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Abstract: The dynamic impedances of foundation play an important role in the dynamic behavior 
and structural stability of offshore wind turbines (OWT). Though the behaviors of bucket 
foundation, which are considered as a relatively innovative foundation type under static loading, 
have been extensively investigated, the corresponding dynamic performances were neglected in 
previous research. This study focuses on the dynamic impedances of wide-shallow bucket 
foundations (WSBF) under the horizontal and rocking loads. Firstly, the numerical model was 
established to obtain the dynamic impedances of WSBF using the coupled finite-infinite element 
technique (FE-IFE). The crucial parameters affecting the dynamic responses of WSBF are 
investigated. It is shown that the skirt length mainly affects the rocking dynamic impedance and 
the diameter significantly affects the horizontal and coupling impedances, especially when the 
diameter is larger than 34 m. The overall dynamic responses of WSBF are profoundly affected by 
the relative soil thickness and the multi-layer soil stiffness. Additionally, dynamic impedances of 
WSBF are insensitive to the homogeneous soil stiffness. Lastly, the safety threshold curve was 
calculated according to the OWT, which can provide essential reference for the design of the OWT 
supported by large scale WSBF. 

Keywords: offshore wind turbine; dynamic impedance; wide-shallow bucket foundation; coupled 
finite-infinite element technique; numerical modelling  

 

1. Introduction 

Currently, bucket foundation has been put forward as an innovative foundation type which is 
applicable to softer soil conditions due to its cost-effectiveness and high-reliability [1,2] compared 
with the other various foundation types [3–5], including monopile [6,7], concrete pile-supported 
square footing [8], gravity, tripod [9], jacket [9,10], and floating [11], which were designed for 
different environmental and geological conditions. The bucket foundation normally consists of skirt 
and lid, which constitutes an upside-down bucket [12] and may be used as an offshore wind turbine 
foundation in appropriate soil conditions [13,14]. The most outstanding advantages of this 
foundation type are high lateral and moment resistance, which are provided by the extended 
cylindrical skirt and compartments [15]. In the installation process, the bucket foundation is firstly 
penetrated into the seabed by its self-weight and then by the suction or pumping devices without the 
installation equipment as lifting and heavy punch machines [16]. Hence, the application of this novel 
foundation will greatly save high installation costs as well as construction time. According to the 
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slenderness ratio (depth to diameter ratio), the bucket foundations can be divided into two types, 
namely, narrow deep and wide shallow [15]. In project engineering, the wide-shallow bucket 
foundations (WSBF) have been applied in offshore wind farms (OWF) including Frederikshavn, 
Denmark, 2002 [17], Qidong, China, 2010 [18], and Xiangshui, China, 2017 [19], respectively, as 
shown in Figure 1. 

  
(a) (b) 

Figure 1. The prototypes of wide-shallow bucket foundation: (a) Frederikshavn, Denmark; (b) 
Xiangshui, China. 

It is widely recognized that the design of the OWT requires accurate evaluations of the natural 
frequency and dynamic response, which are dependent on the dynamic impedance of the 
foundation and soil-foundation interaction. In previous studies, several analytical and numerical 
methods have been applied to evaluate the dynamic responses of an embedded foundation for OWT 
structures within the elastic half-space under idealized conditions. The dynamic impedances of end 
bearing piles, floating piles and suction caissons shown in Figure 2 were studied. Wolf et al. [20,21] 
provided an analytical and semi-analytical solution for foundation vibration including end bearing 
pile and suction foundation employing cone model based on strength of materials (Figure 2a). A 
new polynomial representation of impedance function based on Winkler model for equivalent-linear 
characterization of the pile is proposed by Torabi et al. [22], especially in the rock-socketed piles. 
Harte [23] considered the foundation of a wind turbine as a rigid gravity based foundation which is 
connected to the surrounding soil to obtain complex impedance using cone model, and investigated 
the influences of the interaction between the foundation and the soil on the dynamic response. Latini 
et al. [24–26] studied the dynamic performances of floating piles and suction caissons (Figure 2b and 
Figure 2c) by a three-dimensional finite element model in frequency domain, exploring groups of 
dimensionless parameters related to the soil and foundation and their effects on the dynamic 
response of foundation considered. Gerolymos et al. [27,28] developed Winkler model to calculate 
the static and dynamic responses of caisson foundations (Figure 2c) accounting for nonlinear 
interface through spring and dashpot, and this nonlinear Winkler-spring method was implemented 
in a new finite difference time-domain code, NL-CAISSON [29]. Damgaard et al. [30,31] inserted a 
standard lumped-parameter model into the aeroelastic code FLEX5 to consider the dynamic 
interaction between the foundations and subsoil, which could be used to calculate the dynamic 
vibration response of OWT. Andersen et al. [32] established the lumped-parameter models as well as 
a coupled finite-element/boundary element scheme to analyze the bucket foundation of OWT in 
both time and frequency domains. An improved lumped-parameter model of foundation based on 
complex Chebyshev polynomials was proposed by Wang Hai et al. [33], which can reduce the 
unexpected wiggling in the foundation model, improve the accuracy, and needs fewer parameters. 
Liingaard [34,35] presented a three-dimensional coupled boundary element/finite element model 
and lumped-parameter models to indicate the frequency dependent impedance of the rigid and 
flexible bucket foundation (Figure 2c) for the OWT. He et al. [36,37] modeled the bucket foundation 
as a rigid cylindrical shell embedded in a homogeneous sandy seabed to obtain the vertical and 
lateral dynamic impedance of the bucket foundation by the Green’s function and boundary 
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conditions (Figure 2c). Doherty et al. [38] applied the scaled boundary finite element method to 
obtain the stiffness coefficients, which can represent the dynamic behavior of a bucket foundation in 
the elastic regime. Ba et al. [39] proposed an indirect boundary element method to obtain the 
dynamic impedance of a surface rigid strip footing resting on the multi-layered transversely 
isotropic saturated half-space. Jalbi et al. [10] made use of extensive finite element analysis by 
PLAXIS 3D to derive closed form expressions for dynamic lateral, rotational, and cross-coupling 
impedance of rigid skirt caissons. Combined with the characteristics of the suction caissons, 
dynamic impedance functions were proposed in the previous pieces of literature based on the 
Winkler model, lumped-parameter model, and the evaluation accuracy of those functions was 
improved by using different finite element methods. 

 
Figure 2. Illustration of four different foundation types: (a) End pile; (b) floating piles; (c) suction 
caisson; (d) wide-shallow bucket foundations (WSBF). Note: Hs denotes thickness of soil layer, Hp 
denotes skirt length of pile and suction caisson, Hb denotes skirt length of WSBF. 

