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Abstract: This study developed a hybrid pulse width modulation (PWM) control method intended for
use in a high-speed brushless dc (BLDC) motor drive system that uses DC-link single-shunt current
measurement. The method is designed to regulate rapid operation and expand the current sensing
range of the aforementioned system and measurement, respectively. The operating characteristics of
most typical PWM methods for BLDC motors were analyzed, after which, a PWM approach suitable
for high-speed operation was identified. On the basis of the selected approach, the measurable
range of DC-link single-shunt current was examined mathematically to determine a PWM method
that is advantageous for current sensing. The results of the two analyses were used as guidance in
formulating the proposed hybrid PWM control algorithm. Finally, the PWM method put forward in
this work was verified through experimentation.

Keywords: high-speed BLDC motors; hybrid PWM method; DC-link current; single-shunt register;
sensing range; current ripples

1. Introduction

Brushless dc (BLDC) motors are well suited for high-power and high-speed drive systems because
they present advantages such as high power density, low mass and volume, high torque and efficiency,
simple control application, and low maintenance needs. These motors have been increasingly used,
especially in the industrial sector [1–3].

A BLDC motor drive consists of a closed-loop current control system, wherein the feedback
current of three-phase windings can be obtained either through direct measurement with the current
sensors present in each phase or through an estimation based on a single current sensor installed in
a DC link. The use of current sensors, however, increases the cost, size, and complexity of a motor drive
system and can cause problems stemming from reduced system reliability, such as sensor failures and
three-phase current imbalances. These challenges can be addressed by sensing DC-link current from
a single-shunt resistor placed in a DC link. This approach is the most inexpensive, reliable, and simple
current measurement method available today. Given that the DC-link current is the same with the
phase-winding current in the two-phase conduction operation of a BLDC motor, feedback control
current can be obtained simply from the measured DC-link current and the switching state occurring
during pulse width modulation (PWM). Current measurement methods that involve the use of DC-link
single-shunt resistors have been explored and applied in many BLDC motor drive systems [4–8].

Despite the benefits obtained from high-speed BLDC motors using DC-link single-shunt current
measurement, certain problems are encountered as explained below from two points of view. First,

Energies 2019, 12, 4347; doi:10.3390/en12224347 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-8082-0751
http://www.mdpi.com/1996-1073/12/22/4347?type=check_update&version=1
http://dx.doi.org/10.3390/en12224347
http://www.mdpi.com/journal/energies


Energies 2019, 12, 4347 2 of 13

a high-speed BLDC motor drive system requires a fast response and an extensive operation range,
and the phase-winding resistance and inductance of the motor are very small. This results in substantial
current ripples, which not only cause heat and stress in an electrical system but also give rise to
mechanical vibrations and noise given the occurrence of torque ripples [9–12]. Also, the system requires
a high switching frequency for precise control at high-speed operations [13]. Second, owing to the delay
time of switching and sampling, the DC-link single-shunt current measurement aimed at reducing
the cost and size of the drive system cannot measure DC-link current at certain low-speed operating
conditions where the modulation index (MI) is low. The reason is that the duration of the PWM ON
cycle at operating time must be greater than the delay time of switching and sampling to sample the
current supplied to the DC link [14–16]. These two issues highlight the need to develop a control
strategy for expanding the measurable range of DC-link single-shunt current, reducing current ripples,
and improving control precision [14–16].

These requirements can be resolved by using a suitable PWM technique because all the
aforementioned considerations depend on each operating characteristic of PWM methods for BLDC
motors under the same system and operating conditions. Therefore, in addition to analyzing the
characteristics of each BLDC motor-intended PWM approach, developers should create a control
algorithm underlain by an optimal PWM method that considers measurement performance for DC-link
single-shunt current and control performance (current ripples and control precision) for high-speed
operation. In a typical BLDC motor control system, only one PWM method is used regardless of the
operating region [17–19]. However, among the various PWM methods for BLDC motors, each PWM
method has different advantages and disadvantages depending according to the speed region [20–28].
Therefore, as shown in Figure 1, the overall performance can be improved by using one PWM method
suitable for sensing the DC-link current at low-speed and the other PWM method which can reduce
the current ripple of the high-speed motor at high-speed.

