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Abstract: Electro-hydraulic actuators (EHAs) have been widely used in modern industries. However,
sensor faults and actuator faults in EHA systems can arise due to aging during operation, making
the system unstable and unsafe. To solve these issues, fault-tolerant control (FTC) techniques for
EHA systems have been studied intensively. In this paper, an FTC is proposed and developed
for the mini motion package (MMP) EHA system. First, a mathematical model of the MMP
system is formulated and improved to provide position tracking control using a well-known
proportional-integral-derivative (PID) controller. Second, an unknown input observer (UIO)
reconstruction is performed to estimate the states, disturbances, and sensor faults so that an
asymptotically stable control error can be obtained by a linear matrix inequality (LMI) optimization
algorithm through Lyapunov’s stability condition. Third, the FTC designed for the nonlinear
discrete-time system is formed from fault compensation based on a residual logic signal to implement
the fault compensation process and ensure stability and tracking performance with respect to
minimizing impacts of disturbances and sensor faults. Here, residual is defined by the difference
between state response and state estimation. Finally, numerical simulations and experiments of the
MMP system are presented to illustrate the efficiency of the proposed FTC technique.

Keywords: unknown input observer; fault-tolerant control; fault compensation; linear matrix
inequality; fault diagnosis

1. Introduction

Electro-hydraulic actuators have been applied extensively and have become commonplace for
controlling the position of systems in modern industries. There have been many applications in a
variety of fields, such as position control of cutting tools, aircraft wing control, and control of aircraft
landing gears. This is because electro-hydraulic actuators provide stability, precise operation and
control of nonlinear systems under heavy load conditions. However, accurate position control is an
extremely difficult and challenging issue for the operator when faults appear in the system. In the
past few decades, EHA systems have been applied to control the force or the piston position using
linearized control techniques [1] and nonlinear adaptive control techniques based on back-stepping
control [2,3] or sliding mode control [4]. Nonlinear adaptive control problems for the piston-cylinder
position have been addressed. Nevertheless, control will become more difficult if faults or failures
occur in EHA systems. These faults can arise from the components of the sensor due to aging or
broken cables, or in the components of the actuator such as failures of the electrical machinery in the
pump, or leakage, or friction in the pump and the cylinder. Dirty oil also causes disturbances in the
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system. In addition, if sensor or actuator faults are not dealt with promptly, they accumulate and
increase after each closed-loop cycle, and may even damage the system. Therefore, it is essential to
construct advanced fault detection and isolation (FDI) and fault-tolerant control (FTC) techniques
for augmenting the system to ensure the safety, reliability, and sustainability of the systems. The
benefits of FDI or simply fault diagnosis (FD) and FTC techniques for industrial systems have been
recognized [5–11]. The FD algorithm primarily consists of making a binary decision between fault
and no fault. Various fault detection and diagnosis (FDD) and FTC techniques have been developed
by researchers over the few last decades, such as the FDD technique using an extended Kalman filter
(EKF) algorithm for isolation of the sensor faults (SFs) and actuator faults (AFs) [12–14]. However,
they had private functionalities that the FDD in [13] used to detect faults based on a multiple hybrid
Kalman filter, while the FDD in [12,14] implemented a combination of FDI and FTC. Nevertheless,
FTC in [12,14] was not highly effective, but their contributions were greatly recognized, because the
feedback signal from the sensor was ignored when a sensor fault occurred with the Kalman filter
configuration in [14]. The feedback signal for the controller was chosen based on the data from the
sensor signal or the estimated state signal of the UIO, which was realized via a switch, as in [8]. It
receives the signal from the sensor if the sensor is not faulty, and (conversely) will receive the signal
from the estimation state if the sensor is faulty. Nevertheless, this method does not remove the fault,
but only performs the FDI function. As a result, the performance difference between FD and FTC was
significant. That is, the FD was used to analyze and evaluate the occurrence and location of faults in
a tracking system at the same time, while the FTC was used to analyze and evaluate the occurrence
and location of faults and remove impacts from faults or unknown input disturbances. Here, the FTC
carried out the fault compensation process, wherein the magnitude of the faults and disturbances
was determined by the unknown input observer (UIO) scheme based on the system reconstruction
approach [8,9]. The compensator performance obtains fault tolerance from the compensated signal of
the actuator and sensor fault, which depend on an effective estimation of the fault. Therefore, a fault
cancellation process employing the FTC compensation technique was studied and developed [8–11].
This functionality comprises two tasks: fault detection and fault compensation. The residual signal (RS)
can be estimated (this was determined based on the difference between the state response signal and
the estimated state signal [10–12]), and the magnitude of the fault was specified by the fault estimation
of the UIO scheme. Signal compensation is an effective fault-tolerant technology that can operate
as a redesigned controller based on pioneering studies in [15,16]. This method performs smoothly
at cancelling the effects of sensor and actuator faults, as well as disturbances, so that the system can
work well even while faults are occurring (e.g., see [8–15,17]). Its application has been developed by
several researchers, with various fault estimators, such as those using the UIO scheme [8,9,18–21],
singular value decomposition (SVD) [10,11,22], sliding mode observer [23–25], and a fuzzy state-space
observer [26]. A variety of UIO schemes can be used to estimate faults, and these can consist of AFs [27],
SFs [18,28–30], or both AFs and SFs [9,19–22,31,32]. However, estimating the magnitude of faults is an
extremely difficult and challenging task, and this problem has motivated a number of researchers. Some
studies have achieved outstanding success by including advanced observers [9,18,27–29], sliding mode
observer methods [22–24], and UIO reconstruction to estimate the sensor faults of nonlinear systems
shown in [8,9,25,28–30]. Although several applications have been found, there are still limitations
such as the decoupling of the disturbance in [9], leading to difficulties in calculating and applying
such results. Another technique for estimating faults in [8] did not require the separation of the
disturbance. However, the UIO theory of error in dynamic systems was asymptotically stable, and
was a bit cumbersome and limited in terms of its ability to estimate sensor faults. In addition, these
theories were implemented in ideal system conditions during the simulation process so that this work
will be extremely difficult if applied in practice. Estimating faults will become difficult when the
requirements for parameters of a theoretical system and a real system are similar. Thus, we need to
estimate parameters between theory and real systems, which was accomplished using a Matlab tool.
Once the faults had been estimated, the FTC signal compensation was performed by estimated faults
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through the residual signal to make a control decision [11,12]. The sensor fault-tolerant control (SFTC)
technique can operate well even if a sensor fault occurs, as long as (i) the sensor faults and disturbances
are estimated, and (ii) fault compensation is performed. Using this technique, actuator faults and
disturbances will be attributed to sensor faults to implement fault compensation after each loop. One
of the most important aspects of SFTC for faulty sensors is the ability to estimate faults arising in the
sensor, and this technology is proposed and studied in this paper.

