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Abstract: The optimal layout of wind turbines is an important factor in the wind farm design process,
and various attempts have been made to derive optimal deployment results. For this purpose,
many approaches to optimize the layout of turbines using various optimization algorithms have
been developed and applied across various studies. Among these methods, the most widely used
optimization approach is the genetic algorithm, but the genetic algorithm handles many independent
variables and requires a large amount of computation time. A simulated annealing algorithm is also
a representative optimization algorithm, and the simulation process is similar to the wind turbine
layout process. However, despite its usefulness, it has not been widely applied to the wind farm
layout optimization problem. In this study, a wind farm layout optimization method was developed
based on simulated annealing, and the performance of the algorithm was evaluated by comparing it
to those of previous studies under three wind scenarios; likewise, the applicability was examined.
A regular layout and optimal number of wind turbines, never before observed in previous studies,
were obtained and they demonstrated the best fitness values for all the three considered scenarios.
The results indicate that the simulated annealing (SA) algorithm can be successfully applied to the
wind farm layout optimization problem.

Keywords: wind energy; wake effect; wind farm layout optimization; heuristic optimization;
simulated annealing algorithm

1. Introduction

One of the key aspects of wind farm design is to determine the position of the wind turbines within
a given area, and one of the main objectives of this wind turbines layout is to minimize the wake effect
between wind turbines. The wake generated by upstream wind turbines causes wind speed reduction
resulting in power losses in the downstream wind turbines. In addition, the unstable turbulent flow
caused by the wake increases the fatigue load of those wind turbines affected by the wake. The wind
speed deficit by the wake effect can be estimated using a wake model. However, it is difficult to
optimize the wind turbine layout by considering the range of effects of the wake that changes according
to the wind direction. To solve the complex wind farm layout optimization (WFLO) problem, various
layout optimization methods have been introduced, and many related studies addressed this [1,2].
The first study was published in 1994 by Mosetti et al. [3], where they introduced the genetic algorithm
(GA), now considered one of the most typical optimization methods to address the WFLO problem.
Although the wind farm model applied by Mosetti’s study is not a practical model, their proposed
model and the wind scenario have been used as a comparative benchmark to examine the performance
of various algorithms.
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In general, the optimization methodology for the WFLO problem can be divided into heuristic
and mathematical programming methods. A heuristic is a method of searching for an optimal
solution based on probabilistic theory, and mathematical programming is a method of formulating
and optimizing the variables and boundary conditions of a problem. Algorithms that use heuristic
methods for the WFLO problem include the GA [3–19], evolutionary strategy [20–22], particle swarm
optimization [23–25], and greedy heuristic [26,27]. Moreover, other works on the development of
various algorithms have been conducted [28–33]. Among these methods, GA is the most widely
used. GA is a representative optimization algorithm of heuristic methodology based on the concept of
the evolution of nature. Although it considers a cooperative system of the population, the optimal
solution may vary depending on the number of populations and generations, and it is difficult to
exactly determine these factors. However, GA is still actively used in various fields owing to its
versatility. The mathematical programming method includes mixed-integer programming [34–37]
and gradient-based optimization [38–41]. Unlike heuristics methods, it has the advantage of ensuring
global optimization. However, it works appropriately only in the cases when a given problem can be
expressed as a complete function mathematically. The WFLO problem falls into the class of problems
called combinatorial optimization, and due to its computational complexity and discrete constraints, it
is difficult to express it as a complete mathematical function to find an optimal solution [29]. Therefore,
mathematical programming methods are not suitable for wind farm design because of the properties
(non-linear, multi-modal, discontinuous) of the WFLO problem [1,2].

The optimization methodology for the WFLO problem developed in this study is a method
using the simulated annealing (SA) algorithm. The SA algorithm simulates the annealing process
in metallurgy which increases the rigidity of metal materials. Similar to the GA, the SA algorithm
is one of the representative heuristic approaches that was developed based on the natural law [42].
Although the GA is the most widely used algorithm for the WFLO problem, SA is also one of the
most popular methods among heuristic methodologies in the optimization field. In particular, in
the SA algorithm, the process of simulating the annealing process of crystal structures inside the
metal under temperature conditions is similar to the situation in which the turbines are placed at
promising locations in the wind farm. Furthermore, unlike GA, in which various structures may exist
depending on the design purpose, the SA algorithm structure is consistent. The SA algorithm is also a
representative optimization algorithm, but despite its usefulness, it has not been widely applied to
wind farm layout optimization. Therefore, in this study, we developed an SA algorithm for the wind
farm layout optimization problem. Subsequently, we compared and evaluated the SA algorithm to
those presented in previous studies.