As described in Figure 2, the geometry of WSBF is different from the previous pile and 
narrow-depth bucket foundations because of the large diameter and a relatively small length skirt. 
Moreover, the WSBF is top bearing capacity, and the rotation is the main failure model, which are 
completely different from traditional suction caissons [40]. Furthermore, the current codes of 
practice, including DNV(Det Norske Veritas) [41] and IEC(International Electrotechnical Commission) 
[42], for the design of OWT structures have no clear calculation method on the dynamic impedance 
and stiffness characteristic of the WSBF. The main reason may be that the WSBF has not been widely 
used for OWF around the world and lacks comprehensive investigation or long-term monitoring. 
Therefore, it is urgent to explore the dynamic impedance of the WSBF to understand the interaction 
mechanism between the foundation and soil. 

Different from previous research, this study is to carry out the dynamic impedance 
characteristics of the WSBF for OWT through the coupled finite-infinite element technique (FE-IFE). 
The frame of this paper is organized as follows: Firstly, the methodology concerning the dynamic 
impedance, the coupled FE-IFE technique, and its implementation in the numerical model are 
introduced in Section 2. Secondly, the dynamic impedances of WSBF are obtained by performing 
steady state dynamic response analysis subjected to harmonic excitation in the frequency domain. 
The influencing parameters on the dynamic impedances are discussed based on a numerical 
example in Section 3. Section 4 discusses the influences of various dimensionless parameters on 
structural dynamic impedances. Further, taking one offshore wind farm as an example, the safety 
threshold envelope of the WSBF geometry dimension is calculated according to the FE-IFE 
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technique in Section 5. Lastly, the conclusions of the whole work and the outlook for further studies 
are both illustrated in Section 6. 

2. Methodologies 

2.1. Dynamic Impedance of the Wide-Shallow Bucket Foundations (WSBF) 

The motion of the WSBF can be simplified and described as a rigid foundation under the 
assumption that the structure is so much stiffer than the surrounding soil that the deformation of 
WSBF can be negligible. Therefore, the in-plane degrees of freedom for a rigid WSBF including 
displacement, and rotation, and the corresponding force and moment are illustrated in Figure 3. If 
the dynamic impedances of the WSBF are evaluated in the frequency domain, the dynamic behavior 
of the foundation can be described by the dynamic-impedance matrix as follows [32]: 

( ) ( ) ( )ω ω ω=F K Z  (1) 

where, ω  is the harmonic frequency, F , K , Z are force or moment vectors in complex 
frequency domain, dynamic impedance matrix, and vector of displacements or rotations in complex 
frequency domain, respectively. 

According to Figure 3, the head of the WSBF subjected to lateral unit dynamic excitation H and 
M, combined with Equation (1), the component form of WSBF can be written as [32]: 

2 * *

3 * *

//
//

s hh hr

s rh rr

u RH G R K K
RM G R K K θ

     
=     

      
(2) 

where, Gs is the shear modulus of the soil, u and θ are the displacement and rotation angle of the 
WBSF, respectively, and R is the radius of the WSBF. hhK

∗ , rrK
∗  and rhK

∗  ( hrK
∗ ) represent the 

dynamic impedance in horizontal, rocking, and coupling, respectively. The coupling terms, rhK
∗ and 

hrK
∗ assumed to be equal, because a symmetric stiffness is expected.  

 

Figure 3. Schematic of the WSBF under horizontal force and moment action: (a) Force and moment 
(b) displacement and rotation. 

2.2. Coupling Finite-Infinite Element (FE-IFE) Technique 

When the numerical model of WSBF is embedded in a bounded domain, the phenomenon of 
spurious reflection wave induced by the truncated boundary deserves more attention, especially 
under the high frequency excitation conditions. To solve this problem, a new simulation method 
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called the FM-IFEM technique [43–45] was introduced to calculate the dynamic behaviors of WSBF 
in this study. 

The two-dimensional WSBF model embedded in an elastic half-space can be described in Figure 
4. In the numerical model, the near field and far field regions will be analyzed through the finite 
element and infinite element methods, respectively. 

 
Figure 4. Two-dimensional coupling numerical model of WSBF in the finite and infinite element 
domains. 

Considering the external load ( ) ( ), exp ix y tωF , the displacement field of the system can be 

expressed as follows [44]: 

( ) ( ) ( )ˆ, , , exp ix y t x y tωu = u
 (3) 

where, ( )ˆ ,x yu  denotes the displacement field of the two-dimension field and t is the time. 

Based on the finite element procedure, the displacement ( )ˆ ,x yu  of each element in the near 

field domain can be interpolated as follows [43]: 

( )
1

ˆ ,
n

i i
i

x y N
=

= u u
 

(4) 

where, iN is the displacement shape function, i is the node order and n is the number of nodes for 
each element. The coordinates x  and y within the element can be expressed as [43]: 

1

n

i i
i

x M x
=

= 
, 1

n

i i
i

y M y
=

= 
  

(5) 

where, iM is the shape function for both displacement and the coordinate for the node i. Substituting 
the displacement field in Equation (3) into the equation of virtual work and performing the Galerkin 
weighted residual procedure, the equation of motion in frequency domain can be written as [43]:  

[ ] [ ]( ){ } { }2i [C]K M D Fω ω+ − =
 (6) 

where { }F and { }D denote the vector of external load and the vector of nodal displacement, 

respectively, and i is the imaginary unit. [ ]K , [ ]M and [ ]C are the global stiffness, mass, and 

damping matrices of the system, respectively.  
The concept of infinite elements was first proposed by Ungless and Bettess. Since the concept of 

infinite elements is essentially the same as the finite elements except for their shape functions, 
Equation (6) is applicable to both finite and infinite elements. In the infinite elements method, to 
ensure the accuracy of the result needs the shape function, which is known as the ‘decay function’ in 
the static problems and ‘wave propagation function’ in the dynamic problems. According to the 
propagation direction in the infinite region, there are three types of infinite elements, which are used 
to simulate wave propagation along with the horizontal, vertical and both horizontal and vertical 
directions.  
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The first kind of infinite element (IE1) is to simulate the wave propagation along horizontal 
direction. The horizontal shape function is built based on the dynamic solution of homogeneous 
elastic half-space and can be written as [44]: 

,
( )

x i xu u iN F ξ ϕ=  (7) 

y,
( )

i yu u iN F ξ ϕ=  (8) 

in which: 

