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Abstract: The electric arc furnace (EAF) contributes to almost one-third of the global iron and steel
industry, and its harmonic pollution has drawn attention. An accurate EAF harmonic model is
essential to evaluate the harmonic pollution of EAF. In this paper, a data-driven compartmental
modeling method (DCMM) is proposed for the multi-mode EAF harmonic model. The proposed
DCMM considers the coupling relationship among different frequencies of harmonics to enhance
the modeling accuracy, meanwhile, the dimensions of the harmonic dataset are reduced to improve
computational efficiency. Furthermore, the proposed DCMM is applicable to establish a multi-mode
EAF harmonic model by dividing the multi-mode EAF harmonic dataset into several clusters
corresponding to the different modes of the EAF smelting process. The performance evaluation results
show that the proposed DCMM is adaptive in terms of establishing the multi-mode model, even if the
data volumes, number of clusters, and sample distribution change significantly. Finally, a case study
of EAF harmonic data is conducted to establish a multi-mode EAF harmonic model, showing that the
proposed DCMM is effective and accurate in EAF modeling.

Keywords: harmonic pollution; electric arc furnace (EAF); data-driven compartmental modeling;
harmonic power-flow calculation

1. Introduction

The electric arc furnace (EAF) is a widely used device in the iron and steel industry and it injects
harmonic current into the power system and produces harmonic voltage at the point of common
coupling (PCC) [1]. A small reduction in harmonic pollution represents a significant electrical energy
saving since EAF works in the range between several megavolt amperes (MVA) and 250 MVA [2–5].
In this context, there is a need for an EAF harmonic model to analyze the undesirable disturbing effects
of harmonics in the harmonic power-flow calculation.

In recent years, various mechanism modeling methods have been proposed for EAF harmonic
models. For instance, the time-domain simulation method was developed to model EAF for the flicker
study [6–9]. However, it is relatively complex for the established time-domain model to analyze the
undesirable disturbing effects of harmonics due to the solution of the time-domain differential equations.
In this case, it is much simpler for frequency-domain models (e.g., the constant-harmonic-ratio-type
model and the Norton equivalent model) to evaluate the harmonic pollution of the EAF [10].
Munoz et al. approximatively modeled the EAF as a constant-harmonic-ratio-type model and applied
it to the harmonic power-flow calculation [11]. The constant-harmonic-ratio-type model considers
the interaction between the harmonic currents and the fundamental current. It should be noted that
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the EAF smelting process normally consists of three modes with different volt-ampere characteristics,
i.e., boring, melting, and refining. More importantly, the EAF harmonic model depends critically on
volt-ampere characteristics. Such a constant-harmonic-ratio-type model ignored that the impact of
harmonic voltage on the harmonic current would lead to invalid harmonic power-flow calculation
results. Considering the impact of the harmonic voltage on the harmonic current in the same frequency,
Sezgin et al. modeled the EAF as a Norton equivalent model [12]. In this mechanism, the harmonic
power-flow calculation results still deviate from the desirable range as such a modeling method ignores
the coupling relationship among different frequencies of harmonics. Based on the discussion above,
it is challenging to analyze the undesirable disturbing effects of harmonics through an EAF harmonic
model established by a mechanism modeling method due to the difficulty precisely comprehending
the EAF harmonic mechanism.

Given the limitations of the above-mentioned mechanism modeling methods, some data-driven
modeling methods for EAF harmonic models were proposed. For example, the EAF harmonic model
based on field measurements of voltages and currents was proposed [13,14]. However, these methods
ignore the interactions between harmonic currents and harmonic voltages and would result in a
calculation error. To deal with these issues, the genetic algorithm and hidden Markov theory were
utilized to estimate the parameters of the time-varying EAF harmonic model [15–17]. It is evident
that the existing data-driven methods are effective in establishing an accurate EAF harmonic model
when the one-mode EAF harmonic dataset is adopted, but they cannot partition the different modes of
the multi-mode EAF harmonic dataset, i.e., they are not applicable to establish the multi-mode EAF
harmonic model. In light of the potential benefits of artificial intelligence, e.g., a strong ability for
nonlinear mapping, the neural-network-based method was employed to establish the multi-mode EAF
harmonic model [18–20]. Nevertheless, the non-linear multi-mode EAF harmonic model established
by the neural-network-based method is not suitable for the harmonic power-flow calculation because
it results in a heavy computational cost in the harmonic power-flow calculation [21,22].