To compare and evaluate the performance of an algorithm, a reference target in which the
algorithm is applied is needed. Mosetti’s study mentioned above has been used in numerous studies
to evaluate the performance of various algorithms for wind farm layout optimization. Grady et al. [4]
developed a GA with a subpopulation and compared the results to Mosetti’s findings which yielded
more efficient layout results than Mosetti’s. They mentioned that although GA was an effective global
optimization method, it was necessary for a sufficient number of populations and generations and
that large computational costs could be incurred due to the large number of independent variables.
González et al. [8] also used a GA and compared their results to Grady’s study. They resulted in
improved energy efficiency and shortened calculations compared to Grady. Zhang et al. [9] adopted
the greedy algorithm and compared it to Mosetti and Grady, and derived enhanced layout results
using more wind turbines than previous studies. Parada et al. [19] compared their results to Grady’s
study and demonstrated that there was an optimized layout of the regular pattern in the same wind
farm model as previous studies. Most studies compared their results to Mosetti and Grady’s studies to
evaluate their developed algorithms. Mosetti’s case studies are considered to be the basis for evaluating
algorithms in the development of the wind farm layout optimization algorithm.

In this study, we propose a new methodology for wind farm layout optimization using the SA
algorithm. Various optimization methodologies have been developed in the past, but the SA algorithm
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has not been widely applied, despite its advantages. Therefore, this study aims to secure a variety of
optimization methodologies for more efficient wind farm design. To evaluate the performance of the
developed algorithm, a comparison was made under the same conditions as the previous studies, and
the applicability of the developed algorithm was examined. In the actual wind farm design phase,
various conditions (power cables, access road, prohibited area, geographical characteristics, etc.) must
be reflected, but this study compared and evaluated the basic performance of the optimal placement
algorithm, limited to wind farm efficiency and cost, which were the focusses of previous studies.

2. Methodology

2.1. Wake Model

One of the main goals of wind turbine layout is to minimize losses occurring due to wakes
between turbines, and a wake model is necessary to calculate the wake losses. Many studies used
the Jensen model [43], developed in 1983. Although the Jensen model was modified by Katic et al. in
1986 [44] and is now widely used in its updated form, in this study the initial Jensen model was used
to compare the proposed algorithm considering the same conditions as in previous studies.

In the Jensen model, shown in Figure 1, it is assumed that the wake diameter increases linearly
with an increase in distance and the wind speed distribution in the radial direction of the wake is
identical. The wind speed deficit (δu) in the wake according to the distance x is as follows:

δu = u0

 2a

(1 + α(x/r1))
2

, (1)

where u0 is the free stream wind speed, a is the axial induction factor, and α is the entrainment constant.
Wake expansion radius r1 can be calculated as follows:

r1 = r0

√
1− a

1− 2a
, (2)
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The axial induction factor a can be calculated from the relationship with the thrust coefficient:

a =
(
1−

√
1−Ct

)
/2, (3)
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The entrainment constant (also called the wake decay constant), which determines the size of the
expanded wake behind the wind turbine, can be calculated with a surface roughness length (z0) and
hub height (h) of wind turbine by using the following formula:

α =
0.5

ln(h/z0)
, (4)

where z is the hub height of the wind turbine and z0 is the surface roughness length of the wind farm.
The rotor of the wind turbine affected by the wake is fully or partially affected by single or multiple

wakes depending on the wind direction, as shown in Figure 2. In the case of a wind turbine that is
partially affected (Figure 2a), the wind speed deficit can be calculated as the ratio of the intersecting
area between the wake and rotor to the rotor area:

δu = u0

 2a

(1 + α(x/r1))
2

Aoverlap

Ar
, (5)

where Ar is the rotor swept area of the wind turbine, and Aoverlap is the area of intersection of the wake
and wind turbine rotor.
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The wind speed deficit due to multiple wakes (Figure 2b), generated by N upstream wind turbines,
can be calculated as follows:

δu j =

√√√ N∑
i=1

δu2
i , (6)

