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Abstract: The article presents an original method for numerical determination of the value of
magnetic co-energy of a transverse construction motor. The aim of the developed method is initial
determination of the co-energy value for the analyzed structure in the function of rotor rotation angle.
The main requirement set to the presented method was the lowest possible complexity of the process
computation, lack of the necessity to apply costly dedicated software, as well as creating construction
3D models. These requirements were met by applying specific cross-section/development of the
analyzed machine geometry, as well as application of specific boundary conditions, which enabled
reduction of the analyzed problem to solving a Poisson equation in 2D. The calculations were done
with the Finite Element Method.

Keywords: FEA; co-energy; transverse construction motor; computational efficiency; reliable
electric drives

1. Introduction

Machines of transverse structure are gaining increasing popularity in various applications.
The interests of science and industry focus, among others, on applications of this type of solutions
in generator operation with wind turbines, in which they comprise an interesting alternative to
solutions with Axial Flux Permanent Magnet (AFPM) machines [1]. Various approaches to the issue of
computational aided design process of this type of generators were suggested in references. In the work
of [2] analytic methods of determining generator electric properties were discussed, their accuracy was
verified by means of measurement experiments of a machine prototype, in a smaller scale. The works
of [3,4] present a different approach, in which in order to determine electric parameters of the studied
machine the static analysis and dynamic three-dimensional Finite Element Method (FEM 3D) analysis
are applied. In the aforementioned works the influence of several selected parameters and machine
structure details on the values of leakage stream and the shape of the back electromotive force (EMF)
induced voltage waveform was analyzed. The structure of Transverse Flux Machine (TFM) type
generator analysis, in terms of its application in cooperation with a wind turbine, was also done in the
approach that makes use of an equivalent magnetic circuit, the effects of which were described in [5].
Electric machines of transverse magnetic flow comprise an important research area for manufacturers
of electric and hybrid cars [6]. Due to their reliability [7] and significantly better ratio of geometric
dimensions to the achieved mechanical power they are an alternative to AFPM type constructions [8].
A wide range of applications results in emergence of numerous modifications of the construction [9–11]
and faces the process of aided design of this type of machines with high demands. Due to their
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construction, the problems typical for TFM machines are high values of leakage flux [12] and relatively
low values of power coefficient [13]. Moreover, due to compact structure, which is an advantage, such
machines are susceptible to overheating, which may result in accelerated degradation of permanent
magnets [14]. Development of the method of numerical aided design of the machines concerns most
often the mechanical properties of the machine being designed, i.e., the achieved mechanical power,
the developed torque and its conservation in transient states. It is based on cyclic determination of
co-energy value of the machine being designed, in the function of rotor rotation angle, for current
values of decision variables, in the process of computational optimization. Determination of co-energy
values requires specifying magnetic field distribution in the machine, for rotor positions variable
within the range of full electric angle. Due to the fact that electromagnetic torque generated by the
machine comprises a derivative from its co-energy after rotation angle, in order to accurately determine
the objective function value formulated in terms of obtaining the desired machine dynamic properties,
the calculations of co-energy should be done with a small angular step. This situation causes that the
task of numerical aided design of TFM type machines is, in terms of dynamic properties, an issue
of very high computational complexity, especially when FEM 3D is applied to determine magnetic
field distribution. The references include papers that present different approaches to decreasing
computational complexity of the numerical aided design process of the machines with permanent
magnets [15,16]. in references [17–21]. The results of the analyses done with the two-dimensional
Finite Element Method (FEM 2D) for the TFM type machines were presented and discussed. The article
also presents the method for determining the co-energy value of the machine of transverse flow of
magnetic field, based on a 2D model. An original method of reflecting TFM machine geometry in
a 2D model, as well as a computational procedure based on FEM that allows for accurate reflection of
magnetic field distribution, were also presented. The obtained results were compared with the results
of calculations done with the FEM 3D method in Ansys/Maxwell environment.

2. Description of the Method for Creating a Machine 2D Model

A view of a three-dimensional model of one phase of a machine of transverse flow of a magnetic
field is presented in Figure 1. Permanent magnets are placed on rotor’s surface in such a way that
magnetization vectors of magnets that comprise a pair are directed in opposite directions. Stator yoke
that encompasses phase winding coil was marked with green color. In the space between consecutive
stator yokes, over permanent magnets, there are high magnetic permeability elements.

