight coefficients of different objective functions.
Furthermore, confidence levels and effects of the PBDR and MTEA on MES dispatching strategies
are analyzed.
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5.4.1. Confidence Level Analysis

Sensitivity analysis of confidence levels was conducted, and the output distribution and objective
values at different confidence levels were calculated. With the increase of the confidence level, the WPP
and PV outputs gradually decreased, and the CGT output had an inflection point. This is because
when the decision makers started to consider risks, they gradually reduced the outputs of the WPP
and PV and reduced the MES supply to the UEG. However, as the WPP and PV outputs decreased,
in order to balance the load supply and demand, the CGT was called to satisfy demands. In addition,
as the confidence level increased, the operating revenue continued to decrease, the carbon emissions
increased gradually, and the operational risk gradually decreased, which indicated that benefits come
with risks. Although the CGT provided stable supply, it brings carbon emissions. Figure 11 shows the
outputs and objective values under different confidence levels β.
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According to Figure 11, when the confidence level was less than 0.6, the outputs and objective
values changed within a relatively small range, which indicated that the decision maker was not
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sensitive to the risk and continued to pursue economic benefits when facing risks, i.e., a risk-preferring
decision maker. When the confidence level was between 0.7 and 0.95, the outputs and objective values
changed within a larger range, and the decision maker was risk-sensitive, that is, they took into
account the operational risk and operating revenue. When the confidence level was higher than 0.95,
the outputs and objective values varied greatly, and the decision maker was extremely risk-averse and
unwilling to bear any operational risks. In general, the CVaR method is a risk decision-making tool for
different types of decision makers.

5.4.2. Effects of the price-based demand response (PBDR)

The PBDR was used to encourage users to consume energy rationally via differential time-of-use
prices, thus realizing peak-shaving and valley-filling and making more chances for the WPP and
PV’s on-grid connection. Figure 12 shows the power, heating, and cooling demands before and after
the PBDR.Energies 2019, 12, x FOR PEER REVIEW 24 of 27 
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(PBDR).

According to Figure 12, compared with the situation before the PBDR, the maximum peak load
decreased and the minimum valley load increased; thus, the peak–valley ratio decreased. Due to large
load bases of heating load and cooling load, peak-shaving and valley-filling effects were more obvious.
Next, dispatching results before and after the PBDR, which are shown in Table 6, were analyzed.

According to Table 7, when the PBDR was introduced, the WPP and PV on-grid electric power
obviously increased by 565 kW·h and 370 kW·h, respectively. The PS, HS, and CS outputs decreased,
which indicated that the peak regulation requirements for the WPP and PV were reduced. Following
the implementation of the PBDR, demands in valley periods increased, and convertible electric power
for the P2G decreased. In addition, the operating revenue, carbon emissions, and CVaR values were all
optimized. Next, the output distribution at different times after the PBDR was analyzed. Figure 13
shows the output distribution after the PBDR.

Table 7. Dispatching results before and after the price-based demand response (PBDR).

WPP PV
CGT Peak–Valley Ratio Objective Value

Power Heating PS HS CS Revenue/¥ Carbon/ton CVaR/¥

Before 23,450.80 8000.32 33,775.71 57,600.00 1.28 2.36 1.83 40,305.56 7.70 14,393.28
After 23,960.60 8174.24 33,297.90 57,600.00 1.21 2.06 1.58 42,267.42 6.85 13,952.60
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In terms of power load, since the PBDR smoothed the power load curve, the WPP on-grid electric
power increased in valley periods, and the PV on-grid electric power in peak periods increased because
the IBDR was providing a peak regulation service. In addition, due to the increase in the WPP and
PV’s on-grid power supply, the power structure is cleaner and more low-carbon. In general, PBDR can
be used to optimize the output structure of the MES and bring more benefits.

5.4.3. Maximum Total Emission Allowance (META)

The main carbon emission sources are the CGT, GB, and UEG in the MES. When the MTEA is
considered as a constraint, the outputs of the three will be affected, so the energy supply structure
will be changed. Hence, this section conducts a sensitivity analysis of the MTEA, and the outputs and
objective values are calculated under different MTEA values. The results are shown in Figure 14.

According to Figure 14, with the decrease of the MTEA, the WPP and PV outputs increased,
in addition to the CGT output. When the MTEA value was within (0.8,1.0), the output structure was
changed. In addition, with the increase of the MTEA, the operational risk decreased greatly, and the
operating revenue decreased slightly. In general, the MTEA can change the energy supply structure of
the MES. To achieve the optimal MES operation, it is necessary to set up a reasonable MTEA value.
Simultaneously, controlling the carbon emissions and the operational risk is important to realize the
overall optimal balanced operation of the MES.
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6. Conclusions

This paper comprehensively considered the operating revenue, carbon emissions, and operational
risk as optimization objectives, and constructed a multi-objective coordinated dispatching optimization
model. The weights of the objectives were determined using a calculation method based on fuzzy
satisfaction theory and the rough set method, thus obtaining the comprehensive single-objective
function. Then, data from a MES in Longgang commercial park were introduced for a case study,
and the effectiveness of the constructed model and the algorithm were verified. The conclusions are
as follows.

(1) A MES can integrate different types of energy, such as wind, photovoltaics, and gas.
Power–gas–heat–cooling (multi-type energy) cycle supply is realized via ECD and ESD to synergistically
meet different types of energy demands. In particular, WPP and PV have considerable economic and
environmental benefits. Their surplus power can be converted into other types of energy via P2G,
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P2H, and P2C, after meeting power demands, thus realizing cascade utilization of energy. End users
participating in the operation optimization of MES via DR realize source–load interaction.

(2) The constructed multi-objective coordinated dispatching optimization model gives
consideration to operating revenue, carbon emissions, and operational risk, and the solution algorithm
can be used to obtain an optimal balanced strategy for multiple objectives. The objective values of
multi-objective comprehensive optimization are close to the mean values of different single-objective
optimization scenarios. Since the weight of the operating revenue objective function is the highest,
the operational results are biased towards this objective, which indicates that the dispatching strategy
of MES is more balanced.

(3) Sensitivity analysis results indicate that a reasonable confidence setting is an effective tool for
different decision makers to make dispatching strategies for different interests, and PBDR and MTEA
are indirect factors that affect the energy supply structure of a MES. A decision maker prefers risks
when the confidence is less than 0.6; confidence within (0.7,0.85) indicates a decision maker is sensitive
to risks; and a risk averter, who refuses to take any risks, is indicated by confidence of 0.95 or higher.
PBDR is introduced to smooth load curves. MTEA limits energy supplies of CGT, GB, and UEG to
increase the chances for WPP and PV on-grid connection, thus optimizing the energy supply structure
of the MES.
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