1 0
1

1 0

( ( ))( )
( )xu

J xF H
J x
κ ξξ

κ
+= =  (9) 

0 0
2

0 0

( ( ))( )
( )yu

J xF H
J x
κ ξξ

κ
+= =  (10) 

where, 0( )J x  and 1 1( )J x  represent the Bessel function of the first kind of zero and the first 

order, respectively. κ is wavenumber, 0x  denotes the horizontal distance between the origin of 

the coordinate system and the starting point of the IE1. 1ϕ , 2ϕ and 3ϕ  are the standard shape 
functions in the η  direction and expressed as following [44]: 

1
1 ( 1)
2

ϕ η η= −  (11) 

2
2 1ϕ η= −  (12) 

3
1 ( 1)
2

ϕ η η= +  (13) 

The second kind of infinite element (IE2) is to simulate the wave propagation along vertical 
direction. The shape function can be expressed as following [44]: 

, y,x i iu u iN N e χηϕ−= =  (14) 

where,
1 1

( / ) i( / )P PVχ ε λ ω= + ，in which 
1P

λ  and 
1P
V  denote the wavelength and velocity of the 

first P wave, respectively. ε is an experimental coefficient. 1ϕ , 2ϕ  and 3ϕ  are the standard shape 
functions in the ξ  direction and defined as following [44]: 

1
1 ( 1)
2

ϕ ξ ξ= −  (15) 

2
2 1ϕ ξ= −  (16) 

3
1 ( 1)
2

ϕ ξ ξ= +  (17) 

The third kind of infinite element (IE3) is to simulate the wave propagation along both vertical 
and horizontal directions. Combination with the above two infinite elements, the displacements of 
the third kind can be defined as [44]: 

( ) 0

1

( )
1, , y y

x xu x y t e H uχ− −=  (18) 

( ) 0

1

( )
2, , y y

y yu x y t e H uχ− −=  (19) 
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where, 0y  is the vertical distance between the origin of coordinate and starting point of IE3, 
1x
u and  

1y
u  are the displacements of node 1 for IE3. For more detailed FE-IFE technique refer to reference 

[44]. 

2.3. Steady-state Dynamic Analysis 

According to the theory of dynamic impedance, the 3D finite-infinite element model was 
applied to analyze the dynamic impedance of WSBF, which is considered as a rigid body, embedded 
in a soil layer on bedrock. The center of the foundation head is subjected to the harmonic load or 
harmonic bending moment i

0
tP P e ω= ,which generates harmonic oscillations of the form 

i( )
0

tU U e ω ϕ−= . ω represents the cyclic excitation frequency and ϕ  describes the phase difference 
between horizontal vibration of WSBF and excitation force.  

In the calculation of steady state linear dynamic analysis, the dynamic impedance of the WSBF 
is defined as the ratio between the unit harmonic force acting on the foundation and its vibration 
response amplitude, which is a frequency dependent complex-valued and its equation is shown as 
following [37,38]:  

i
* 2 20 0 0

i( )
0 0 0

(t)( ) i cos i sin
(t)

t

t

P e P PPK K M C m
U U e U U

ω

ω ϕω ω ω ϕ ω ϕ−= − + = = = − +  (20) 

The investigated excitation frequency ranges from 0 Hz to 10 Hz, i.e., dimensionless excitation 
frequency ranges from 0 to 5, as the external loads acting on the offshore wind turbine belong to 
lower frequency during the operating condition. The stiffness range considered in this paper is from 

1e8 to 1e11 while the value of inertial term is 1 × 107, so the value of 
2mω  is relatively small 

comparing with stiffness. It is reasonable to neglect its influence on the dynamic stiffness 
coefficients. Then the initial dynamic impedance of WSBF is expressed as follows [37,38]: 

* 0 0

0 0

( ) cos sinP PK i
U U

ω ϕ ϕ= +
 

(21) 

where, 0P  and 0U are the magnitude of the excitation response and displacement of foundation, 
respectively. 

The real part of * ( )K ω represents the dynamic stiffness of WSBF and the imaginary part 
denotes the dynamic damping of the WSBF shown as follows [37,38]. 

* 0

0

Re( ( )) cosPK K
U

ω ϕ= =
 

(22) 

* 0

0

Im( ( )) sinPC K
U

ω ϕ
ω

= =
 

(23) 

where, the K and C are the dynamic stiffness and dynamic damping of WSBF, respectively.  

3. Numerical Examples 

3.1. Numerical Model 

Modeling considerations—to better understand the dynamic impedances of the WSBF, a series of 
three-dimensional FE-IFE models were constructed to analyze the dynamic responses. As 
mentioned in references [26], three hypotheses should be clarified in the numerical model: 1) The 
rigid WSBF, 2) constant damping ratio of soil, 3) perfect bonding at the soil-foundation interface 
during the analysis. 
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Due to the symmetry of the model, only half of the foundation and surrounding soil was taken 
into consideration in the numerical models as shown in Figure 5. Two different modelling 
approaches were used: 1) Shell element, where the WSBF was modeled by shell elements (S4); and 
2) equivalent solid element, where the soil was discretized by solid elements to match the bending 
stiffness of the WSBF and the inner soil. The far field soil was modeled using infinite elements 
(CIN3D8) in order to avoid the spurious reflections, while the near field soil domain was 
discretized by 8-node 3D continuum elements (C3D8R). The foundation surface and surrounding 
soil were bonded together to satisfy displacement compatibility to avoid the nonlinear interface. 
Next, the steady-state dynamics response of the models subjected to harmonic excitation in the 
frequency domain was calculated.  

 
Figure 5. Coupling model combined finite element with an infinite element domain. 

Element sizes—to accurately simulate the wave propagation in the elastic soil, the mesh size 
was set small enough to capture the stress waves even at high frequency range. Hence, the 
maximum of the size of the elements size should meet the following requirement [46]: 

max
1 1 2~
8 5

Rl
a
π ≤  

   
(24) 

where, sa R cω= is the dimensionless frequency, ω , R and sc are respectively the frequency, the 
foundation radius, and the shear wave velocity of the soil.  

Moreover, in order to minimize the error induced by numerical shock and coupling 
boundaries, the requirement of the near field domain modeled by the finite element can be 
expressed as:  

2 2 2
1 2r

m R vl
a v
π −≥

−  
(25) 

where, rl represents the minimum reflection length of finite element. m  is the cycle number of 
excitations. v  is Poisson's ratio of the surrounding soil.  