Figure 1. 3D model of a TFM type machine—semi-view, semi-cross-section.

The analysis of the presented machine geometry indicates that there is no possibility to reflect
the studied type machine with a 2D model, by doing a simple cross-section. For this reason, only 3D
(most often FEM) approach was applied in references to determine magnetic field distribution in
constructions of this type. A method of creating a 2D model reflecting machine geometric properties in
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a sufficient way to do calculations of magnetic co-energy is presented below. Figure 1 presents a plane
of a cross-section that goes through parts of machine stator and rotor on the way on which the flow of
magnetic field closes. The field comes from both permanent magnets placed on machine rotor, as well
as from the stator phase winding coil. To accurately determine the value of magnetic co-energy in the
studied machine it is necessary to determine magnetic field distribution, considering both sources at
the same time. Thus, in a 2D model it is necessary to:

• Reflect ways on which the magnetic field closes in a studied machine for one phase it is 8 systems
that comprise of a pair of permanent magnets, stator yoke, as well as rotor parts (see Figure 1)

• provide a possibility to consider the presence of magnetic field that comes from stator winding
phase coil current

To create a 2D model presenting the ways of magnetic field flow in a system, presented in Figure 1,
the system was transformed to a 2D model by making a cross-section with simultaneous development
of the geometry to a 2D system. This process is presented in Figure 2. A semi-view, semi-cross-section
of a machine single pole pitch, with a marked cut line is presented on the left. A front view with
a marked direction of geometry development to a 2D system is presented on the right.

Figure 2. The method of transforming TFM geometry into 2D a system, a semi-view, semi-cross-section
of one pole pitch (on the left), view of the front with marked direction of development to the 2D system
(on the right).

The effect of this action is development of a 2D model, reflecting a one phase system of the studied
machine in a way that enables us to determine magnetic field distribution coming from permanent
magnets. According to the adopted assumptions the developed calculation method is aimed at creating
the possibility to determine machine co-energy without the necessity to use any dedicated software,
so all computation procedures were written from scratch in MATLAB environment, while the 2D
model was prepared in AutoCad environment as a *.dxf file and imported to MATLAB. The diagram
illustrating obtained 2D model of whole single-phase system is presented in Figure 3. The single pole
pitch which is adopted as a 2D model for further analysis is marked witch a red box.

It should be noted that in a 2D model presented in Figure 3 the phase winding coil is not
considered. The presence of the magnetic field coming from the current of this coil may be, however,
considered in magnetostatic computations done for this model by providing a proper boundary
condition. This is to be discussed in the following section. Due to the symmetries of the presented
model all computations were done on the distance encompassing a machine single pole pitch, thus 1/8
of the full model of one phase (marked with a red box in Figure 3).
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Figure 3. Diagram presenting an obtained 2D model of one phase of the TFM machine, with a single
pole pitch marked in a red box.

3. Description of the Computational Problem

Computation of magnetic field distribution in the studied machine to determine the value of
co-energy is an issue of magnetostatics and comes down to a solution of Poison’s equation formulated
for this problem in 2D space. This equation is solved regarding vector potential ~A, defined so that:

~B = rot(~A) (1)

where ~B is the magnetic field induction vector.
Thus, the basic formula describing the analyzed problem has the following form:

rot(~H) = Iel + Imag (2)

where:

• Iel—stator phase winding current,
• Imag—equivalent magnetizing current
• ~H—magnetic field strength vector

The presence of a permanent magnet may be represented by an equivalent current flowing in
equivalent winding designed so that it goes through the model plane at straight angle on vertical edges
of the permanent magnet. Then, by adopting the assumption that the width of equivalent winding
tends to zero, the Equation 2 may be written as:

rot(
1
µ

rot(~A)) = Iel + rot(~Tmag) (3)

where ~Tmag is remanence vector of the permanent magnet, directed in accordance with the direction
of magnetic field vector, generated by Imag current in the equivalent winding. Then it is necessary
to make Galerkin’s weak formulation for the analyzed problem. By introducing variances of vector
potential σ~A we get:∫∫∫