Specifically, we consider an SFTC technique using a robust observer-based sensor fault
reconstruction method for a nonlinear discrete-time system with a disturbance and sensor fault.
First, a mathematical model of the MMP EHA system with bounded disturbances in the discrete-time
domain was formulated for adaptive tracking control of an MMP system using a PID controller [3].
Second, a sensor fault estimator, which is the most important component discussed in this paper, is
constructed via the UIO reconstruction method for state and fault estimation [8,22–25]. The UIO, which
we proposed by the LMI optimization algorithm, was analyzed and demonstrated (based on Lyapunov
stability and the error condition) to make the control error in the dynamic system asymptotically stable.
Robust fault estimation can be achieved by integrating the augmented system approach with the LMI
optimization algorithm [11,22–25,27]. In particular, the state and fault estimations were easily obtained
from the UIO reconstruction process. This reconstruction process is very convenient, because the
unknown input disturbance (UID) does not need to be decoupled from estimated states and sensor
faults, as they are calculated [11,12,22,23]. Third, the SFTC compensation carried out from the fault
compensation decision is established by the RS via a fault diagnosis. The SFTC is fault-tolerant, because
it provides compensated signals to sensors based on effective fault estimation because the MMP system
is integrated with a PID tracking controller to achieve good tracking performance. Fourth, simulation
results for the nonlinear MMP system with sensor faults are presented for cases with and without
SFTC, as proposed in this paper, where the situations with and without UID are considered. Finally, an
experimental setup that includes the MMP system is presented. Experimental results are shown for a
sinusoidal command signal in a situation in which the sensor faults and the disturbances were excited.
The experimental results show that the tracking response is good and that the output is approximately
the same as the command within an error of ± 0.25 (mm) (± 0.6 (mm) error in the case without the
SFTC). This implies that the tracking performance of the overall system with the implemented SFTC
works sufficiently well even when a sensor fault occurs. Therefore, the disturbances and sensor
faults are well compensated in the closed-loop system with the SFTC, and the tracking errors are
significantly reduced.