Energies 2019, 12, x FOR PEER REVIEW 2 of 13 

 

a high-speed BLDC motor drive system requires a fast response and an extensive operation range, 
and the phase-winding resistance and inductance of the motor are very small. This results in 
substantial current ripples, which not only cause heat and stress in an electrical system but also give 
rise to mechanical vibrations and noise given the occurrence of torque ripples [9–12]. Also, the system 
requires a high switching frequency for precise control at high-speed operations [13]. Second, owing 
to the delay time of switching and sampling, the DC-link single-shunt current measurement aimed 
at reducing the cost and size of the drive system cannot measure DC-link current at certain low-speed 
operating conditions where the modulation index (MI) is low. The reason is that the duration of the 
PWM ON cycle at operating time must be greater than the delay time of switching and sampling to 
sample the current supplied to the DC link [14–16]. These two issues highlight the need to develop a 
control strategy for expanding the measurable range of DC-link single-shunt current, reducing 
current ripples, and improving control precision [14–16]. 

These requirements can be resolved by using a suitable PWM technique because all the 
aforementioned considerations depend on each operating characteristic of PWM methods for BLDC 
motors under the same system and operating conditions. Therefore, in addition to analyzing the 
characteristics of each BLDC motor-intended PWM approach, developers should create a control 
algorithm underlain by an optimal PWM method that considers measurement performance for DC-
link single-shunt current and control performance (current ripples and control precision) for high-
speed operation. In a typical BLDC motor control system, only one PWM method is used regardless 
of the operating region [17–19]. However, among the various PWM methods for BLDC motors, each 
PWM method has different advantages and disadvantages depending according to the speed region 
[20–28]. Therefore, as shown in Figure 1, the overall performance can be improved by using one PWM 
method suitable for sensing the DC-link current at low-speed and the other PWM method which can 
reduce the current ripple of the high-speed motor at high-speed. 

 

Figure 1. Control strategy using hybrid pulse width modulation (PWM) method according to 
operation region. 

A upper B upper C upper

A lower B lower C lower

Vdc
Zb eb

n
Vb

Za ea

Va

Zc ec

Vc

BLDC Motors

Ia

Ib

Ic

High-SpeedㅡVshunt +

with Low Inductance

Idc 3-phase PWM Inverter
DC-link 1-Shunt  

ea

Ia
Phase 

A
0

Phase 
B

0

ec

Ic
Phase 

C
0

eb

Ea

Ia

ϕf ωr

0 2ππ
120° commutation

Ib

θ

θ

θ

Position 1 2 3 4 5 6  
(a) (b) 

Figure 1. Control strategy using hybrid pulse width modulation (PWM) method according to
operation region.

Correspondingly, this research developed a hybrid PWM control method to improve the control
performance of high speed operation and expand the current sensing range in a high-speed BLDC
motor drive system that uses DC-link single-shunt current measurement. In this paper, the operating
characteristics of most typical PWM methods for BLDC motors were analyzed, and then a PWM
method suitable for high-speed operation was selected (Section 2.1 to Section 2.2). The measurable
range of DC-link single-shunt current was mathematically analyzed using the previously analyzed
PWM methods, after which a PWM technique advantageous for DC-link current measurement was
chosen (Section 2.3). On the basis of the analysis results, the proposed hybrid PWM control algorithm
was established. One PWM method with a wide sensing range of DC-link single-shunt current is
used at low-speed region, and the other PWM method with small current ripple is used at high-speed
region (Section 3). Finally, the algorithm put forward in this work was verified through experiments
(Section 4).
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2. Analysis of High-Speed Operation and DC-Link Current Sensing via PWM Methods