3.2. FE-IFE Model 

Based on practical engineering, the typical WSBF was selected to illustrate the dynamic 
response of the foundation. The FE-IFE model of WSBF is shown in Figure 6. In the present 
analysis, the material properties of the soil and the foundation were identified by the subscripts s 
and b. The WSBF consists of steel with diameter D = 30 m, skirt length Hb = 6 m, Young’s modulus 
Eb = 210 GPa, and Poisson's ratio νb = 0.3. The foundation head thickness tlid and foundation skirt 
thickness tskirt are 10 mm and 20 mm, respectively. The thickness of the soil layer is Hs = 60 m, with 
the density of 1800 kg/m3 and Poisson's ratio of 0.38. The soil surrounding foundation has viscous 
damping of 5% and modulus of elasticity Es = 6 MPa. According to the section 3.1, the near soil filed 
domain (Lfin = 10 D) was described by the hexahedral elements and infinite elements (CIN3D8) are 
placed at the far filed soil to avoid the spurious reflection.  
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Figure 6. The finite-infinite element (FE-IFE) model of WSBF. 

By applying a static horizontal unit displacement on the top of the WSBF, the static stiffness 

terms 0
hhK  and 0

hrK can be obtained. Similarly, the static stiffness terms 0
rrK  and 

0
hrK can be 

obtained by imposing a unit rotation on the top of the WSBF with zero horizontal displacement. 
0
hhK  and 

0
hrK  represent the static horizontal stiffness and static coupling stiffness, respectively. 

0
rrK  represents the static rocking stiffness. 

The steady-state linear response of the model is performed to obtain the dynamic impedances (
*( )K ω ) of the WSBF using the frequency-domain method. At the same time the first 

eigenfrequency f1 of foundation was calculated as 4.73 Hz. The dynamic impedance variation of 
WSBF with the change of excitation frequency is displayed in Figure 7. A dimensionless frequency 
related to the eigenfrequency of WSBF is introduced to analyze the dynamic response of foundation 
conveniently. 

0 1/ 2fα ω=
 

(26) 

where, f1 is first eigenfrequency of foundation.  
In Figure 7a,c,e, the ordinates are the normalized coefficients of the three types of dynamic 

stiffness ( hhK , hrK , rrK ) divided by the corresponding static stiffness (
0
hhK , 

0
hrK ,

0
rrK ), which 

represent the dynamic stiffness amplitude factor in horizontal, coupling, and rocking directions. In 

Figure 7b,d,f, the ordinate state normalized magnitudes of the dynamic damping divided ( hhC ,

hrC , rrC ) by the dynamic stiffness, which represents the dynamic damping ratio of the 
soil-foundation system.  

As described in Figure 7a,c,e, the three kinds of normalized magnitudes of dynamic stiffness 
including horizontal stiffness (Khh), rocking stiffness (Krr), and coupling stiffness (Khr) show an 
obvious decreasing trend before the first eigenfrequency because of the constant static stiffness 
value. Only one drop in stiffness line can be found at the first eigenfrequency of bucket foundation, 
along with the minimum value of the dynamic stiffness, due to the resonance effect. Subsequently, 
the horizontal stiffness and coupling stiffness coefficients are characterized by an increasing slope 
linearly with excitation frequency. In general, the overall dynamic stiffness coefficients first reach 
minimum values and then increase linearly, when the dimensionless frequency is between 3.0 and 
3.5 (3.0 < α0 < 3.5). Within the higher frequency range (larger than α0 > 4), the dynamic stiffness 
coefficient increasing values exceed the static stiffness. It can be explained that the dynamic stiffness 
still keeps sensitive in the change of excitation frequency; on the contrary, these frequencies which 
are gradually far away from the first eigenfrequency of foundation also make the structural 
dynamic responses weaker. Differently, the rocking stiffness coefficient firstly rises and then 
decreases linearly with the increase of the excitation frequency after the first eigenfrequency.  
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The variation trends of dynamic damping with the change of excitation frequency are 
described in Figure 7b,d,f. It appears that the overall damping coefficients express an increasing 
trend and reach the peak value at the first eigenfrequency. After the first natural frequency of 
WSBF, all the damping firstly decreases and then rises exponentially with the increase of excitation 
frequency.  

 
(a)                                    (b) 

 
(c)                                    (d) 

 
(e)                                    (f) 

Figure 7. Variation of three dynamic impedance coefficients with respect to the dimensionless 
frequency: (a) Horizontal stiffness coefficient; (b) horizontal damping coefficient; (c) coupling 
stiffness coefficient; (d) coupling damping coefficient; (e) rocking stiffness coefficient; (f) rocking 
damping coefficient. 

4. Parametric Study  

The dynamic responses of the foundation are influenced by many factors. In order to 
determine the dominant sensitive factors on the dynamic responses of WSBF, the key parameters 
such as the slenderness ratio, the skirt thickness, the soil layer thickness, the stiffness of 
homogeneous soil and multi-layer soil were explored. A series of numerical models with the above 
crucial parameters related to foundation geometry and soil were constructed. The cases and the 
corresponding parameters are listed in Table 1. 
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The shear modulus varies with the depth below ground surface in the practical engineering. 
Gibson model was adopted to simulate the actual stiffness variation of soil to evaluate accurately 
the dynamic impedances of WSBF. In that model, it is an assumption that the elastic modulus of the 
soil layer is taken to have a power law variation with the depth according to the following 
expression [47]: 

0(z) ( )bzG G
R

= +
 

(27) 

where, z is the depth from the ground surface, 0G  represents the reference shear modulus at a 
depth equal to the radius of the foundation (R) and b is a dimensionless inhomogeneity factor that 
varies between 0 and 1. 

In this paper, three different soil profiles are considered. The profiles with different elastic 
modulus distribution are indicated in Figure 8. Profile A shows a fixed elastic modulus, i.e., 
homogeneous soil layer, and the parameter b is set as zero. The value of the parameter b of Profile B 
is 1, which represents the normally consolidated clay. Profile C depicts the normally consolidated 
sand where the parameter b is set as 0.5. The viscous damping coefficient of the soil layer is 5% and 
Poisson's ratio is 0.38 for all the cases in Table 1. These three soil profiles may sufficiently represent 
the characteristics of a wide range of real soil profiles. 

 

Figure 8. Soil profiles considered for dynamic impedances of WSBF. 