2.2. Cost Model and Objective Function

The key goal of the optimization algorithm is to minimize or maximize the given objective
function. The objective function is defined according to the objective to be optimized as the target
value for the optimization problem. Mosetti et al. proposed an objective function that takes into
account the investment costs and total output of wind turbines to determine their optimal number
and location within a given wind farm area. The investment cost of implementing wind turbines was
modeled by considering only the total number of wind turbines (N) installed. Mosetti assumed that
the nondimensionalized cost per year (cost/year) of a single wind turbine is one with a maximum
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reduction in cost of 1/3 for each additional wind turbine. Therefore, the total cost (Ctotal) per year for a
wind farm can be expressed as follows:

Ctotal = N
(2

3
+

1
3

e−0.00174N2
)
, (7)

The objective function (F) for optimization is defined as a function of the cost versus total output:

F =
Ctotal
Ptotal

, (8)

where Ptotal is the total output obtained considering the wake effect in a wind farm, which can be
calculated with values in Table 1, as follows:

Ptotal =
N∑

i=1

1
2
ρAu3

i Cp =
N∑

i=1

(0.5× 1.225×π× 202
× 0.39× 0.001) ≈

N∑
i=1

0.3u3
i , (9)

where ρ is the air density, A is the rotor swept area, and Cp is the power coefficient.

Table 1. Properties of Wind Turbines and Wind Farm.

Property Value Property Value

Hub height (h) 60 m Wind farm size 2 × 2 km
Rotor diameter (D) 40 m Surface roughness length (z0) 0.3 m

Thrust coefficient (Ct) 0.88 Air density (ρ) 1.225 kg/m3

Power coefficient (Cp) 0.39 Spacing 200 m (5D)
Axial induction factor (a) 0.326 Entrainment constant (α) 0.094

Apart from the cost of wind farms, the park efficiency (Ep) related to examining the wind turbine
layout efficiency can be calculated as follows:

Ep =
Ptotal

N(0.3u3)
, (10)

2.3. Wind Farm and Wind Scenarios

In the present study, the wind farm model used to perform the wind farm layout optimization
is a hypothetical wind farm which was used by Mosetti. The wind farm has a square grid as the
computational domain divided into 100 square cells, where a wind turbine is placed at the center.
Figure 3 shows a grid of the wind farm, where each cell is equal to five rotor diameters (5D, 200 m ×
200 m), the square grid has 10 columns and 10 rows of cells, and the total wind farm size is 2 km ×
2 km. In the wind farm, wind turbines with a rotor diameter of 40 m are placed at the center of the
cell, maintaining a 5D separation distance between the wind turbines. The specifications of the wind
turbines and the wind farm that are applied to the layout optimization, which are the same as those in
the previous studies, are presented in Table 1.

To evaluate the performance of the optimization algorithm, three wind speed scenarios were
considered for the case studies, as follows: (a) the constant wind speed and single wind direction, (b)
the constant wind speed and multiple wind direction, and (c) the variable wind speed and multiple
wind direction. Case study (a) assumes that the wind speed of 12 m/s blows only from the north,
and this can be used to confirm the basic performance of the wake model and the layout algorithm.
Case study (b) is when the azimuth angle is divided into 36 sections, and the wind speed of 12 m/s is
generated from all 36 wind directions with a uniform probability. Case study (c) considers 36 wind
directions similar to that of case study (b) and includes three wind speeds (8, 12, and 17 m/s) with
different probabilities of occurrence, as shown in Figure 4. We can see that the occurrence frequencies
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of 12 m/s and 17 m/s wind speed between 270 and 350◦ of wind direction are greater as compared to
those in other directions, which means NW is the prevailing wind direction of the wind farm. Thus,
wind directions between 270 and 350◦ have a greater effect on the wind farm layout as compared to the
other directions. This condition is quite different from the wind condition of the actual wind farm, but
it is used for comparing and evaluating the performance of the optimal layout algorithm.
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2.4. Optimization Methodology

The SA algorithm is a method to simulate the metallurgical annealing process, in which the
internal energy is minimized by changing the internal crystal structure of a metal, while the metal
material is gradually cooled down [42]. In real metals, the repositioning of internal crystals increases
the rigidity of the metal. From an algorithmic perspective, this process can be seen as finding an
optimal solution in a global optimization problem. In the WFLO problem, this process can be used for
determining the optimal layout result for the wind turbine by changing the position of the wind turbine.
The temperature is one of the computational parameters of an SA algorithm for process iterations
and probability calculations to search for the optimal solution. The optimal solution is searched for
depending on the probability by varying this virtual temperature parameter [45].
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Algorithm 1. Pseudocode of Simulated Annealing for the Wind Farm Layout Optimization.