2.1. PWM Methods for Three-Phase BLDC Motor Inverter Systems

A BLDC motor with a trapezoidal back electromotive force (EMF) waveform is generally driven
using a two-phase excitation method. It is operated by applying positive and negative stator currents
to two-phase windings in accordance with rotor (i.e., back EMF) position. In each phase, a constant
torque is generated by injecting rectangular phase currents during the 120-degree periods in which
the back EMF is flat. The magnitude of the applied currents can be controlled using PWM operation.
The position of the three-phase BLDC motor is divided into six sections, with a 60-degree interval
implemented on the basis of signals obtained by hall effect sensors. With position signals, the phase
windings of the motor are excited sequentially to produce the desired torque and speed. Figure 2b
shows the waveforms of the three-phase current and back EMF, as determined on the grounds of
position. Here, en and In are the n-phase back EMF and current, respectively [17–19].
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Figure 2. Three-phase brushless dc (BLDC) motor inverter system: (a) Three-phase BLDC motor
inverter system with DC-link single-shunt current; and (b) Waveforms of three-phase current and
back EMF.

The electrical characteristics and performance of a BLDC motor drive system can vary depending
on the PWM control method used. Among the six switches of an inverter, switching devices are
operated for each position with reliance on a PWM technique. The PWM methods used to control
BLDC motors can be categorized into two main approaches on the basis of the type of inverter output
that they produce: Unipolar and bipolar methods (Figure 3). A unipolar PWM method outputs forward
voltage and 0 during conduction and freewheeling operations by activating PWM ON and OFF cycles,
whereas a bipolar PWM method outputs forward voltage and reverse voltage for conduction and
reverse conduction without freewheeling [18,19].
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Note that the bipolar variant of PWM control generates twice the voltage fluctuations between
PWM ON and OFF cycles. Thus, although this approach provides a fast control response, it doubles
the current ripples and requires dead time for complementary switching in each phase. In particular, in
a high-speed BLDC motor system where the resistance and inductance of phase windings are minimal,
phase current ripples are much larger, thereby degrading control performance. Even in DC-link
current measurement that uses a single-shunt resistor, the dead time used in a bipolar PWM method
considerably expands the region where current sensing is impossible. For satisfactory performance,
therefore, bipolar methods should not be adopted in high-speed BLDC motor drive systems that use
DC-link single-shunt current measurement [20].

2.2. Unipolar PWM Methods and Optimal PWM Method for High-Speed BLDC Motor

Table 1 summarizes the PWM waveform patterns and some operational and electrical
characteristics of the most common PWM methods with unipolar outputs. These approaches
are H-PWM-L-ON, H-ON-L-PWM, PWM-ON, ON-PWM, PWM-ON-PWM, and H-PWM-L-PWM
(called double unipolar or modified bipolar approaches). The detailed operating characteristics and
comparative performance of these PWM techniques have been explored in many studies [21–28]. These
unipolar approaches, in the two active phases that should be excited positively and negatively in
accordance with rotor position, can be implemented by operating the upper (positively excited phase)
and lower (negatively excited phase) switches using the PWM or ON mode, respectively. Depending on
PWM method, a difference occurs only in the switch position (upper or lower) and pattern sequence that
use the PWM or ON mode. Accordingly, in all unipolar PWM methods, except for the H-PWM-L-PWM
approach, each phase of a three-phase inverter is sequentially operated in PWM modes (an active
phase, +/– excited), the ON mode (another active phase, –/+ excited), and the OPEN mode (non-excited
phase) in accordance with PWM technique and rotor position. Only the H-PWM-L-PWM method is
implemented by operating both active phases in the interleaved PWM mode.

Table 1. Operating and electrical characteristics of unipolar PWM methods for BLDC motors.

Output Type Unipolar Output Type

PWM Method H-PWM-L-ON H-ON-L-PWM PWM-ON ON-PWM PWM-ON-PWM H-PWM-L-PWM

PWM patterns
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Under unipolar PWM, an inverter is operated in conduction and freewheeling modes in accordance
with PWM ON and OFF operations. During the switching period, in a single position, the path of the
conducting phase current for generating torque at this position is the same in all PWM approaches.
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The phase current flows to a DC link only in the conduction mode and can be measured by a shunt
resistor. Conversely, the freewheeling operation uses the upper or lower path on the basis of the
position (upper or lower) of PWM-operated switching devices, as per the PWM method adopted.
In this mode, the phase current does not flow to the DC link, which makes current measurement by
a single-shunt resistor impossible [29].