The important contributions of this paper are summarized as follows:

• The mathematical modeling of the MMP system which is compared with [3] to apply to the
UIO reconstruction.

• Constructing an inequality under matrix is performed to determine observer gain by LMI
optimization algorithm.

• A procedure for evaluating the tracking performance of the MMP system under disturbances
and sensor faults is proposed. Based on this evaluation process, the performance level achieved
during simulations and experiments can be easily obtained.

• Our major contribution in this paper shows that the proposed SFTC technique is successfully
applied to reduce minimum impacts of faults and disturbances aimed at stability and safety
insurance for the system.

This paper is organized as follows. In Section 2, the mathematical model of the MMP EHA system
with disturbances and sensor faults is presented. In Section 3, a UIO reconstruction formulated for the
nonlinear discrete-time system is performed to satisfy the discrete-time Lipschitz condition and ensure
asymptotic stability of the state observer under the LMI optimization algorithm. In Section 4, an SFTC
technique is proposed for the fault compensation process based on the sensor fault estimation and the
residual signals. In Section 5, numerical simulations and experimental results are presented, and these
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results are evaluated. Section 6 contains a discussion of the results. Finally, conclusions are presented
in Section 7.

2. Modeling of the EHA System

Considering the dynamics equations of the MMP EHA system, the model in Figure 1 can be
derived using Newton’s Second Law to describe the object Mp [3]:

mp
..
xp + Bv

.
xp + Fsp + F f rc + d = A1P1 −A2P2 (1)

Here, mp is the equivalent mass, while xp,
.
xp, and

..
xp are the position, velocity, and acceleration,

respectively; A1 and A2 are the area in the two chambers; Fsp, F f rc, Bv, and d are the external load force
of the spring, friction force, viscous damping coefficient, and bounded UID, respectively; and P1 and
P2 are the pressures in the two chambers.

The spring force Fsp can be represented as

Fsp = Kspxp, (2)

where Ksp is the spring stiffness.
The F f rc friction force can be represented as [29]

F f rc =
√

2e(Fbrk − FC)e
−(

vp
vst

)
2 vp

vst
+ FC tanh

( vp

vst

)
, (3)

where Fbrk and FC are the breakaway friction and the Coulomb friction, respectively; and vp and vst are
the velocity and Stribek velocity threshold, respectively.
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The hydraulic continuity equations for the EHA system can be described as [3]

.
P1 = ∆1

(
Q1 −Qi −A1

.
xp

)
, (4)

.
P2 = ∆2

(
Q2 + Qi + A2

.
xp

)
, (5)



Energies 2019, 12, 4337 5 of 22

where

∆1 = βe/
(
V01 + A1xp

)
, ∆2 = βe/

(
V02 −A2xp

)
, Q13i = Q1v −Q3v −Qi, and Q24i = Q2v −Q4v + Qi.

βe and Qi are the effective bulk modulus in each chamber and the internal leakage flow rate of
the cylinder, respectively; and V01 and V02 are the initial control volumes of the first and the second
chamber, respectively [3].

Q1 = Qpump + Q1v −Q3v

Q2 = −Qpump + Q2v −Q4v
(6)

Here, Qpump = Dpω. Q1v and Q2v are the flow rate through the pilot-operated check valve on the
left and on the right, respectively. Q3v, Q4v and Qpump are the flow rates through the pressure relief
valve on the left, on the right, and the pump flow rate, respectively. Dp and ω are the displacement and
the speed of the servo pump, as shown in Figure 1.

Based on the system’s dynamics equations shown in Equations (1)–(6), the dynamic equation

for the system can be represented by a state vector
[

x1 x2 x3 x4
]T

=
[

xp
.
xp P1 P2

]T
and

rewritten as 
.
x1
.
x2
.
x3
.
x4

 =


x2
1

mp

[
(A1x3 −A2x4) − Bv − F f rc −Kspx1 − d

]
βe

V01+A1x1

(
Qpump + Q13i −A1x2

)
βe

V02−A2x1

(
−Qpump + Q24i + A2x2

)
, (7)