Input: Problem size, Initial temperature (T), Stopping temperature (Tmin)
Temperature control (α), Number of iteration (Markov number)

1: Lcurrent = create(Problem size) // Create and initialize layout of wind turbines
2: Lbest = Lcurrent

3: while T > Tmin do
4: for i = 1 to Markov number do
5: Li = perturbation(Lcurrent) // Perturbation of wind turbine position
6: ∆cost = cost(Li) − cost(Lcurrent) // Evaluation of cost
7: if ∆cost < 0 then Lcurrent = Li
8: if cost(Lcurrent) < cost(Lbest) then
9: Lbest = Lcurrent

10: end if
11: else if exp(−∆cost/T) > random then // Metropolis criterion
12: Lcurrent = Li
13: end if
14: end for
15: T = αT // Decreasing temperature
16: end while
Output: Best layout of wind turbines (Lbest)

Algorithm 1 is a pseudocode that shows the process of the SA algorithm in the WFLO problem.
The main elements in this code are the temperature control, perturbation, and metropolis criterion.
The temperature control is a process of slowly lowering the temperature from the initial high value to
the lower one, a process called the cooling schedule. This process affects the efficiency of the algorithm.
A fast linear temperature decrease is more likely to converge to a local solution, and an exponential
slow decrease requires a significant amount of time to complete the operation. Perturbation is the
process of repositioning some of the wind turbines to find better locations for producing more energy;
therefore, in this process, perturbation strategy is required in order to improve the layout. Metropolis
criterion is a selection process that determines whether to accept a candidate solution or not. By
default, candidate solutions will be accepted during the perturbation if the fitness improves. However,
even a candidate layout (Lcandidate) that became worse during the perturbation, depending on the
probability of the Metropolis criterion, can be accepted as the current layout (Lcurrent). This avoids
the possibility of convergence to the local solution by following only those solutions for which the
fitness is improved [46]. Fitness refers to the adaptation of the optimization process, which indicates
whether the value of a given objective function has improved in the desired direction. The fitness value
is the same as the objective function value. The Metropolis criterion based on the Metropolis-Hasting
algorithm is as follows:

Pmetro = exp
(
−

∆cos t
T

)
, (11)

Lcurrent =

{
Lcandidate, if Pmetro > Prand
Lcurrent, otherwise

, (12)

where Pmetro is a metropolis probability, Prand is a probability obtained using the random number
generator function, and T is the current temperature parameter.

Summarizing the performance of the SA algorithm, when the initial temperature is high, the
probability to select a solution by Metropolis criterion increases, resulting in active turbine movement
and finding a location that produces higher energy in a wider search range. The temperature then
slowly decreases, reducing the movement of the wind turbines (in this state, the wind turbines are in a
somewhat energy-enhanced position) and confirming the final placement position.

Table 2 summarizes the parameters related to the SA algorithm performance. The initial
temperature was set to 1.0 and was gradually decreased by temperature control (α = 0.98) to finish
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the layout process, when it reached 0.001. For each temperature step, the Markov number of 200 was
used to determine the number of iterations of perturbation. The setting of parameters applied to the
algorithm can vary depending on the nature and difficulty of the considered problem and can be
determined by empirical or preliminary performance test. The initial temperature is essentially at 1.0
and the stopping temperature is recommended to be sufficiently low; however, when the stopping
temperature is too low, a considerable amount of calculation time may be required. Therefore, an
appropriate value can be selected by confirming the variation of fitness through a preliminary execution
of the algorithm. For example, if the fitness value advances quickly to the desired value, then the
stopping temperature can be set high; otherwise, it should be set low. Alternatively, a method for
stopping the execution when the desired target value is reached can also be used, and this can be
done without setting a stopping temperature. The temperature control typically uses the values in the
range 0.85–0.98. The Markov number determines the amount of perturbation that will be performed.
Generally, it should be set to more than 100 times. If the solution search range is larger, then this value
should be increased.