Given the differences in PWM implementation, the H-PWM-L-PWM method and other unipolar
approaches have varying electrical characteristics. Figure 4 shows a detailed comparison of the PWM
patterns and waveforms of the phase and DC-link currents during one switching cycle under the
H-PWM-L-PWM and other unipolar techniques. The two switching patterns are the on/off signals of
the top and bottom switches for each of the two excited active phases (i.e., PWM and ON modes). As
shown in Figure 4a, the other unipolar PWM methods can be implemented by operating the top switch
in the positively excited phase under the PWM or ON mode and the bottom switch in the negatively
excited phase under the ON or PWM mode. Which switch is operated in which mode is determined
by the PWM method adopted. Accordingly, each conduction and freewheeling operation is performed
once in a single PWM period, and a current ripple of the same frequency as the switching frequency
is generated.
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Unlike typical unipolar PWM techniques, the H-PWM-L-PWM method (Figure 4b) involves
the alternate switching of upper and lower switches using interleaved PWM signals. The switching
frequency of each switch is the same as that observed in other unipolar PWM methods, but the
interleaved PWM signal doubles the number of each operation in the conduction and freewheeling
modes. This phenomenon generates a current ripple with twice the frequency under the same switching
frequency conditions. The doubled frequency, in turn, reduces the magnitude of the current ripple
under the same voltage fluctuations.

The comparative analysis showed that the H-PWM-L-PWM and other unipolar techniques have
different current ripple magnitudes because of the variance in the number of conductions activated
under a single switching period. Although the loss is increased due to the increase in the number
of switching, the H-PWM-L-PWM–induced reduction in current ripple magnitude can narrow the
current sensing range, heat generation in an inverter, mechanical vibrations, and noise. In addition
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to producing small current ripples, this method can double the number of current sensing instances,
resulting in improved current control precision in high-speed regions. Thus, for high-speed BLDC
motor drive systems with very low resistance and inductance in phase windings, the H-PWM-L-PWM
approach with increasing number of conductions is very advantageous for reducing current ripples
and enhancing control precision at high speeds.

2.3. PWM Method for DC-link Single-Shunt Current Sensing

In a BLDC motor inverter system that excites only two of the three phases, phase conducting
current becomes the DC-link current so that motor phase current can be controlled by sensing the
DC-link current under conduction operations. The DC-link current can be measured only under
conduction in which conducting current flows through a DC-link shunt resistor. Such measurement
cannot be implemented during freewheeling operation. As illustrated in Figure 5a, in the DC-link
single-shunt current measurement of an actual inverter system, from the generation of a PWM ON
signal (under the conduction mode) up to the actual conduction operation wherein current can be
sensed, a time delay occur due to the turn-on delay time of power switching devices, the settling
time for stabilizing the ringing waveform of shunt voltage due to parasitic inductance and capacitor
components during switching, and sampling time for the shunt voltage of an analog-to-digital converter.
Accordingly, the PWM ON time determined by duty ratio and actual conduction time differs, and the
accurate measurement of the DC-link current requires securing the actual conduction time minus the
delay time from the PWM ON duty time. In other words, the fact that the PWM ON time is greater
than the delay time enables conduction and current measurement, but current cannot be measured in
the operating region where the actual conduction time is undetermined given that the PWM ON time
is shorter than the delay time. This low-MI region is referred to as the unmeasurable current region
(gray shaded region in Figure 5b).

Energies 2019, 12, x FOR PEER REVIEW 6 of 13 

 

to producing small current ripples, this method can double the number of current sensing instances, 
resulting in improved current control precision in high-speed regions. Thus, for high-speed BLDC 
motor drive systems with very low resistance and inductance in phase windings, the H-PWM-L-
PWM approach with increasing number of conductions is very advantageous for reducing current 
ripples and enhancing control precision at high speeds. 