As such, there is little academic literature on an EAF modeling method that fully considers
the coupling relationship among different frequencies of harmonics and accurately identifies the
parameters of different modes of the multi-mode EAF harmonic model. However, the need for an
EAF modeling method on these issues is recognized in the industry and academic research areas [23],
and how to employ massive power quality data to promote and enhance the power quality of the
power grid is a pressing issue.

In this paper, we propose a data-driven compartmental modeling method (DCMM), which fully
considers the coupling relationship among different frequencies of harmonics and accurately identifies
the parameters of different modes of the multi-mode EAF harmonic model. Compared with the existing
EAF modeling methods, the proposed DCMM has three main technical contributions as follows.

Firstly, the proposed DCMM fully considers the coupling relationship among different frequencies
of harmonics to guarantee the accuracy of the multi-mode EAF harmonic model. Moreover, we adopt
principle component analysis (PCA) to reduce heavy modeling computational cost caused by such
a consideration. Hence, the proposed DCMM enhances the modeling accuracy while reducing the
computational burden.

Secondly, in the proposed DCMM, the PSO-based K-means algorithm is employed to divide
the multi-mode EAF harmonic dataset into several clusters corresponding to the different modes of
the EAF smelting process. We calculate the optimal number of clusters and initial clustering centers
to guarantee that the objects belonging to the same mode are compact and the objects belonging to
different modes are well separated. Moreover, the clustering center and distance measure of the
PSO-based K-means algorithm are redefined to ensure that the volt-ampere characteristic of each mode
is linear.

Finally, the proposed DCMM can accurately identify the parameters of different modes of the EAF
smelting process simply based on the multi-mode EAF harmonic dataset without adjusting the input
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parameters of the DCMM. Therefore, the proposed DCMM is applicable to establish the multi-mode
EAF harmonic model.

The rest of the paper is organized as follows. In Section 2, the proposed DCMM is introduced.
In Section 3, two cases are carried out to investigate the effectiveness and adaptivity of the proposed
DCMM. In Section 4, the proposed DCMM is utilized to identify the parameters of the multi-mode
EAF harmonic model based on the harmonic data, furthermore, the application of the multi-mode EAF
harmonic model is discussed. In Section 5, the EAF modeling in the context of the different models is
discussed. Finally, Section 6 concludes the paper.

2. Data-Driven Compartmental Modeling Method for EAF

This section elaborates on the multi-mode EAF harmonic model first. Next, the DCMM is proposed.

2.1. Multi-Mode EAF Harmonic Model

The non-linear load model shown as Equation (1) depends on fundamental and harmonic
voltages [24–27],

Ih = Gh(U1, U2, U3, · · ·Um, C) (1)

where Ih is the h-th harmonic current, U1 denotes the fundamental voltage, Um is the m-th harmonic
voltage, and C is the constant coefficient.

The above-mentioned non-linear load model is not suitable for the EAF as the correlation between
the harmonic currents and fundamental current is more prominent than that between the harmonic
currents and the fundamental voltage. Therefore, the non-linear coupling model based on the
interactions among the fundamental current, the harmonic voltages, and the harmonic currents is
presented as follows,

Ih = Fh(I1, U2, U3, · · ·Um, C) (2)

where I1 denotes the fundamental current.
The non-linear function, Fh, leads to the heavy computational cost of harmonic power-flow

calculation, due to the iterative solution of the system equations and non-linear coupling model [20,21].
Therefore, a non-linear coupling model is approximated to a linear coupling model, as shown in
Equation (3). In this way, the computation burden is reduced while the convergence precision
is maintained.