The system of equations expressed in (7) can be represented as

.
x = Ax + f (x, u) + Ddd, (8)

where

A =


0 1 0 0
α1 α2 α3 α4

0 0 0 0
0 0 0 0

; f (x, u) =


0
−F f rc

mp

∆1
(
Dpu + Q13i −A1x2

)
∆2

(
−Dpu + Q24i + A2x2

)
; Dd =


0
−1
mp

0
0

,

α1 =
−Ksp

mp
;α2 =

−Bv

mp
;α3 =

A1

mp
;α4 =

−A2

mp
; u = ω

Equation (8) shows that the matrix A is a constant matrix. The system of equations shown above
can be rewritten as a nonlinear discrete-time state space model as shown below:

xk+1 = Akxk + φxk,uk + Dddk, (9)

where
xk =

[
xT

1k xT
2k xT

3k xT
4k

]T
,

Ak =


1 Ts 0 0

Tsα1 1 + Tsα2 Tsα3 Tsα4

0 0 1 0
0 0 0 1

;φxk,uk = Ts f (xk, uk); dk = Tsd

Ts is a sampling time
Obviously, system states are performed from changing the speed of the bi-directional pump,

which is controlled by a DC motor. The system is controlled via the input speedω of the DC motor so
that the output position x1k (or the measurement output yk) tracks as closely as possible to a reference
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position yrk. Considering the influences and reducing the impacts of sensor fault on the measurement
output signal are the objective of this paper, and these will be described in the following section.

3. UIO for a Nonlinear Discrete-Time System

A nonlinear discrete-time system subjected to an unknown input disturbance can be represented
as follows: {

xk+1 = Akxk + Bkuk + φxk,uk + Dddk
y k = Ckxk + Fssk

, (10)

where xk ∈ Rn is the state vector, yk ∈ Rp is the output vector, dk ∈ Rr is the unknown input or
disturbance vector, and sk ∈ Rq is the sensor fault vector.Ak, Bk, Ck, Dd, and Fs are known constant
matrices with suitable dimensions. φxk,uk = φ(xk, uk) is a nonlinear function vector ∀xk, xk ∈ Rn,
uk ∈ Rm.

If it is assumed that the Lipschitz condition applies to the discrete-time nonlinear function vector
φxk,uk , then there exists a constant τ > 0 such that [8,9,11,23]

‖∆φxk,uk‖ ≤ τ‖xk − x̂k‖, (11)

where
‖∆φxk,uk‖ = ‖φxk,uk −φx̂k,uk‖

The nonlinear system (10) can be rewritten as Exk+1 = Akxk + φxk,uk
+ Gsk + Dddk

yk = Ckxk
, (12)

where

Ak =

[
Ak 0
0 −Ip

]
; E =

[
In 0
0 0p

]
Dd =

[
Dd
0

]
; Bk =

[
Bk 0

]T
;

Bk = 0; Ck =
[

Ck Fs
]
; G =

[
0 Ip

]T

xk =
[

xT
k sk

T
]T
∈ Rn; φxk,uk

=
[
φT

xk,uk
0

]T
∈ Rn

with n = n + p.
Based on [11,21], a UIO can be built for the nonlinear discrete-time system as shown below.

zk+1 = Fx̂k + L(yk − ŷk) + Γφx̂k,uk

x̂k = zk + Hyk

ŷk = Ckx̂k

, (13)

Here, x̂k ∈ Rn, ŷk ∈ Rp, and zk ∈ Rn are the estimate of the state vector xk, the estimate of the
measurement output vector, and the state vector of the observer, respectively. The observer matrices
F ∈ Rn×n, Γ ∈ Rn×n, H ∈ Rn×p, and L ∈ Rn×p should be designed according to the state error vector.

The state error can be defined as
ek = xk − x̂k, (14)

From Equations (12), and (13), we can write as

x̂k+1 = Fx̂k − Lŷk + Lyk + Γφx̂k,uk
+ HCkxk+1

=
(
F− LCk

)
x̂k + Lyk + Γφx̂k,uk

+ HCkxk+1
(15)

Equation (12) can be written as:

ΓExk+1 = ΓAkxk + Γφxk,uk
+ ΓGsk + ΓDddk, (16)
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Subtracting (15) from (16), we obtain:(
ΓE + HCk

)
xk+1 − x̂k+1 =

(
ΓAk − LCk

)
xk

−

(
F− LCk

)
x̂k + Γ∆φxk,uk

+ ΓGsk + ΓDddk
(17)