2.3. PWM Method for DC-link Single-Shunt Current Sensing 

In a BLDC motor inverter system that excites only two of the three phases, phase conducting 
current becomes the DC-link current so that motor phase current can be controlled by sensing the 
DC-link current under conduction operations. The DC-link current can be measured only under 
conduction in which conducting current flows through a DC-link shunt resistor. Such measurement 
cannot be implemented during freewheeling operation. As illustrated in Figure 5a, in the DC-link 
single-shunt current measurement of an actual inverter system, from the generation of a PWM ON 
signal (under the conduction mode) up to the actual conduction operation wherein current can be 
sensed, a time delay occur due to the turn-on delay time of power switching devices, the settling time 
for stabilizing the ringing waveform of shunt voltage due to parasitic inductance and capacitor 
components during switching, and sampling time for the shunt voltage of an analog-to-digital 
converter. Accordingly, the PWM ON time determined by duty ratio and actual conduction time 
differs, and the accurate measurement of the DC-link current requires securing the actual conduction 
time minus the delay time from the PWM ON duty time. In other words, the fact that the PWM ON 
time is greater than the delay time enables conduction and current measurement, but current cannot 
be measured in the operating region where the actual conduction time is undetermined given that 
the PWM ON time is shorter than the delay time. This low-MI region is referred to as the 
unmeasurable current region (gray shaded region in Figure 5b). 

0 [A] Idc
Current
DC-link

Tdelay(total)

0 [V]
Voltage
Shunt sampling

ON

Actual
Conduction

OFF ON OFFPWM Mode

Conduction

Tturn-on

TA/D sample + settiling

Vshunt

Idc

sampling

Actual
Conduction

Vshunt

Idc sensing

Conduction
Operation 

Mode
Freewheeling Freewheeling

 

(0,1,X)

Position6 A

C'

(1,X,0)

B

A'

B'C

30° 
Position1

(X,1,0)

90° 

Position2

Position3

Position5Position4

150° 

330° 210° 

270° 

(1,X,0)

(0,X,1) (1,0,X)

(A,B,C) phase
1:  Upper Switch ON
0:  Lower Switch ON
X: Open Mode

(a) (b) 

Figure 5. Delay time and unmeasurable region of DC-link current sensing: (a) Delay time during 
shunt voltage sampling; and (b) Unmeasurable current region of DC-link single-shunt. 

Ascertaining the scope of the operating region where measuring current in an inverter system is 
impossible necessitates calculating the actual conduction time. Specifically, this time is determined 
on the basis of the PWM duty ratio (or MI), switching frequency, and delay times, such as the on/off 
delay, settling, and sampling times. The actual conduction time is the value obtained by subtracting 
the delay time from the PWM ON time within one switching period. It can be formulated as Equation 
(1), where Tconduction denotes the actual conduction time for which shunt current can be measured, fsw 
represents the switching frequency, D (0 ≤ D ≤ 1) is the PWM duty ratio, Ndiv (1 or 2) refers to the 
number of conduction operations during one switching period according to the employed PWM 
method, and Tdelay stands for the switching delay time. If the calculated Tconduction is greater than 0, then 
current sensing is possible, but a value below 0 indicates that current sensing is impossible because 
of the absence of the actual conduction time. 

Figure 5. Delay time and unmeasurable region of DC-link current sensing: (a) Delay time during shunt
voltage sampling; and (b) Unmeasurable current region of DC-link single-shunt.

Ascertaining the scope of the operating region where measuring current in an inverter system is
impossible necessitates calculating the actual conduction time. Specifically, this time is determined
on the basis of the PWM duty ratio (or MI), switching frequency, and delay times, such as the on/off

delay, settling, and sampling times. The actual conduction time is the value obtained by subtracting
the delay time from the PWM ON time within one switching period. It can be formulated as Equation
(1), where Tconduction denotes the actual conduction time for which shunt current can be measured,
fsw represents the switching frequency, D (0 ≤ D ≤ 1) is the PWM duty ratio, Ndiv (1 or 2) refers to
the number of conduction operations during one switching period according to the employed PWM
method, and Tdelay stands for the switching delay time. If the calculated Tconduction is greater than 0, then
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current sensing is possible, but a value below 0 indicates that current sensing is impossible because of
the absence of the actual conduction time.