Table 1. Parameters and cases selected in the parametric analysis. 

cases D(m) Hb(m) D/Hb Hs(m) Hs/D t(mm) t/D 
Soil 

profile Es (MPa) 

1 30 3 10 60 2 20 / A 6 
2 30 6 5 60 2 20 / A 6 
3 30 12 2.5 60 2 20 0.0007 A 6 
4 30 20 1.5 60 2 20 / A 6 
5 35 12 3.0 60 1.7 20 / A 6 
6 40 12 3.3 60 1.5 20 / A 6 
7 45 12 3.75 60 1.3 20 / A 6 
8 30 6 5 30 1 20 / A 6 
9 30 12 2.5 30 1 20 / A 6 

10 45 12 3.75 30 0.7 20 / A 6 
11 30 12 2.5 60 2 30 0.0010 A 6 
12 30 12 2.5 60 2 40 0.0013 A 6 
13 30 12 2.5 60 2 50 0.0016 A 6 
14 30 12 2.5 60 2 20 / A 12 
15 30 12 2.5 60 2 20 / A 18 
16 30 12 2.5 60 2 20 / A 24 
17 30 12 2.5 60 2 20 / B b = 1 
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cases D(m) Hb(m) D/Hb Hs(m) Hs/D t(mm) t/D 
Soil 

profile 
Es (MPa) 

18 40 12 3.5 60 2 20 / B b = 1 
19 45 12 3.8 60 2 20 / B b = 1 
20 30 12 2.5 60 2 20 / C b = 0.5 
21 40 12 3.5 60 2 20 / C b = 0.5 
22 45 12 3.8 60 2 20 / C b = 0.5 

Note: D denotes diameter of WSBF, Hb denotes skirt length, Hs denotes the thickness of soil profile, t 
is skirt thickness, D/Hb is slenderness ratio, Hs/D is relative soil layer thickness, t/D is relative skirt 
thickness, Es is soil modulus of elasticity. 

According to the established WSBF and integrated transportation requirements, the diameter 
of foundation selected in the numerical analysis varies from 30 m to 45 m (cases 3,5–7), and the skirt 
length from 3 m to 20 m (cases 1–4) based on the water depth. The thickness of the shirt differs from 
20 mm to 50 mm due to construction procedure restriction (cases 3,11–13). The elastic modulus of 
soil property belonging to silt and silty clay varies from 6 MPa to 24 MPa (cases 3,14–16). 

4.1. Influence of Slenderness Ratio 

The trends of dynamic stiffness and damping coefficients with dimensionless excitation 
frequency under different slenderness ratio by varying the skirt length are depicted in Figure 9 
(cases 1–4, listed in Table 1). It appears that the overall dynamic stiffness and damping coefficients 
vary with the excitation frequency. After the first eigenfrequency, they are affected by the 
slenderness ratio because of the different skirt length. While, before the first eigenfrequency, they 
have the same trend. The dynamic stiffness coefficients variation with excitation frequency are 
affected slightly by the slenderness ratio when the frequency exceeds the first eigenfrequency. It can 
be seen that the horizontal dynamic stiffness coefficients grow sharply in the higher frequency 
range (larger than α0 > 4) with the decrease of the slenderness ratio. The coupling and rocking 
stiffness coefficients seem to be profoundly affected by the slenderness ratio. The coupling stiffness 
coefficient gradually reaches peak against the slenderness ratio and decreases subsequently with 
the increase of excitation frequency. For the rocking stiffness coefficient, it is observed that the 
increase of slenderness ratio would result in lower decrease slope. It is clear from the variation of 
dynamic stiffness coefficients that with more rotation and less horizontal control the dynamic 
responses, along with the skirt length, increase.  

The damping coefficients under the influence of slenderness ratio caused by varying the skirt 
length keeps consistent with the dynamic stiffness, which appears insensitive to the slenderness 
ratio at a lower excitation frequency range. Regarding the higher frequency range (larger than α0 > 
3.2), distinctively different behavior of coupling damping coefficient is observed for slenderness 
ratio lower than 4, where the increase in the damping became less marked as the slenderness ratio 
decreased and reached the peak and trough as the frequency increased. For the rocking damping 
coefficient, the increasing pattern of damping ratio has a higher slope with the increase of the 
slenderness ratio. It is demonstrated that the coupling and rocking part is more sensitive to 
slenderness ratio, and the rotation gradually plays a leading role with the skirt length increased.  
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(a)                                    (b) 

 
(c)                                    (d) 

 
(e)                                    (f) 

Figure 9. Variation of three dynamic impedance coefficients with respect to the dimensionless 
frequency under effect of the slenderness ratio by varying the skirt length: (a) Horizontal stiffness 
coefficient; (b) horizontal damping coefficient; (c) coupling stiffness coefficient; (d) coupling 
damping coefficient; (e) rocking stiffness coefficient; (f) rocking damping coefficient. 

Since both the diameter and skirt length has an influence on the slenderness ratio, the influence 
of each variable factor on the dynamic impedance was investigated separately. The trends of 
dynamic impedance with dimensionless frequency with the constant diameter and the changing 
skirt length are shown in Figure 9. Further, the effect of slenderness ratio on the dynamic impedance 
coefficients by varying the diameter of WSBF is displayed in Figure 10 (case 3,5–7, listed in Table 1). 
The trend of horizontal dynamic stiffness coefficient is affected significantly by the distinction of the 
diameter, while the coupling and rocking stiffness coefficients are hardly sensitive to the difference 
of diameter. As described in Figure 10a, the slope of the horizontal dynamic stiffness becomes more 
distinct as the slenderness ratio increases. It can be explained that the horizontal vibration may be 
mainly transmitted to the surrounding soil at the relatively shallow area, which makes the 
horizontal vibration have a more obvious influence on the dynamic response of the foundation. 

The influence of diameter on the damping coefficients is consistent with the stiffness. As can be 
seen in Figure 10b, for the higher frequency range (larger than α0 > 4), a different phenomenon is 
observed when D/Hb = 3.8, where the damping coefficient reached the peak and then decreased 
against the frequency. It is detected that the increase in the coupling damping coefficient becomes 
more marked as the slenderness ratio increases. These results show that the effect of the horizontal 
vibration transmitted to the strength of surrounding soil with the increasing of the diameter with 
respect to the coupling component [26]. 
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(a)                                    (b) 

 
(c)                                    (d) 

 
(e)                                    (f) 

Figure 10. Variation of three dynamic impedance coefficients with respect to the dimensionless 
frequency under different diameter of WSBF: (a) Horizontal stiffness coefficient; (b) horizontal 
damping coefficient; (c) coupling stiffness coefficient; (d) coupling damping coefficient; (e) rocking 
stiffness coefficient; (f) rocking damping coefficient. 