V
σ~Arot(

1
µ

rot(~H))dV =
∫∫∫

V
{σ~AIel + σ~Arot(~Tmag)}dV (4)

Then, to transfer rotation operation from the element 1
µ rot(~A) into a variance of vector potential

by using the identity [22] we get:

div(~C× ~D) = ~Drot(~C)− ~Crot(~D) (5)

Additionally, due to the geometry of the studied model it is justified to assume that the summary
distribution of the magnetic field through the boundary of the studied area is zero. This implies the
following dependence:
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div(~C× ~D) = 0 (6)

By taking the above into consideration and applying right transformations one gets a formula
describing magnetic field distribution in the analyzed machine model, in the form that enables direct
implementation of computation procedures of FEM 2D.∫∫∫

V
rot(σ~A)

1
µ

rot(~A)dV =
∫∫∫

V
{σ~AIel + ~Tmagrot(σ~A)}dV (7)

In FEM 2D computations the triangular elements with linear basis functions have been applied.
The open source package provided in [23] was used for mesh generation. The overall procedure of
formulation and solving a system of FEM. equations is described in detail in: [24–29]. The details of
computational procedure are presented in [30].

4. Imposition of a Boundary Condition

4.1. Requirements Concerning the Imposed Boundary Conditions

It is necessary to note that in the developed 2D model of the TFM type machine, upper and
bottom boundaries of the area correspond to the average central part of stator yoke. Thus, a part
of the bottom boundary represents, together with the part of an upper boundary located opposite,
one area that passes a three-dimensional system through middle parts of central stator yokes. It is
expected that the magnetic field should be able to flow, in a free manner, through these boundaries.
Taking into consideration the dependence 1, in the first approach it seems justified to introduce
Neumann zero condition on upper and bottom boundaries. Such an approach introduces, however,
excessive and ineligible limitation for the magnetic field flow through area boundaries, as it causes
that the tangential component of vector on the area boundary has a value of zero. It is an excess
limitation as it does not necessarily occur for the whole upper and bottom boundary. To eliminate
this limitation, while providing free flow of magnetic field through upper and bottom boundaries,
a boundary condition was formulated, which ensures that the difference of values of the vector
potential between the nod at the beginning (calculating from the left) of the bottom boundary area
and any other nod located in the bottom area boundary is equal to the difference of potentials at the
upper boundary in nods that correspond, in terms of location, to pairs of bottom boundary nods. As
mentioned before, to decrease computation complexity, the symmetry of the obtained 2D model was
used. All computations were done on the fragment encompassing one pole pitch of the machine model,
such approach requires consideration of this symmetry by means of imposing on vertical boundaries
a model that corresponds to the appropriate boundary condition. In a typical example this condition
works out to force that solution values obtained for given points on the left boundary are equal to
the values obtained for corresponding points on the right boundary. In the discussed case of doing
computations for a 2D model of the TFM type machine, this condition was modified in such a way that
apart from the symmetry it considered the presence of a constant given value of the difference in values
of the vector potential between the corresponding (in terms of location in the Y direction) points on the
left and right boundaries. Such action forces the occurrence of magnetic field B in the direction of Y.
In this way it is possible to consider, in the presented machine 2D model, the magnetic field stream
that comes from phase winding coil current. Due to the fact that in the presented computation method
the occurrence of the magnetic field saturation is not considered, the relation between phase winding
coil current intensity and the difference of vector potential imposed in order to consider the presence
of magnetic field stream, which is caused by this current, may be determined in the following way.
For any imposed value of the difference of vector potential between the boundaries, the corresponding
current of stator phase coil is calculated as an integral of magnetic field intensity ~H on the closed curve
that encompasses the coil. In a 2D model the curve corresponds to a straight line, which is parallel to Y
direction and passes through the whole model in the place of stator yoke.
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I f =
∮

l
H(l) dl (8)

Then, by applying the assumed linear relationship between the values of current and magnetic
field intensity, the value of the difference in vector potentials that corresponds to the current of unit
intensity is determined.