Tconduction =

(
D
fsw
×

1
Ndiv

)
− Tdelay

[
Ncond ∈ {1, 2}

0 ≤ D ≤ 1
(1)

Under the same duty ratio conditions, the actual conduction time decreases as the switching
frequency and delay time increase and can be substantially reduced according to the number of
conduction operations implemented through PWM methods. However, at the design and fabrication
stages of the inverter system, the delay time and switching frequency are determined in advance by
considering the electrical specifications of a switching device and an inverter system and the rated
operating speed of a motor. From the perspective of control, therefore, these variables can be regarded
as constant values. The actual conduction time then depends on the duty ratio and the number of
conduction operations carried out via PWM. Other unipolar PWM techniques enable actual conduction
at a duty ratio lower than that allowed by the H-PWM-L-PWM method. This difference translates to
a large region, where the DC-link current can be measured.

Figure 6 shows a graph of the actual conduction time based on the PWM duty ratio for each
switching frequency, as calculated using Equation (1). Figure 6a,b show the results of the other
unipolar PWM methods and the H-PWM-L-PWM approach, respectively. When a delay time of 1 µs
is applied, the red shaded region where the actual conduction time is less than 0 is the area where
current sensing is impossible, and the yellow shaded region is the area where current sensing is
theoretically possible since the actual conduction time is greater than 0. This segment is, nevertheless,
an unstable region where current sensing noise can also occur. Under the same duty ratio, an increase
in switching frequency expands the region where current sensing is impossible. Under the same
switching frequency conditions, the current sensing range determined on the basis of the PWM method
employed differs because of variances in the number of conduction operations activated under the
various PWM approaches. The other unipolar PWM methods exhibit a wider sensing range than that
generated by the H-PWM-L-PWM technique.
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Figure 6. Sensing range of DC-link current on the basis of PWM method and switching frequency: (a) 
Other unipolar PWM methods; and (b) H-PWM-L-PWM method. 

In the case of a high-speed motor drive system, improving control precision generally requires 
operating an inverter at a high switching frequency, so that differences in unmeasurable current 
regions among PWM methods become even larger. For example, in a high-speed motor system with 
a rated speed of 96,000 rpm, a switching frequency of 40 kHz is required for 25 switching operations 
at the fundamental frequency of the rated speed. At 40 kHz, the H-PWM-L-PWM method and the 
other unipolar PWM techniques can sense current from duty ratios of 0.08 and 0.04, respectively. 
Therefore, the use of the other unipolar PWM methods in such a system is very advantageous for 
DC-link single-shunt current measurement. 

3. Proposed Hybrid PWM Control Method 
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Other unipolar PWM methods; and (b) H-PWM-L-PWM method.

In the case of a high-speed motor drive system, improving control precision generally requires
operating an inverter at a high switching frequency, so that differences in unmeasurable current regions
among PWM methods become even larger. For example, in a high-speed motor system with a rated
speed of 96,000 rpm, a switching frequency of 40 kHz is required for 25 switching operations at the
fundamental frequency of the rated speed. At 40 kHz, the H-PWM-L-PWM method and the other
unipolar PWM techniques can sense current from duty ratios of 0.08 and 0.04, respectively. Therefore,
the use of the other unipolar PWM methods in such a system is very advantageous for DC-link
single-shunt current measurement.
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3. Proposed Hybrid PWM Control Method

As recounted in Section 2.1, the operation and electrical characteristics of PWM methods for
BLDC motors were analyzed on the basis of current ripple and control precision for high-speed BLDC
motors and current measurement using a DC-link single-shunt (Sections 2.2 and 2.3, respectively).
The results confirmed that the H-PWM-L-PWM method is suitable for reducing current ripples and
improving control precision but that the other unipolar PWM approaches are appropriate for increasing
the range of DC-link current sensing. In consideration of these issues, this work developed a hybrid
PWM control algorithm that essentially uses the H-PWM-L-PWM method to reduce current ripples
and enhance control precision in a high-speed BLDC motor drive system. However, it also partially
employs a unipolar PWM method in low-speed regions, where the duty ratio is low and DC-link
current measurement is impossible.