Table 2. Parameters of the Layout Optimization.

Parameter Value Parameter Value

Number of cells 10 × 10 Initial temperature 1.0
Cell size 200 × 200 m Stopping temperature 0.001

Markov number 200 Temperature control (α) 0.98

3. Case Studies and Discussion

To evaluate the performance of the proposed layout optimization method based on the SA
algorithm, the layout of wind turbines was performed for the three cases mentioned above, and the
results were compared to those previously reported in the literature. There are several works based on
this layout condition and scenarios proposed by Mosetti. However, despite showing the same layout
results, the calculated values were different and the result value obtained in the present study differs as
well. This can be explained due to a methodological difference in the calculation process using a wake
model. However, some studies have demonstrated unreliable differences in the results. Therefore, the
results of the present study were compared to those of five related studies (Mosetti et al. [3], Grady et
al. [4], González et al. [8], Zhang et al. [9], and Parada et al. [19]) that provided the results within a
reasonable range.

3.1. Case Study (a): Constant Wind Speed and Single Wind Direction

The first case study assumes that a 12 m/s wind is only blowing from the north and can expect that
the turbines are positioned based on the north direction. Figure 5 shows the layout results obtained for
case study (a), and the calculated values for the layout results are summarized in Table 3. To perform
the comparison to the results of the present study, the results of the previous works are recalculated in
the same way according to the layout position defined in each study, and for referencing purposes,
the original values provided in each previous study are shown in parentheses in Table 3. The study
by Mosetti deployed 26 turbines, while the study by Gray and other studies deployed 30 turbines.
The results of the present study are the same as those obtained in the study by Gray et al. [4], which
showed the efficiency and fitness better than the results reported in the study by Mosetti. As most of
the studies show similar results, the results of case study (a) seem to be in the optimal layout. Figure 6
shows the fitness variation during the operation process of the SA algorithm in case study (a). At the
beginning of the operation, it can be seen that the movement of turbines becomes more active due to
the high-temperature parameter, and then the temperature is gradually decreased to stabilize. This
behavior clearly shows the characteristics of the SA algorithm performance and also shows that the SA
algorithm can be successfully applied to the wind farm layout optimization problem.
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Table 3. Layout Results for Case Study (a).

Number of
Turbines Total Power (kW) Efficiency (%) Fitness Value

Mosetti et al. [3] 26 12,349 (12,352) 91.621 (91.645) 0.0016201 (0.0016197)
Grady et al. [4] 30 14,269 (14,310) 91.756 (92.015) 0.0015479 (0.0015436)

González et al. [8] 30 14,269 (not reported) 91.756 (−) 0.0015479 (−)
Parada et al. [19] 30 14,269 (14,785) 91.756 (95.068) 0.0015479 (0.0014940)
Zhang et al. [9] 30 14,269 (14,310) 91.756 (92.015) 0.0015479 (0.0015436)
Present study 30 14,269 91.756 0.0015479
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3.2. Case Study (b): Constant Wind Speed and Multiple Wind Directions

Case study (b) is the case where the 12 m/s wind speed is blown from 36 directions with a uniform
probability, and the comparative results for this case are shown in Figure 7 and Table 4. Figure 7 shows
different layout results, where it can be seen that the method proposed by Mosetti demonstrates the
highest park efficiency; however, the fitness is the worst as 19 turbines were deployed, as shown in
Table 4. Although efficiency is a critical factor in wind farm design, optimization should first be able to
solve a given objective function to obtain the best fitness in the optimization process. Therefore, the
results from other studies, including the study by Gray et al., demonstrated the lower park efficiency
but improved fitness as more than 39 turbines were deployed. This is because the park efficiency was
not included as a parameter in the objective function for the layout optimization. Therefore, the cost
model and objective function proposed by Mosetti et al. should be modified in a more reasonable
manner. Among previous studies, the results outlined in the study by Parada et al. [19] demonstrated
the lowest fitness using 39 turbines, and in turn, Zhang et al. [9] reported the improved results using 40
turbines. However, the fitness of the results of Zhang et al. that were calculated in this study was lower
than in the study by Parada et al. Nevertheless, the calculation results of the proposed SA algorithm
also indicated that the layout with 40 turbines is optimal, and the regular layout surrounding the wind
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farm provides the best fitness result, as shown in Figure 7. This layout is deemed reasonable under the
conditions, where the constant wind speed occurs in all directions. Figure 8 shows the fitness variation
in case study (b), indicating that it perturbates to the lower temperature parameter range than case
study (a). This is because the solution search area became wider due to an additional wind direction
condition that was not considered in case study (a).
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3.3. Case Study (c): Variable Wind Speed and Multiple Wind Directions