4.2. The Method of Imposing Boundary Conditions

In the presented computation procedure, an uneven grid of triangular elements was applied,
in result of which on the vertical boundaries there occurs an uneven quantity and distribution of nods.
Those quantities change together with a change of the modelled area, which results from making an
angular step of machine rotor rotation. To reflect in computations the symmetry that occurs for the
studied model fragment, the vertical boundary on which most nods are located was selected as the
dominant one; then such changes were introduced to the FEM so that the values of the vector potential
~A determined for the nods located in the subordinate boundary (of lower number of nods) were equal
to the weighted average of the vector potential ~A from two nearest (in the sense of location in the Y
direction) nods located on the dominant boundary. The weighting factors were determined in the
following way:

W1 =
|yd1 − ys|

|yd1 − ys|+ |yd2 − ys|
(9)

W2 =
|yd2 − ys|

|yd1 − ys|+ |yd2 − ys|
(10)

where yd1 and yd2 are coordinates of nods that lie on the dominant boundary, ys is a coordinate of a nod
located on the subordinate boundary, lying between nods of the coordinates of yd1 and yd2 , lying on
the dominant boundary. To impose such defined condition, in a computation efficient way, it is easier
to create a matrix composed of: a part of unitary character, needed to preserve the structure of the main
matrix of the FEM system of equations, as well as a set of rows corresponding to subordinated nods
that contain weighting coefficients in the columns corresponding to the dominant nods. Then, matrix
Z is modified in such a way that it also enables imposition of an appropriate boundary condition on
upper and bottom boundaries. According to what was discussed in the previous section, there occurs
the following relationship between the values of vector potentials on upper and bottom boundaries:

~AT2 = ~AB2 − ~AB1 + ~AT1

~AT3 = ~AB3 − ~AB1 + ~AT1

~AT4 = ~AB4 − ~AB1 + ~AT1
...
~ATend = ~AT1 + D

(11)

where:

• ~AT denotes the value of vector potential in a given nod located on the upper boundary, selected as
subordinate (arbitrary)

• ~AB denotes the value of vector potential in a given nod located on the bottom boundary, selected as
the dominant one

• D denotes a value of difference in potentials, enforced between the left and the right
area boundaries.

Modification of matrix Z relies on introducing in lines corresponding to nods of the subordinated
boundary the values of 1 or −1 in the columns corresponding to given nods of the dominant boundary.
In result, matrix Z obtains a block structure, presented below.
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Z =



1 0 0 0 0 0 0 0 . . . 0
0 1 0 0 0 0 0 0 . . . 0
...

. . .
0 1 0 −1 . . . 0 1 . . . 0
0 . . . 1 0 −1 0 1 . . . 0
...

W1 0 . . . W2 . . . 0 0 . . . 0
...


(12)

One should note that before it is possible to apply the matrix multiplier Z defined as above,
the main matrix of the system must be re-numerated in such a way that the rows correspond to nods
from the subordinated boundaries of the area and they should be gathered only in its bottom part.
The FEM system of equations for the analyzed problem, which is obtained through assembly, has the
following form:

M ū = L̄ (13)

To enforce force the occurrence of constant difference between the values of vector potential—~A
on the left and the right boundary it is necessary to perform the following modification of the vector of
absolute terms in the expression:

L̄ = L̄−MD̄ (14)

where ~D is a vertical vector that includes, in the elements corresponding to nods from the left boundary,
values of the imposed difference of the vector potential ~A . Numerical value of this difference was
denoted with d.

D̄ =



0
...
d
0
...


(15)

To introduce the discuses boundary conditions to the FEM system of equations the following
operations are performed:

A = ZT {RT M R
}

(16)

b̄ = ZT RT L̄ (17)

where R is a relevant matrix of re-numeration. Thus, the following system of linear equations
is obtained:

A ūp = b̄, ūp 6= ū (18)

It is necessary to emphasize that after performing the abovementioned operations the size of the
system also decreases with the number of nods lying on the subordinated boundaries.
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5. Results of Calculations Performed with the Presented Method

As mentioned before, due to the symmetry, all the calculations were done on the distance of 1/8
model of one machine phase. This fragment in the form of a 2D model, after importing to the MATLAB
environment, was presented in Figure 4.

Figure 4. The view of a 2D model of one pole pitch of the studied machine.