Figure 7 shows a block diagram of the BLDC motor control system with proposed hybrid PWM
control algorithm. Figure 7a shows the overall control system, and Figure 7b shows the internal
configuration of the proposed algorithm block. The loop that modulates the reference voltage output
from speed and current controllers to generate PWM signals is the same as a typical BLDC motor
control algorithm. An additional algorithm was developed to calculate the actual conduction time
(with consideration for switching frequency and delay time) on the basis of the reference duty ratio
and change the PWM method according to the calculated values. By default, the H-PWM-L-PWM
method is used, but if the calculated actual conduction time is less than 0 (or a user-specified value)
like at low MI, the H-PWM-L-PWM method is relinquished to make way for using of other unipolar
PWM method, and when the value is greater than 0, operation switches back to the H-PWM-L-PWM
approach. Since different inverter systems have different hardware circuits, parameters, and switching
frequency, the user-specified value may vary.
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Figure 7. Block diagram of BLDC motor control system with proposed hybrid PWM control algorithm:
(a) BLDC motor control system; and (b) proposed hybrid PWM control algorithm.

Finally, using the proposed hybrid PWM algorithm in a high-speed BLDC motor drive system
at low-speed and light-load operating regions enables the adoption of a unipolar PWM method,
which increases the sensing range of DC-link single-shunt current. At high-speed and heavy-load
operating regions, current ripples can be reduced and control precision can be improved using the
H-PWM-L-PWM technique.
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4. Experimental Results

Experiments were conducted to verify the analyzed and proposed algorithm. The experimental
set-up features a 6.5 kW high-speed BLDC motor drive system. The electrical parameters used in the
experiments are presented in Figure 8.
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Figure 9. Experimental results on PWM patterns and current ripples: (a) H-PWM-L-ON method; and 
(b) H-PWM-L-PWM method. 

Figure 8. Experimental setup and electrical parameters.

Figure 9 illustrates the PWM patterns and actual phase current waveforms determined for the two
kinds of unipolar PWM methods. Figure 9a,b display the experimental results of the H-PWM-L-ON
and H-PWM-L-PWM methods, respectively. The H-PWM-L-ON approach was used as the comparative
example because all the unipolar methods, except H-PWM-L-PWM, have the same current ripple
characteristics. At a switching frequency of 25 kHz and a duty ratio of 0.1, the H-PWM-L-PWM
method generates about half the current ripples produced by the other unipolar methods. As with
the findings discussed in Section 2, current ripples are reduced because conduction was divided into
two operations in one switching period. As the speed and load increase, the current ripples also rise.
Therefore, the differences in current ripples among the PWM methods are larger than the experimental
result presented in Figure 9. The higher the speed, the greater the suitability of H-PWM-L-PWM as
a means of reducing current ripples in a high-speed BLDC motor drive system with very low phase
winding resistance and inductance.
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Figure 10 shows the experimental results on DC-link single-shunt current sensing via
H-PWM-L-ON and H-PWM-L-PWM at duty ratios of 0.05 and 0.1, respectively. Figure 10a,c contain the
findings on the H-PWM-L-ON method, and Figure 10b,d consist of the results on the H-PWM-L-PWM
approach. Using the H-PWM-L-ON method enables the sensing of the DC-link current under both the
duty ratios, but using the H-PWM-L-PWM technique prevents such sensing under duty ratios of 0.05
or less. When the duty ratio is greater than 0.05, current sensing is possible, confirming that sensing
can be accurately performed under a duty ration of 0.1. For DC-link single-shunt current sensing,
therefore, H-PWM-L-PWM yields a smaller measurable range than that enabled by the other unipolar
PWM methods. That is, in low-MI regions, the other unipolar PWM methods are more advantageous
than the H-PWM-L-PWM approach for DC-link current sensing.
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Figure 10. Experimental results on DC-link current measurement using a single shunt: (a) H-PWM-
L-ON method (0.05 duty ratio); (b) H-PWM-L-PWM method (0.05 duty ratio); (c) H-PWM-L-ON 
method (0.1 duty ratio); and (d) H-PWM-L-PWM method (0.1 duty ratio). 