Ih = A[I1, U2, U3, · · · , Um]
T + C (3)

where A is the coupling matrix.
Equation (3) can be rewritten as follows by denoting [I1, U2, U3, . . . , Um]T as Wm,

Ih = AWm + C. (4)

The coupling matrix A and the constant-coefficient C represent the coupling relationship among
the fundamental component and harmonic components. Note that the harmonic components vary
with the modes of the EAF smelting process. Therefore, it is necessary to classify the measured data
according to operating modes and estimate A and C from the respective data clusters. It is assumed
that an EAF smelting process has n operating modes, i.e., the multi-mode EAF harmonic model consists
of n linear coupling models shown as Equation (4), the next goal of this paper is to identify the model
parameters A, C, A, C, . . . , A(n), and C(n).

However, the dimension of the concerned harmonics of Equation (4) is normally 25; it is
difficult to classify such high-dimensional spatial data and identify the model parameters accurately.
Therefore, the PCA was adopted to reduce the dimensions of the dataset, so that we could obtain
accurate model parameters. The PCA adjusts the coordinate axes of the dataset to guarantee that
the variances of the adjusted coordinate axes are following a diminishing order. The first several
coordinate axes were employed to classify the measured data of EAF because the coordinate axes with
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small enough variances were unable to distinguish the data. That is, the PCA can extract a smaller
representative dataset from a larger one [28]. According to the description above, the process of model
simplification is elaborated as follows.

We suppose that the dimension of Wm, m, is reduced to j by PCA, then Wm is processed to Rj
as follows,

R j = QWm, j < m (5)

where Q denotes a matrix consisting of the selected eigenvectors of the covariance matrix of Wm. Rj can
be represented as [r1, r2, r3, . . . , rj]T, where r1, r2, r3, . . . , and rj are the first j principal components of
Wm.

Consequently, the simplified model based on PCA is formulated as follows

Ih = AQ−1R j + C. (6)

Equation (6) is rewritten as follows by denoting AQ−1 as Ap,

Ih = APR j + C (7)

where Ap is the simplified coupling matrix.
The linear coupling relationship among different frequencies of harmonics is consistent before

and after model simplification [29]. Additionally, the modeling precision and computational efficiency
are improved since model simplification filters out redundant and correlated features of the measured
data of EAF [30–32].

Thus, the next goal of this paper is converted to identify the simplified model parameters Ap, C,
Ap, C, . . . , Ap

(n), and C(n), then the model parameters A, C, A, C, . . . , A(n), and C(n) can be calculated
according to Equation (8),

A(i) = A(i)
P Q, i = 1, 2, . . . , n (8)

where Q is the known matrix obtained from the PCA.
Based on the discussion above, the parameter identification method of the multi-mode EAF

harmonic model will be elaborated in Section 2.2.

2.2. Data-Driven Compartmental Modeling Method (DCMM)

In this subsection, the DCMM based on the multi-mode EAF harmonic model is proposed.
As shown in Figure 1, the proposed DCMM is illustrated. First, the h-th harmonic current data,
the fundamental current data, and the 2-nd to m-th harmonic voltage data were normalized according
to the short-circuit capacity and base voltage, and the dimensions of the normalized dataset were
reduced by PCA. Furthermore, the optimal number of clusters and initial clustering centers were
calculated based on the sum of the squared error (SSE) and PSO, respectively. Then the preprocessed
data was separated into several clusters based on the K-means algorithm. Thereafter, the simplified
model parameters Ap, C, Ap, C, . . . , Ap

(n), and C(n) were identified. Finally, the model parameters A, C,
A, C, . . . , A(n), and C(n) were calculated.
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In our method, the PSO-based K-means algorithm was adopted to divide the multi-mode EAF
harmonic dataset into several clusters corresponding to the different modes of the EAF smelting
process. We adopted the SSE and PSO, which is different from the conventional K-means algorithm,
to calculate the optimal number of clusters and initial clustering centers to improve clustering accuracy.
Moreover, the clustering center and distance measure of the PSO-based K-means algorithm were
redefined to ensure that the volt-ampere characteristic of each mode of the EAF smelting process
is linear.

Considering that the number of clusters of the K-means algorithm needs be set beforehand,
we introduced SSE formulated as follows to determine the optimal number of clusters,

SSE =
k∑

i=1

∑
q∈Yi

∣∣∣q− vi
∣∣∣2 (9)

where k is the number of clusters, Yi is the i-th cluster, q denotes a data point belonging to Yi, and vi is
the center of Yi.