The areas of the numbers: 3, 4, 5, 6, 7 and 9 are permanent magnets lying on the rotor. The area
number 10 represents a part of the rotor through which the magnetic field is closed within the area
of one pole pitch. Areas 8 and 11 represent stator’s yoke, whereas areas 12 and 13 represent high
magnetic permeability elements, serving as a magnetic shunt. Figure 5 presents distribution of the
vector potential ~A for rotor location that corresponds to the model presented in Figure 4, in the
conditions of the occurrence of stator winding current flow of the value of 20A and the magnetic field
from permanent magnets.

Figure 5. ~A vector potential distribution obtained for one pole pitch of the modelled machine, presented
in Figure 4, in the conditions of occurrence of phase winding current and the magnetic field from
permanent magnets.
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Magnetic field distribution determined for one pole pitch of the modelled machine based on a 2D
model is presented in Figure 6. Presented magnetic field distribution has been obtained based on
a distribution of vector potential A presented in Figure 5 which was calculated using method discussed
above, for a rotor position shown in Figure 4.

Figure 6. Magnetic field distribution determined based on the presented 2D model for one pole pitch
of the studied machine.

Figure 7 shows the resulting distributions of the magnetic field in close up, covering the upper
part of the model. By analyzing Figure 7 it can be concluded that proposed 2D model allows
correct reflection of the distribution of the magnetic field within the magnetic shunts and permanent
magnets region.

Figure 7. Magnetic field distribution determined based on the presented 2D model for one pole pitch
of the studied machine—close up covering the upper part of a model.

When analyzing Figures 5–7 we may notice that vector potential distributions and magnetic
field vectors are consistent with the adopted assumptions. This proves that the concepts of boundary
conditions, which were presented in the previous sections, as well as the method of imposing them are



Energies 2019, 12, 4340 10 of 16

correct. Figure 8 presents the results of magnetic co-energy calculations for the modelled machine,
in the function of rotation angle, determined on the basis of 2D models of the single pole pitch of
a machine with an angular step of 1

32 · 2pi[rad] . Those calculations were done with the proposed
method, for the following situations:

• There is only magnetic field from permanent magnets
• Magnetic fields from permanent magnets and phase winding current are considered
• There occurs only magnetic field from phase winding current.

Figure 8. Magnetic co-energy values as a function of rotation angle, determined using presented
method. In case of considering the impact of both phase current and permanent magnets or only
a magnets (up), considering only the phase current (down).

The upper part of Figure 8 presents the results of calculations of the magnetic co-energy value
of the examined machine model as a function of the rotation angle, obtained using the proposed
method. The values marked with red squares, described in the legend as ’M’, mean the co-energy
values determined in the absence of current flow in the stator phase winding. Only the magnetic field
from permanent magnets is taken into account. the values marked with a cross and described as ’I +
M’ refer to the situation when the current flow of 20 A is also taken into account. The bottom part of
Figure 8 presents the co-energy values determined for the case when the presence of the magnetic field
from permanent magnets is not taken into account. The source of the field is only the phase winding
current with a flow of 20 A.

Where current flow is understood as Θ = I f · z

• z—indicates the number of coil windings of phase winding
• I f —is the amperage of the current flowing through this winding.

6. Validation of Developed Method

To check the correctness of the obtained results, the full FEA has been conducted using
Ansys/Maxwell software. The 3D analysis has been carried out for a fully symmetric part of
presented model, with in this case is 1

8 of a whole model. The analyzed part is presented in a Figure 9.
After conducting several experiments, the discretization providing the magnetic field energy error at
0.1% has been chosen to apply for 3D computations.
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Figure 9. Symmetrical section of one phase of the analyzed machine.

In Figure 10. the magnetic field distribution over the radial cross-section of a model being tested
is presented. By comparison, the field distribution presented in Figure 10 with the results of 2D
computations presented in Figures 1 and 7 it can be concluded that the magnetic field flow paths are
reflected correctly in 2D model of exterminated machine. It can be concluded that in both cases the
boundary conditions, as well as the directions of magnetization vectors, have been applied correctly
for 2D analysis.

Figure 10. The distribution of magnetic field over a radial cross-section of analyzed system.

The co-energy values have been calculated based on 3D FEM using Ansys/Maxwell software,
for three cases of considered magnetic field sources, as discussed in the previous chapter. Figure 11
presents a comparison of the results of the magnetic co-energy calculations of the tested machine,
in the case of taking into account both the presence of a magnetic field from permanent magnets and
the current flow in the stator phase winding.