4.2. Influence of the Skirt Thickness  

Figure 11 depicts the influence of the variation of the skirt thickness on the dynamic response 
of the WSBF (case 3,11–13, listed in Table 1). Before the first eigenfrequency, the overall dynamic 
impedance coefficients were hardly affected by the difference of skirt thickness. The trend of the 
horizontal dynamic stiffness coefficients described in Figure 11a appears that the increase of the 
stiffness coefficients becomes more distinct as the thickness increases when the frequency is larger 
than 4.5, but it is insensitive to the skirt thickness which is larger than 30 mm, where the solid black 
line indicates the skirt thickness for t = 50 mm, and the red dash line and blue dash line stand for 
the skirt thickness for t = 40 mm and t = 30 mm, respectively. The coupling stiffness coefficients 
depicted in Figure 11c are characterized by a higher slope as the thickness increases when the 
dimensionless frequency ranges from 3 to 5. Figure 11e plots the trends of the rocking stiffness, 
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which shows that the first peak after the eigenfrequency becomes more marked as the thickness 
increases.  

In regards to the dynamic damping coefficients, the thickness has significant influence on the 
horizontal and rocking at higher frequency range (larger than α0 > 4.5). It is an indication that the 
increase of the thickness results in the lower horizontal damping coefficient and the higher rocking 
damping.  

 
(a)                                    (b) 

 
(c)                                    (d) 

 
(e)                                    (f) 

Figure 11. Variation of three dynamic impedance coefficients with respect to the dimensionless 
frequency under different skirt thickness: (a) Horizontal stiffness coefficient; (b) horizontal damping 
coefficient; (c) coupling stiffness coefficient; (d) coupling damping coefficient; (e) rocking stiffness 
coefficient; (f) rocking damping coefficient. 

4.3. Influence of the Soil Thickness 
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To discuss the influence of soil layer thickness on the dynamic impedance of WSBF, it is 
investigated by keeping other dimensionless parameters constant and only changing the soil layer 
thickness, meanwhile three typical buckets with different relative slenderness ratios are selected. 
The variation of dynamic impedance coefficients with the frequency are described in Figure 12 
(cases 2,3,7–10, listed in Table 1).  

The dotted lines in Figure 12 indicate the dynamic impedances of foundation with soil 
thickness 30 m, and the solid lines represent the responses with 60 m soil layer. It can be seen from 
the comparison between the solid lines and the dotted lines, the soil thickness has a significant 
influence on the dynamic impedance. For the same slenderness ratio, the horizontal stiffness 
coefficients grow rapidly in the frequency range as the relative thickness decreases. The possible 
reason is that the greater the thickness of the soil layer is, the longer the vibration response 
transmits, and therefore the decay of the dynamic impedance is less noticeable. There are the same 
influences on the coupling and rocking coefficients. For rocking coefficients, the reduction slope 
becomes more marked as the relative thickness decreases after the first eigenfrequency. The 
coupling stiffness coefficients gradually display peaks against the thickness and decreases 
subsequently with the increase of excitation frequency.  

Regarding the dynamic damping coefficients, the horizontal damping coefficient is less 
affected by the soil layer but mainly governed by the slenderness ratio. It can be seen from Figure 
12f that the peaks of the rocking damping coefficients become more obvious as the relative soil 
thickness decreases. Meanwhile, the increasing pattern of the rocking damping coefficients after the 
first eigenfrequency is characterized by a higher slope against thickness. This behavior can be 
explained by the fact that more energy is dissipated because of the increase of the propagation 
distance. In conclusion, the results show that the relative soil layer thickness is the dominant factor 
affecting the dynamic impedances of the WSBF. 

 
(a)                                    (b) 

 
(c)                                    (d) 
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(e)                                    (f) 

Figure 12. Variation of three dynamic impedance coefficients with respect to the dimensionless 
frequency under the effect of the relative thickness of the soil layer: (a) Horizontal stiffness 
coefficient; (b) horizontal damping coefficient; (c) coupling stiffness coefficient; (d) coupling 
damping coefficient; (e) rocking stiffness coefficient; (f) rocking damping coefficient. 

4.4. Influence of the Homogeneous Soil Stiffness 

The trends of dynamic stiffness and damping coefficients with dimensionless excitation 
frequency under different stiffness of the homogeneous soil layer (profile A) with slenderness ratio 
D/Hb = 2.5 are depicted in Figure 13 (cases 4,14–16 listed in Table 1). The elastic modulus of the soil 
layer varies linearly from 6 MPa to 24 MPa. It is clear from Figure 13 that the dynamic impedances of 
the foundation have the same trends. This phenomenon shows that the dynamic impedance 
coefficients of WSBF are insensitive to the soil stiffness of homogeneous soil layers.  

  
(a)                                    (b) 

 
(c)                                    (d) 
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(e)                                    (f) 

Figure 13. Variation of three dynamic impedance coefficients with respect to the dimensionless 
frequency under the effect of the relative homogeneous soil stiffness: (a) Horizontal stiffness 
coefficient; (b) horizontal damping coefficient; (c) coupling stiffness coefficient; (d) coupling 
damping coefficient; (e) rocking stiffness coefficient; (f) rocking damping coefficient. 

4.5. Influence of Multi-Layer Soil Stiffness 

The effect of soil stiffness variation with depth in inhomogeneous soil layers on dynamic 
impedances of WSBF is depicted in Figure 14 (cases 3,17,20, listed in Table 1). The black lines plotted 
in Figure 14 indicate the dynamic impedances of WSBF embedded in profile A, red line and blue 
line represent the profile B and profile C, respectively. A common trend for all the dynamic stiffness 
coefficients was an observed drop before the first eigenfrequency. It can be seen that dropping in 
the rocking stiffness coefficient at the first eigenfrequency became more marked for profile B 
plotted in Figure 14e, while the coupling stiffness coefficient depicted in Figure 14c is characterized 
by a decreased slope for profile B. There is a suggestion that the increase of the soil stiffness in 
contact with the foundation would result in a higher stiffness coefficient. 

For the imaginary part, the horizontal damping coefficient is not sensitive to the soil stiffness. 
The coupling and rocking damping coefficients are consistent with the real parts. For the higher 
frequency range (larger than α0 > 3.5), it shows that the increasing pattern of the damping 
coefficients is characterized by a higher slope for profile B after the first eigenfrequency. A possible 
explanation is that the dynamic impedances of foundation are mainly dependent on the soil 
stiffness where the foundation is embedded and the coupling and rocking coefficients are sensitive 
to the soil stiffness variation with depth. 