Case study (c) considers 36 wind directions and three wind speeds (8, 12, and 17 m/s) with a
different probability of occurrence in each direction. Figure 9 and Table 5 represent the results for case
study (c). The study by Mosetti obtained the resulting layout of 15 turbines, which achieved the highest
efficiency and worst fitness. Among the considered previous studies, Zhang et al. [9] reported the best
fitness results by deploying 40 turbines. In this study, however, the layout of 41 turbines demonstrated
the best fitness and improved the results over previous studies. From the layout results obtained in the
present study, as shown in Figure 9, it can be seen that the layout pattern does not differ greatly from
case study (b). This indicates that similar results were observed as the wind velocity probability at
each direction, which was proposed by Mosetti (Figure 4), changed only within the range of 260–350◦.
Therefore, it can be concluded that the optimal layout condition was derived based on the northwest
wind. Moreover, as the change in the wind speed probability is not considered large, it showed a
symmetrical pattern. This suggests that even in the study by Zhang et al., which demonstrated good
fitness, the symmetrical arrangement is deemed to be the optimal configuration. Figure 10 shows the
fitness variation in case study (c), and it can be seen that the SA algorithm demonstrates the best results
in case study (c) as well.
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Table 5. Layout Results for Case Study (c).

Number of
Turbines Total Power (kW) Efficiency (%) Fitness Value

Mosetti et al. [3] 15 13,319 (13,460) 94.656 (94.620) 0.0010046 (0.0009941)
Grady et al. [4] 39 31,636 (32,038) 86.471 (86.619) 0.0008510 (0.0008403)

González et al. [8] 39 31,984 (32,739) 87.177 (89.487) 0.0008441 (0.0008223)
Parada et al. [19] 39 31,862 (34,173) 87.089 (93.407) 0.0008449 (0.0007878)
Zhang et al. [9] 40 32,868 (34,271) 87.593 (91.333) 0.0008364 (0.0008022)
Present study 41 33,966 88.311 0.0008263
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Figure 11 shows the change in cost per total power and the park efficiency of the wind farm
according to the number of wind turbines in case study (c). The cost decreases as the number of wind
turbines deployed increases, demonstrating the lowest value at 41 turbines, and then the cost is seen to
increase. This shows that 41 is the optimal number of wind turbines for a given cost model at a given
wind farm. Contrastingly, park efficiency continues to decline as the number of wind turbines increases.
This is because as the turbines are added within a limited area, the wake effects between the turbines
subsequently increase. However, the park efficiency is also an important factor, as a simultaneous
optimal layout is needed to minimize the costs and maximize park efficiency into the future.
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4. Conclusions

In this study, an optimization method using the SA algorithm for the wind farm layout optimization
problem was proposed and was applied to three scenarios considered in previous studies to evaluate the
performance of the optimization algorithm. The performed case studies were as follows: (a) constant
wind speed and single wind direction, (b) constant wind speed and multiple wind directions, and (c)
variable wind speed and multiple wind directions. The same layout results as in the previous studies
were obtained in case study (a) due to the simple wind scenario. In case study (b), a symmetrical layout,
which was not observed in previous studies, was obtained and the resulting layout demonstrated
the best fitness results. Finally, in case study (c), the SA algorithm demonstrated the optimal number
of wind turbines and the layout results that were not observed in previous studies. Most of the
compared previous studies use the GA, whereas the SA algorithm in this study demonstrated the best
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performance. It should be noted that it is hard to evaluate the performance in terms of the absolute
difference. This is due to the fact that optimization algorithms may be applied differently depending
on the characteristics of the problem. However, the results indicate that the SA algorithm can be
successfully applied to the wind farm layout optimization problem.

In addition, the cost model and the objective function, which were suggested by Mosetti et al. to
obtain the optimal layout, have a tradeoff between efficiency and cost, and this problem should be
addressed in future works. Finally, to demonstrate the practical applicability of the optimal layout
algorithms, more practical wind scenarios need to be examined.
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