With the increasing number of clusters, SSE decreases, and SSE will decrease markedly if k
approximates the optimal number of clusters. Therefore, we calculated SSEs under different conditions
(k = 1,2, . . . ,10) and take k at the marked decline of SSEs as the optimal number of clusters.

PSO was employed to obtain the initial clustering center of the K-means algorithm rather
than randomly initializing the K-means algorithm [33]. Compared with the random initialization
K-means algorithm, it was more efficient for the PSO-based K-means algorithm to search for the
near-global solution or global optimal solution and enhance the clustering accuracy and computational
efficiency [34,35].

The clustering center and distance measure of the PSO-based K-means algorithm were redefined
as follows,

Ih = a1r1 + a2r2 + · · ·+ a jr j + c, (10)

dis(i) =

∣∣∣∣a1r(i)1 + a2r(i)2 + · · ·+ a jr
(i)
j + c− I(i)h

∣∣∣∣√
a2

1 + a2
2 + · · ·+ a2

j + 1
(11)

where a1, a2, . . . , aj, and c are constant coefficients, j denotes the number of dimensions of matrix Rj,
dis(i) is the distance between the i-th data point and the clustering center, and r1

(i), r2
(i), . . . , rj

(i), and Ih
(i)

are coordinates of the i-th data point.
The redefined clustering center is linear instead of a point, which is different from the clustering

center of the conventional K-means algorithm. Such a redefinition can guarantee that the volt-ampere
characteristic of each mode of the EAF smelting process is linear.

The clustering process is illustrated in Figure 2. First, the distances between each data point and
different clustering centers are calculated. Furthermore, the data points are divided into the nearest
cluster. Thereafter, several clustering centers are recalculated. Finally, if the clustering centers change,
return to Step 1, otherwise, the clustering centers are obtained.

Based on the discussion above, our method is able to partition the multi-mode EAF harmonic
dataset into several clusters, such that the objects with shared linear volt-ampere characteristics are
compact, and the objects with different linear volt-ampere characteristics are well separated.

Finally, the simplified model parameters Ap, C, Ap, C, . . . , Ap
(n), and C(n) were identified by

the least square fitting, and the model parameters A, C, A, C, . . . , A(n), and C(n) were calculated
according to Equation (8). In this way, the multi-mode EAF harmonic model was established by the
proposed DCMM.
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3. Performance Evaluation

To test the effectiveness and adaptivity of the proposed DCMM, two cases are discussed in this
section. The corresponding simplified model parameters are shown in Table 1.

Table 1. The true values of the simplified model parameters of case 1 and 2.

Case Mode Ap C

Case 1
Mode 1 [3.7099, −1.1922] −0.0115
Mode 2 [−3.9041, −0.3421] −0.2107

Case 2
Mode 1 [3.7099, −1.1922] −0.0115
Mode 2 [−3.9041, −0.3421] −0.2107
Mode 3 [0.3511, −0.8861] −0.0904

According to Equation (7) and the parameters in Table 1, we utilized MATLAB to generate 2880
and 3360 data points detailed in Figures 3 and 4, respectively.

The proposed DCMM is utilized to estimate the simplified model parameters of the datasets
shown in Figures 3 and 4, respectively. The average estimation deviation of a mode, Dm, is defined
as follows,

Dm =

∣∣∣1− C′
C

∣∣∣+ 2∑
i=1

∣∣∣∣1− pi′
pi

∣∣∣∣
3

(12)

where C and C′ are the true value and the estimated value of the constant-coefficient, respectively.
[p1, p2] and [p1

′, p2
′] are equal to Ap and Ap

′ representing the true value and the estimated value of the
simplified coupling matrix, respectively.

The average estimation deviation of a case, Dc, is defined as follows,
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Dc =

n∑
i=1

Dm(i)

n
× 100% (13)

where n is the number of the modes of a case and Dm(i) denotes the average estimation deviation of the
i-th mode.
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It means that the true value and estimated value of the simplified model parameters are identical
if Dc is calculated to be 0. Nonetheless, it is quite difficult to achieve identical results when the data
volumes, number of clusters, and the complexity of the sample distribution are high. Thus, the parameter
identification results are considered accurate if Dc is less than 5%.