 
(a)                                    (b) 
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(c)                                    (d) 

 
(e)                                    (f) 

Figure 14. Variation of three dynamic stiffness coefficients with respect to the dimensionless 
frequency under the effect of the multi-layer soil stiffness: (a) Horizontal stiffness coefficient; (b) 
horizontal damping coefficient; (c) coupling stiffness coefficient; (d) coupling damping coefficient; 
(e) rocking stiffness coefficient; (f) rocking damping coefficient. 

Figure 15 plots the variations of three dynamic impedance coefficients under the effect of the 
multi-layer soil stiffness for WSBF with diameter 45 m (cases 10,19,22, listed in Table 1). The black, 
red, and blue lines depicted in Figure 15 represent, respectively, the dynamic impedances of WSBF 
embedded in profile A, profile B, and profile C. It can be seen that peaks of the rocking stiffness 
coefficients became more marked for profile B plotted in Figure 15e, while the coupling stiffness 
coefficients depicted in Figure 15c are characterized by a decreased slope for profile B after the first 
eigenfrequency. For the imaginary part, the coupling and rocking damping coefficients are sensitive 
to the multi-layer soil stiffness, while the horizontal damping coefficients are not. For the higher 
frequency range (larger than α0 > 3.5), it shows that the increasing pattern of the damping 
coefficients is characterized by a higher slope for profile B after the first eigenfrequency. The reason 
is that the dynamic impedances mainly depend on the multi-layer soil stiffness.  

 
(a)                                    (b) 
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(c)                                    (d) 

 
(e)                                    (f) 

Figure 15. Variation of three dynamic stiffness coefficients with respect to the dimensionless 
frequency under the effect of the multi-layer soil stiffness for WSBF with diameter 45 m: (a) 
Horizontal stiffness coefficient; (b) horizontal damping coefficient; (c) coupling stiffness coefficient; 
(d) coupling damping coefficient; (e) rocking stiffness coefficient; (f) rocking damping coefficient. 

The effect of varying diameter is presented in Figure16 (cases 17–19, listed in Table 1) and 17 
(cases 20–22, listed in Table 1), respectively, for profile B and profile C. The increasing of diameter 
affects marginally the horizontal dynamic impedance. The increasing of coupling stiffness 
coefficients depicted in Figure 16c is characterized by decreased slope as the diameter increases after 
the first eigenfrequency, and the coupling stiffness plotted in Figure 17c has the same trend. The 
rocking stiffness coefficients depicted in Figure 16e suggest that the decrease of the stiffness 
coefficients becomes more noticeable as the diameter increases, while the rocking stiffness plotted in 
Figure 17e is insensitive to the diameter. It indicates that the stiffness variation with depth is a more 
significant parameter than diameter in inhomogeneous soil. 

 
(a)                                    (b) 
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(c)                                    (d) 

 
(e)                                    (f) 

Figure 16. Variation of three dynamic impedance coefficients with respect to the dimensionless 
frequency under different diameter of WSBF embedded in Profile B: (a) Horizontal stiffness 
coefficient; (b) horizontal damping coefficient; (c) coupling stiffness coefficient; (d) coupling 
damping coefficient; (e) rocking stiffness coefficient; (f) rocking damping coefficient. 

 
(a)                                    (b) 

 
(c)                                    (d) 
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(e)                                    (f) 

Figure 17. Variation of three dynamic impedance coefficients with respect to the dimensionless 
frequency under different diameter of WSBF embedded in Profile C: (a) Horizontal stiffness 
coefficient; (b) horizontal damping coefficient; (c) coupling stiffness coefficient; (d) coupling 
damping coefficient; (e) rocking stiffness coefficient; (f) rocking damping coefficient. 

4.6. Multivariate Impact Analysis 

Learning from above, the diameter and skirt length are the dominating factors for the design of 
OWT. The dynamic stiffness variation along with the different diameters and the skirt lengths 
under excitation load are discussed, to further illuminate the influence on the dynamic responses of 
WSBF. Firstly, the dimensionless excitation frequency of 0 was chosen as typical frequency because 
it states static stiffness variation along with the diameter and skirt length. Subsequently, the 
dynamic stiffness coefficients show an obvious decreasing trend before the first eigenfrequency (α0 
< 3.0), so the dimensionless frequency of 2 away from resonance zone and static stiffness was also 
selected. Further, when the dimensionless frequency exceeds 3.5, the dimensionless frequency of 4 
and 5 were both chosen to illustrate that the dynamic stiffness coefficients start to show different 
characteristics. 

The variation of dynamic stiffness under a series of diameter and skirt length at the 
dimensionless excitation frequency 0 and 2 is displayed in Figure 18. The ordinate is normalized 
stiffness, which is foundation stiffness divided by the corresponding maximal stiffness. It can be 
seen from Figure 18a, the diameter is the main factor affecting the normalized horizontal stiffness, 
which increases with the diameter and skirt length. Figure 18b plots the coupling stiffness variation, 
the coupling stiffness decreases firstly and then increases against skirt increased, and the influence 
of the skirt length on the coupling stiffness is reduced as the diameter increases. Similarly, the 
rocking stiffness plotted in Figure 18c is also increased with the increase of the diameter and the 
skirt length, but the skirt length is the dominant factor.  

 
(a)                             (b)                             (c)  

Figure 18. Variation of three dynamic stiffness coefficients at dimensionless excitation frequency of 0 
and 2: (a) Horizontal stiffness; (b) coupling stiffness; (c) rocking stiffness. 
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The variation of dynamic stiffness with a series of diameter and skirt length excited by the 
dimensionless excitation frequency of 2 is depicted in Figure 19. It is shown that the variation trend 
of dynamic stiffness at dimensionless frequency of 2 is similar with the results at excitation 
frequency of 0. It is illustrated that the dynamic stiffness coefficients described in Figure 9 and 
Figure 10 have the same trend before the first eigenfrequency, so the dimensionless excitation 
frequency of 0 and 2 yield the similar normalized stiffness comparing Figure 18 with Figure 19. 

  

(a)                             (b)                             (c)  

Figure 19. Variation of three dynamic stiffness coefficients at dimensionless excitation frequency of 2: 
(a) Horizontal stiffness; (b) coupling stiffness; (c) rocking stiffness. 

The normalized horizontal stiffness variation under dimensionless frequency 4 is shown in 
Figure 20a, which increases with the diameter increasement when the diameter is larger than 36 m. 
According to Figure 20b, it can be seen that the skirt length has less influence on the coupling 
stiffness which is mainly governed by the diameter when the skirt length reaches 9 m. The 
normalized rocking stiffness is mainly controlled by the skirt length. 