Figure 12 presents the comparison between the results of co-energy, calculated in case when the
phase current is assumed to be zero, based on 3D FEM and proposed method.
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Figure 13 presents the comparison between results obtained for co-energy based on proposed
method and 3D FEM, it concerns the case when only phase current is considered to be a source of
magnetic field.

Figure 11. The values of co-energy determined for a machine being tested, based on 3D FEM (squares)
and using proposed method (line). In case when both the permanent magnet and the phase current are
considered to be a source of magnetic field.

Figure 12. The values of co-energy determined for a machine being tested, based on 3D FEM (squares)
and using proposed method (line). In case when no phase current is considered.
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Figure 13. The values of co-energy determined for a machine being tested, based on 3D FEM (squares)
and using proposed method (line). In case when only phase current is considered.

For the proper accuracy assessment, the relative L2
r norm of error between results of 3D FEA and

these obtained by presented method, has been calculated as follows. The resulting values obtained for
considered cases are presented in Table 1.

L2
r =

√√√√√√√
n
∑

k=0
(y3Dk − y2Dk )

2

n
∑

k=0
y3Dk

(19)

where:

• y3Dk -indicates the resulting co-energy value obtained by 3D FEM for a certain angular position of
rotor, denoted by index k

• y2Dk -indicates the corresponding result obtained by proposed method.

Table 1. Relative difference between values of co-energy calculated using 3D FEM and proposed method.

Case Value of L2
r Error Norm

Both current and permanent magnets are included 0.0091
Only permanent magnets are included 0.0099

Only stator current is included 0.0012

If it comes to incorporation the proposed method into a numerical optimization procedure the
consumption of computational time is crucial. It needs to be pointed out that to compute all the
presented results less than 3 min is needed, while for presented accuracy calculations using 3D FEM
takes more than 6 hours. Table 2 presents a juxtaposition of the number of elements in a model and
a time consumption for both approaches being compared. The triangular elements with linear basis
functions have been used in both 2D and 3D cases.

Table 2. Model complexity and the time performance comparison.

Parameter 2D Calculations 3D Calculations

Number of elements 3753 230,000
Total computational time 2 min 32 sec 6 h 24 min
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The obtained results show that proposed method provides a very good time to accuracy ration so
it can be considered interesting if it comes to numerical optimization of TFM machines.

7. Conclusions

The purpose of the efforts was to develop a computationally efficient method for determining
the magnetic co-energy as a function of rotational angle of transversal field permanent magnet (TFM)
machine. The method of transforming TFM geometry into 2D system, with handle the influence of
magnetic field that comes from stator winding phase coil current, have been proposed. The simplified
2D FE algorithm with model set in Cartesian coordinates was chosen to use. This approach has
the advantage of being relatively easy to implement and use without any sophisticated software
tools. Developed method has been validated by comparison with results of full 3D FEA. Obtained
results allow a conclusion that due to its low time consumption, presented approach is well suited to
incorporate in a numerical optimization procedure of TFM machines. The usefulness of the method
developed and presented here is seen in the fact that not always, especially at the initial stage of design
work, the designer has the possibility to perform a full FEM 3D analysis. In particular, in the case of
numerical design optimization process, when such calculations would have to be carried out cyclically,
the use of FEM 3D places great demands in terms of the amount of computing power needed and
time. In this situation, the application of the approach described in this article would allow significant
saving of time and the computing power needed to engage. In addition, these calculations can be
carried out without the need for expensive dedicated software. It should be emphasized that the
presented calculation method in the form presented here does not allow for taking into account the
impact of phenomena associated with the saturation of the magnetic circuit. Experiments carried out
in the Ansys/Maxwell environment show that this fact is not a problem for the structure analyzed in
this work. This is due to the large size of the air gap, which causes the magnetic circuit to saturate to
a negligible extent. Further work planned in this area will include: Further works on the method being
developed, towards the possibility of testing other TFM machines known from the literature in which
the influence of saturation of the magnetic circuit is significant. Development of modern methods of
TFM machine control using the results of magnetic co-energy calculations.
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