3.1. Case 1: 2880 Data Points, 2 Modes

In this subsection, we conduct a case study involving the parameter identification of two modes
shown in Figure 3. The clustering results are shown in Figure 5. We can see that the data points with
different colors belong to different modes, and two linear modes are separated clearly. The parameters
of two linear modes are detailed in Table 2.

This case shows that the proposed DCMM is able to handle the linear clustering problem and
obtain accurate parameters as Dc is calculated to be 3.27%.
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Table 2. The estimated values of the simplified model parameters of case 1.

Case Mode Ap
′ C′

Case 1
Mode 1 [3.7338, −1.2106] −0.0110
Mode 2 [−3.8913, −0.3801] −0.2142

3.2. Case 2: 3360 Data Points, 3 Modes

The second case study involving the parameter identification of the three modes shown in Figure 4
was tested. The clustering results are shown in Figure 6. It can be seen that three linear modes are
divided properly under the proposed DCMM. The parameters of the three linear modes are detailed in
Table 3.
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Table 3. The estimated values of the simplified model parameters of case 2.

Case Mode Ap
′ C′

Case 2
Mode 1 [3.7305, −1.2161] −0.0098
Mode 2 [−3.8886, −0.790] −0.2140
Mode 3 [0.3510, −0.8861] −0.0904

It can be found that the DCMM maintains its high precision when the test dataset changes
observably because Dc is calculated to be 2.18% in this case.
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3.3. Summary of Case 1 and 2

It can be observed that the DCMM is able to separate the intersecting linear modes exactly.
The parameter identification results are accurate as the average estimation deviations of two cases
are less than 5%. In other words, the proposed DCMM is effective in different scenes, even if the data
volumes, number of clusters, and sample distributions change significantly.

4. Case Study

In this section, the DCMM was utilized to identify the parameters of the multi-mode EAF
harmonic model based on the harmonic dataset. A comparison among the proposed model,
the constant-harmonic-ratio-type model, and the Norton equivalent model was then implemented.
Finally, the application of the multi-mode EAF harmonic model is introduced.

4.1. Parameter Identification of Multi-Mode EAF Harmonic Model

To obtain the harmonic data of the EAF, the EAF model simulating flicker disturbance was
developed in Simulink. As shown in Figure 7, a three-phase EAF model connects a 0.4 kV, 1 MVA,
50 Hz three-phase source, where Z1 is the system impedance resulting from the minimum short-circuit
capacity of the assumed source. The three-phase EAF model shown in Figure 7 is detailed in Figure 8;
each EAF function block represents an electrode at each phase, and the controlled voltage source with
a resistive and inductive network was adopted to model the flicker frequency and magnitude variation.
The simulation time was set to 101 s, and the current and voltage signals extracted through a PQ
recorder were analyzed every 0.02 s with a fixed sampling rate of 2500 Hz by the fast-Fourier transform
(FFT) algorithm. Finally, we obtained 5000 sets of the fundamental current, the 2-nd to 25-th harmonic
current, and the 2-nd to 25-th harmonic voltage peaks.
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Figure 8. EAF model simulating flicker disturbance.

Taking the 5-th harmonic current as an example (the multi-mode EAF harmonic model of other
frequencies can be also established by our method), the 5000 sets of the fundamental current, the 5-th
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harmonic current, and the 2-nd to 25-th harmonic voltage peaks are normalized according to the
short-circuit capacity and base voltage, and the dimensions of the normalized dataset are reduced
to 3-dimensions from 25-dimensions by PCA. In this case, 4000 sets of data shown in Figure 9 are
employed to identify the parameters of the multi-mode EAF harmonic model and the remaining
1000 sets of data named the validation dataset are utilized to evaluate modeling accuracy.
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The number of clusters of the modeling dataset was calculated to be 3. The clustering results
are shown in Figure 10, the data points with different colors belong to different modes, it is can be
found that three linear modes corresponding to three modes of the EAF smelting process are separated
as desired. The simplified model parameters can be obtained and are listed in Table 4. In terms of
Equation (8), the model parameters can be obtained.
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where ME represents the mean error, MSE is the mean square error, R2 denotes the coefficient of 
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Table 4. The simplified model parameters of the 5-th harmonic of the EAF.