 
(a)                             (b)                              (c)  

Figure 20. Variation of three dynamic stiffness coefficients at dimensionless excitation frequency of 
4: (a) Horizontal stiffness; (b) coupling stiffness; (c) rocking stiffness. 

Different from the previous three typical frequencies, the horizontal stiffness showned in Figure 
21a is affected profoundly by the skirt length, and the diameter infuences the stiffness only when it is 
larger than 36 m. It can be clearly observed from Figure 21b that coupling stiffness is mainly 
governed by the diameter. The rocking stiffness depicted in Figure 21c is still controlled by the skirt 
length, especially for the larger diameter. 
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(a)                              (b)                               (c)  

Figure 21. Variation of three dynamic stiffness coefficients at dimensionless excitation frequency of 5: 
(a) Horizontal stiffness; (b) coupling stiffness; (c) rocking stiffness. 

5. Engineering Verification 

To illustrate the influence of soil-structure interaction on the foundation design, one offshore 
wind farm, which is approximately 45 km off the coast of the Yellow Sea in China, with the water 
depth of 8–15 m, was selected to be the research object. The installed capacity of the offshore wind 
farm is 300 MW, and 11 wind turbines with rated power of 3.3 MW supported by the WSBF were 
constructed. The serial numbers of wind turbines are 40#–43#, 45#–47# and 51#–54#.  

The maximum allowable tilt of monopile at seabed level is ±0.5° as suggested in DNV-OS-J101 
[3]. However, the control standard of WSBF should be considered as more stringent than monopole 
foundation with the maximum allowable tilt value as 0.25° because the typical construction 
tolerances always range from 0.2° to 0.25° [48]. Further, the geometrical safety threshold of the 
WSBF, which is located above the offshore wind farm, was calculated based on the maximum 
allowable tilt and control load in order to meet the design criteria. The control load can be obtained 
by the wind turbine manufacturer and the soil profile of the actual drill hole is presented in Figure 
22. The main parameters of soil are shown in Table 2. 

 

Figure 22. Soil profile parameters and WSBF. 

The calculated safety threshold curve of WSBF depicted in Figure 23 is built by coupling FE-IFE 
technique with the allowable tilt at the foundation head of 0.25°. The blue solid line and the red 
triangle symbols represent the safety threshold of the foundation geometric size and the dimensions 
of WSBF applied in offshore wind farm, respectively. The pink dotted lines are described to obtain 
the allowable minimum design value of the diameter and skirt length which are determined as 29 m 
and 7.5 m respectively. It is also clearly found that the increasing pattern of skirt length becomes less 
marked when the diameter exceeds 33 m, and the foundation stability has been mainly controlled by 
the diameter. The red triangle symbols indicate that the design geometries of WSBF all located 
above the blue threshold curve with the diameters ranging from 32 m to 36 m and the skirt lengths 
ranging from 9 m to 13 m. It is explained that the calculated dimensional safety threshold curve can 
be considered to be reasonable and correct and provide offshore wind turbine design with a 
reference to improve the design efficiency. 
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Table 2. The characteristic parameters of the soil layer. 

Soil Layer 
Number 

Soil 
Category 

Thickness 
of Soil/m 

Density/g.cm3 Modulus of 
Elasticity/MPa 

Cohesion/KPa Frictional 
Angle/° ①2 Silty sand 6.0 1.97 4.0 5.0 33.8 ①3 

Muddy 
silty clay 

3.0 1.87 4.8 22.0 11.9 ②1 Silt  2.5 1.92 7.41 7.0 32.4 ②2 Silt  2.0 2.0 5.5 3.5 33.4 ③1 Silty clay  11.5 1.87 6.44 23.9 12.7 ③2 Silty clay 4.0 1.83 12.0 18.7 11.0 ④1 Silty clay 4.7 2.0 16.5 56.5 18.7 ④2 Silty clay  9.3 1.87 12.6 25.0 10 ⑥1 Silty sand  4.0 1.97 9.0 5.0 33.8 ⑥3 Silty sand  6.0 1.89 9.5 25.0 12.0 

 

 
Figure 23. The dimensional safety threshold curve of WSBF. 

6. Conclusions 

Given the importance of the frequency-dependent dynamic impedances, including horizontal, 
rocking, and coupling impedance, in accurate evaluation of the dynamic response of the WSBF, this 
study deploys the FE-IFE technique to conduct a parametric investigation, analyzing the influence 
of the slenderness ratio, the skirt thickness, the relative soil thickness, and the soil stiffness. The 
main conclusions can be summarized as follows:  
(1) Firstly, the slenderness ratio significantly affects the dynamic impedances of WSBF. After the 

first eigenfrequency, the coupling stiffness increases sharply and the rocking stiffness 
decreases smoothly by increasing skirt length, as more rotation and less lateral contribute to 
the dynamic response. On the contrary, the horizontal stiffness coefficient grows remarkedly 
against diameter, because the horizontal vibration is mainly transmitted to the surrounding 
soil at relatively shallow area, enhancing the horizontal stiffness of the WSBF. As for the skirt 
thickness, when it is larger than 30 mm, its impact on the dynamic impedance of WSBF can be 
negligible.  

(2) Secondly, within the frequency range investigated, the dynamic impedances of the foundation 
are marginally affected by the relative stiffness of homogeneous soil, but more sensitive to the 
relative soil thickness. This can be explained by the fact that the larger the soil thickness is, the 
longer the vibration response transmits, and therefore the decay of the dynamic impedance is 
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less noticeable. For the multi-layer soil profile, the coupling and rocking coefficients are more 
sensitive to the soil stiffness variation with depth because the dynamic impedances depend on 
the soil stiffness where the foundation is embedded. 

(3) Additionally, both the diameter and skirt length are found to be substantial parameters to the 
horizontal stiffness and coupling stiffness, while the rocking stiffness is mainly determined by 
the skirt length in the frequency range considered. The horizontal stiffness under the 
dimensionless frequency of 4 and 5 is governed by the diameter when it is greater than 36 m. 
The coupling stiffness under the dimensionless frequency of 0 and 2 decreases firstly and then 
increases with the skirt length increasing. 

(4) Lastly, taking one OWF in China as an example, the dimensional safety threshold curve is 
calculated based on the maximum allowable tilt of WSBF and corresponding design load. 
According to proposed curve, the minimum values of the diameter and skirt length are 
determined as 29 m and 7.5 m, respectively. The calculated dimensional safety threshold curve 
proves to be reasonable and correct because the actual design geometries of WSBF all locate 
above the threshold values. 
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