Figure 11a,b show the experimental results of the motor drive system using the H-PWM-L-ON 
and H-PWM-L-PWM methods, respectively. The waveforms in each figure represent the actual A-
phase current, DC-link 1-shunt sensing current, injected voltage and motor speed. The motor speed 
and the phase current increase as the applied voltage gradually rises. As it is seen from the waveforms 
in Figure 11, the two PWM methods have different performance. When the H-PWM-L-ON method 
is used, the wide range DC link single-shunt current sensing capability results a relatively better 
sensing performance even in the low speed region except a small measurement noise during startup 
as shown in Figure 11a. However, it can be seen that as the applied voltage and speed increase, the 
current ripple increases very much. On the other hand, when the H-PWM-L-PWM method is used, 
the current ripple is greatly reduced, but current sensing performance is degraded at low speed as 
shown in Figure 11b. This happens because the area where the DC-link single-shunt current 
measurement is impossible is wide (up to approximately 9000 rpm in this BLDC inverter system). 

Figure 10. Experimental results on DC-link current measurement using a single shunt:
(a) H-PWM-L-ON method (0.05 duty ratio); (b) H-PWM-L-PWM method (0.05 duty ratio);
(c) H-PWM-L-ON method (0.1 duty ratio); and (d) H-PWM-L-PWM method (0.1 duty ratio).

Figure 11a,b show the experimental results of the motor drive system using the H-PWM-L-ON and
H-PWM-L-PWM methods, respectively. The waveforms in each figure represent the actual A-phase
current, DC-link 1-shunt sensing current, injected voltage and motor speed. The motor speed and
the phase current increase as the applied voltage gradually rises. As it is seen from the waveforms in
Figure 11, the two PWM methods have different performance. When the H-PWM-L-ON method is
used, the wide range DC link single-shunt current sensing capability results a relatively better sensing
performance even in the low speed region except a small measurement noise during startup as shown
in Figure 11a. However, it can be seen that as the applied voltage and speed increase, the current ripple
increases very much. On the other hand, when the H-PWM-L-PWM method is used, the current ripple
is greatly reduced, but current sensing performance is degraded at low speed as shown in Figure 11b.
This happens because the area where the DC-link single-shunt current measurement is impossible is
wide (up to approximately 9000 rpm in this BLDC inverter system).
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The range of these regions where these current measurements are impossible or unstable depend
on the hardware configuration and parameters of the inverter system. For example, there are differences
in electrical characteristics such as parasitic components of shunt resistors used, rigging due to sensing
input circuits, and turn-on characteristics of switching devices, etc. These change the delay time,
the settling time, and the time for which the shunt voltage can be measured reliably. So, the range of
impossible or unstable regions should be checked experimentally in advance in the inverter system to
be used. However, this paper highlights that the region changes according to the PWM method under
the same inverter system conditions.

Finally, Figure 12 shows the experimental results of the proposed hybrid PWM control algorithm.
In a low-MI operating region, where DC-link current sensing via H-PWM-L-PWM is impossible,
another unipolar PWM method was used to expand the DC-link current sensing range. In the operating
range above the reference value determined by calculation, the H-PWM-L-PWM method was employed
to reduce current ripples. Depending on motor and inverter system, the PWM method can be changed
at a user-specified reference point. The motor speed increases as the reference voltage gradually rises
(Figure 12). From the start of operation to a specific point along the process, it is operated using the
H-PWM-L-ON method. Despite a large current ripple, sensing the DC-link current is possible. Beyond
a specified operation point, the current ripple is reduced by switching to the H-PWM-L-PWM method.
Based on the experimental results in Figure 11, the specific point was set at 0.125 MI and the speed
about 12,000 rpm.
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5. Conclusions

This study proposed a hybrid PWM control method to improve control over high-speed operation
and expand the current sensing range in a high-speed BLDC motor drive system that uses DC-link
single-shunt current measurement. The operating characteristics of most typical PWM methods for
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BLDC motors were analyzed, and the PWM method suitable for high-speed operation was selected.
The range of DC-link single-shunt current sensing was analyzed mathematically in accordance with
the chosen PWM approach, and the PWM method that is advantageous for current sensing was
determined. The analysis results were used as foundation in developing the proposed hybrid PWM
control algorithm, which was validated through experiments.
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