Case Mode Ap C

EAF
Mode 1 [0.1111, −0.0095] −0.0007
Mode 2 [0.0283, 0.0099] 0.0020
Mode 3 [−0.0164, 0.1193] 0.0203

4.2. Comparison of Different Models

The proposed DCMM was also adopted to establish the constant-harmonic-ratio-type model
and the Norton equivalent model based on the modeling dataset, shown in Figure 9, respectively.
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To demonstrate the advantages of the proposed model, a comparison among the proposed model,
the constant-harmonic-ratio-type model, and the Norton equivalent model was implemented based on
the validation dataset. The evaluation indexes are shown as follows,

ME =
1
N

N∑
i=1

∣∣∣It(i)
− Ic(i)

∣∣∣, (14)

MSE =
1
N

N∑
i=1

(
It(i)
− Ic(i)

)2
, (15)

R2 =

1−
N∑

i=1

(
It(i)
− Ic(i)

)2

N∑
i=1

(
It(i) − I′

)2

× 100%, (16)

FA =

1−
N∑

i=1

(
It(i)
− Ic(i)

)2

N∑
i=1

(
It(i)

)2

× 100% (17)

where ME represents the mean error, MSE is the mean square error, R2 denotes the coefficient of
determination, FA is the fitting accuracy, N is the number of data points of validation dataset, It(i) and
Ic(i), respectively, denote the true value and calculated value of the 5-th harmonic current of the i-th
data point of the validation dataset, and I′ is the mean value of the 5-th harmonic current of the
validation dataset.

The comparison results are demonstrated in Table 5 and it can be observed that both the ME and
MSE of the proposed models are less than those of the other two models, therefore, the proposed
model is more accurate than the other two models. Moreover, both the R2 and FA of the proposed
model are greater than those of the other two models, thus, the fitting effect of the proposed model is
optimal among the three models.

Table 5. Comparison results of the different models.

Model ME MSE R2 FA

Proposed model 1.1369 2.0536 90.28% 98.25%
Constant-harmonic-ratio-type model 1.2862 2.5837 87.78% 96.80%

Norton equivalent model 1.6345 4.2531 79.88% 95.38%

4.3. Application of Multi-Mode EAF Harmonic Model

In this subsection, the application of the multi-mode EAF harmonic model is elaborated.
The process of the harmonic power-flow calculation based on the multi-mode EAF harmonic model is
shown in Figure 11. The fundamental current is known since the fundamental power-flow calculation
is carried out before the harmonic power-flow calculation. First, we set the initial values of harmonic
voltages. Then, the values of harmonic currents are calculated based on Equation (4). Later, the harmonic
currents are substituted into the harmonic power-flow equations to calculate new values of harmonic
voltages. Finally, if the convergence condition is true, the new values of harmonic voltages are obtained,
otherwise, return to Step 2.
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Taking a mode of the 3-rd and 5-th multi-mode EAF harmonic models as an example, we calculated
the 3-rd and 5-th harmonic voltages according to the process shown in Figure 11, respectively.
The calculated results are demonstrated in Table 6, Zh denotes the h-th harmonic system impedance
calculated based on the circuit diagram shown in Figure 7, Uh is the h-th harmonic voltage.

Table 6. The harmonic power-flow calculation results.

Order Zh (ohms) Uh (V)

3 0.039 + 0.882i 30.4131
5 0.039 + 1.372i 18.2623

The probability distributions of the measured 3-rd and 5-th harmonic voltage data are shown in
Figure 12. The blue lines denote the mean values of the measured 3-rd and 5-th harmonic voltages
and the red lines denote the harmonic power-flow calculation results. It can be observed that the
established multi-mode EAF harmonic models are effective in the harmonic power-flow calculation,
as the deviations between the calculated values and the mean values of measured data are 3.10% and
2.40%, respectively.
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5. Discussion

This paper proposes the DCMM for the multi-mode EAF harmonic model. When adopting
the same algorithm (i.e., PSO-based K-means algorithm), the results show that the multi-mode EAF
harmonic model is more accurate than the constant-harmonic-ratio-type model and the Norton
equivalent model (see Table 5). The constant-harmonic-ratio-type model of EAF considers the
interaction between the harmonic currents and the fundamental current but ignores the coupling
relationship between the harmonic currents and harmonic voltages. The Norton equivalent model of
EAF considers the impact of the harmonic voltages on the harmonic current in the same frequency
but ignores the interaction among the harmonic currents, the fundamental current, and the harmonic
voltages of different frequencies. As the correlation between the harmonic currents and fundamental
current is more prominent than that between the harmonic currents and the harmonic voltage of the
same frequency, therefore, the constant-harmonic-ratio-type model is more accurate than the Norton
equivalent model. In our method, the proposed multi-mode EAF harmonic model considers the
linear coupling relationship among the harmonic currents, the fundamental current, and the harmonic
voltages, as shown in Equation (3). Therefore, the multi-mode EAF harmonic model is more accurate
than the other two models. However, the increased model variables would inevitably lead to poor
computational efficiency. To deal with such an issue, our method extracts the smaller representative
dataset from a larger one to improve computational efficiency.

On the other hand, the DCMM based on the PSO-based K-means algorithm is elaborated in
Section 2.2. Compared with the conventional K-means algorithm, it is more efficient for the PSO-based
K-means algorithm to search for the near-global solution or global optimal solution, because high
dimensional spatial data is preprocessed, and the optimal number of clusters and initial clustering
centers are calculated. The performance evaluation results clearly show that the proposed DCMM is
accurate in establishing the multi-mode model since the average estimation deviations are less than
5% under different experimental conditions. Moreover, the accuracy of the linear approximation of
the proposed model introduced in Section 2.1 can be reflected by FA. As shown in Table 5, it can
be found that the FA of the proposed model is at the desired level. However, the accuracy of the
linear approximation of the proposed model may decrease when the small-scale modeling dataset is
employed in EAF modeling as the outliers of the small-scale modeling dataset have a greater negative
impact on the linear fitting than those of the large-scale modeling dataset.

6. Conclusions

This paper has developed the DCMM to establish the multi-mode EAF harmonic model to evaluate
the harmonic pollution of EAF. The proposed DCMM fully considers the coupling relationship among
different frequencies of harmonics while employing the PCA to improve computational efficiency.
Furthermore, the proposed DCMM partitions the multi-mode EAF harmonic data into several clusters
corresponding to the different modes of the EAF smelting process, and identifies the multi-mode
EAF harmonic model parameters. Finally, the multi-mode EAF harmonic model was applied to the
harmonic power-flow calculation to evaluate the harmonic pollution of EAF. The accuracy of the
multi-mode EAF harmonic model was verified by carrying out the case study. Comparison results show
that the multi-mode EAF harmonic model is more accurate than the other two models. In summary,
the proposed DCMM is effective for evaluating the harmonic pollution of EAF, in this way, it improves
the energy efficiency and productivity of EAF.

Note that the multi-mode harmonic model is suitable for EAF, which in practice, may not be
applicable to other harmonic sources. Hence, our future research work will focus on studying the
different multi-mode models for different harmonic sources.
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14. Vatankulu, Y.E.; Şentürk, Z.; Salor, O. Harmonics and interharmonics analysis of electrical arc furnaces based
on spectral model optimization with high-resolution windowing. IEEE Trans. Ind. Appl. 2017, 53, 2587–2595.
[CrossRef]

15. Illahi, F.; El-Amin, I.; Mukhtiar, M.U. The application of multiobjective optimization technique to the
estimation of electric arc furnace parameters. IEEE Trans. Power Deliv. 2018, 33, 1727–1734. [CrossRef]

16. Mousavi Agah, S.M.; Hosseinian, S.H.; Abyaneh, H.A.; Moaddabi, N. Parameter identification of arc furnace
based on stochastic nature of arc length using two-step optimization technique. IEEE Trans. Power Deliv.
2010, 25, 2859–2867. [CrossRef]

17. Torabian Esfahani, M.; Vahidi, B. A new stochastic model of electric arc furnace based on hidden markov
model: A study of its effects on the power system. IEEE Trans. Power Deliv. 2012, 27, 1893–1901. [CrossRef]

18. Chen, C.; Chen, Y. A neural-network-based data-driven nonlinear model on time- and frequency-domain
voltage–current characterization for power-quality study. IEEE Trans. Power Deliv. 2015, 30, 1577–1584.
[CrossRef]

19. Chang, G.W.; Chen, C.; Liu, Y. A neural-network-based method of modeling electric arc furnace load for
power engineering study. IEEE Trans. Power Syst. 2010, 25, 138–146. [CrossRef]

20. Chang, G.W.; Lin, S.; Chen, Y.; Lu, H.; Chang, Y. An advanced EAF model for voltage fluctuation propagation
study. IEEE Trans. Power Deliv. 2017, 32, 980–988. [CrossRef]

http://dx.doi.org/10.1016/j.energy.2015.07.068
http://dx.doi.org/10.1016/j.energy.2011.07.050
http://dx.doi.org/10.1109/TPWRD.2008.2007021
http://dx.doi.org/10.1109/TIA.2015.2429638
http://dx.doi.org/10.1109/TIM.2011.2134910
http://dx.doi.org/10.1016/j.energy.2016.09.043
http://dx.doi.org/10.1109/TSG.2018.2815543
http://dx.doi.org/10.1109/TIE.2011.2160511
http://dx.doi.org/10.1109/TIA.2016.2521598
http://dx.doi.org/10.1109/TIA.2010.2046280
http://dx.doi.org/10.1109/TIA.2017.2669328
http://dx.doi.org/10.1109/TPWRD.2017.2758320
http://dx.doi.org/10.1109/TPWRD.2010.2044812
http://dx.doi.org/10.1109/TPWRD.2012.2206408
http://dx.doi.org/10.1109/TPWRD.2015.2394359
http://dx.doi.org/10.1109/TPWRS.2009.2036711
http://dx.doi.org/10.1109/TPWRD.2016.2585740


Energies 2019, 12, 4378 15 of 15

21. Naveros, F.; Luque, N.R.; Garrido, J.A.; Carrillo, R.R.; Anguita, M.; Ros, E. A spiking neural simulator
integrating event-driven and time-driven computation schemes using parallel CPU-GPU co-processing:
A case study. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1567–1574. [CrossRef] [PubMed]

22. Matsubara, T.; Torikai, H. An asynchronous recurrent network of cellular automaton-based neurons and its
reproduction of spiking neural network activities. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 836–852.
[CrossRef]

23. Gao, S.; Li, X.; Ma, X.; Hu, H.; He, Z.; Yang, J. Measurement-Based compartmental modeling of harmonic
sources in traction power-supply system. IEEE Trans. Power Deliv. 2017, 32, 900–909. [CrossRef]

24. Ranade, S. Task force on harmonic modeling and simulation. Modeling and simulation of the propagation of
harmonics in electric power networks. I. Concepts, models, and simulation techniques. IEEE Trans. Power
Deliv. 1996, 11, 452–465.

25. Ajaei, F.B.; Afsharnia, S.; Kahrobaeian, A.; Farhangi, S. A Fast and effective control scheme for the dynamic
voltage restorer. IEEE Trans. Power Deliv. 2011, 26, 2398–2406. [CrossRef]

26. Salles, D.; Jiang, C.; Xu, W.; Freitas, W.; Mazin, H.E. Assessing the collective harmonic impact of modern
residential loads—Part I: Methodology. IEEE Trans. Power Deliv. 2012, 27, 1937–1946. [CrossRef]

27. Papaioannou, I.T.; Alexiadis, M.C.; Demoulias, C.S.; Labridis, D.P.; Dokopoulos, P.S. Modeling and field
measurements of photovoltaic units connected to LV grid. Study of penetration scenarios. IEEE Trans. Power
Deliv. 2011, 26, 979–987. [CrossRef]

28. Yang, P.; Tsai, J.; Chou, J. PCA-Based fast search method using PCA-LBG-based VQ codebook for codebook
search. IEEE Access 2016, 4, 1332–1344. [CrossRef]
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