Based on Equations (16) and (17), the estimation error of Equation (16) can be written as

ek+1 = Nek + Γ∆φxk,uk
+ ΓDddk, (18)

where
N = ΓAk − LCk, (19)

If the following conditions are satisfied:

ΓE + HCk = In, (20)

ΓG = 0 (21)

ΓAk − LCk = N (22)

ΓAk = F (23)

Without loss of generality, the matrix Γ can be defined as

Γ =

[
In φ1

−Ck φ2

]
, (24)

where φ1 ∈ Rnxp and φ2 ∈ Rpxp are arbitrary matrices.
By solving the system in Equations (20) to (24), we obtain:

Γ =

[
In 0
−Ck 0

]
; φ1 = φ2 = 0, (25)

and
H =

[
0 Ip

]T
,

The inequality in Equation (11) needs to be satisfied for the nonlinear function ∆φxk,uk
as:

‖∆φxk,uk
‖ ≤ τ‖xk − x̂k‖, (26)

where

τ =

[
τIn 0
0 0p

]
∈ Rn

From (26), the matrix Ξ can be written as follows:

Ξ =

 ek

∆φxk,uk

T[
−τTτ 0

0 In

] ek

∆φxk,uk

 ≤ 0, (27)

Lemma 1 ([9]). The necessary and sufficient conditions for the existence of the UIO in (13) for the system in
(12) are as follows.

(a) rank(CkDd) = rank(Dd)

(b)
[

Ak − In Dd
Ck 0

]
= n + p, and Dd is a full column rank
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(c)
[

Ak − zIn Dd
Ck 0

]
= n + p ∀z with |z| > 1

Lemma 2 ([12]). For the following equation

ζk+1 = Φζk + uk, (28)

the eigenvalues of the matrix Φ ∈ Rn×n belong to the circular region D(α,ρ) with center α + j0 and radius ρ if
and only if there exists a symmetric positive definite matrix P ∈ Rn×n such that the following condition hold[

−P P(Φ − αIn)

∗ −ρ2P

]
< 0, (29)

Theorem 1. For system (12), there exists a robust UIO in the form of (13) such that the output error satisfies
‖eyk‖ ≤ µ‖dk‖ in a prescribed circular region D(α, r) if there exists a positive-definite symmetric matrix P ∈ Rn×n,
matrix Q ∈ Rn×p, and positive scalars µ, and ε such that the following inequalities hold:

−µIp 0 Ck 0 0
∗ −P PΓAk −QCk PΓ P

(
ΓDd

)
∗ ∗ −P + ετTτ 0 0
∗ ∗ ∗ −εIn 0
∗ ∗ ∗ ∗ −µId


< 0, (30)

and [
−P PΓAk −QCk − αP
∗ −r2P

]
< 0, (31)

where Q = PL.
Then, the state observer (13) is asymptotically stable.

Proof of Equation (26). Consider a Lyapunov function Vk = eT
k Pek. The difference between two

adjacent steps of the Lyapunov function ∆Vk = Vk+1 −Vk is calculated as

∆Vk = Vk+1 −Vk

= eT
k+1Pek+1 − eT

k Pek

= λT


NTPN − P NTPΓ NTPΓDd

∗ ΓTPΓ ΓTPΓDd

∗ ∗

(
ΓDd

)T
PΓDd

λ
(32)

where λ =
[

eT
k ∆φ

T
xk,uk

dT
k

]T
.

Moreover, Equation (27) can be expressed as:

Ξ = λT


−τTτ 0 0

0 In 0
0 0 0

λ ≤ 0, (33)
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Combining Equations (32) and (33) leads to:

∆Vk ≤ λT


NTPN − P NTPΓ NTPΓDd

∗ ΓTPΓ ΓTPΓDd
∗ ∗ σ33

λ− εΞ

= λT


σ11 NTPΓ NTPΓDd

∗ σ22 ΓTPΓDd
∗ ∗ σ33

λ
(34)

where
σ11 = NTPN − P + ετTτ; σ33 =

(
ΓDd

)T
PΓDd

σ22 = ΓTPΓ − εIn

To satisfy the measurement error condition ‖eyk‖ ≤ µ‖dk‖ of the output, the matrix Θ can be
represented as

Θ =

[
ek
dk

]T 1
µC

T
k Ck 0
0 −µId

[ ek
dk

]
≤ 0, (35)

Using Equations (32) and (35), the matrix Tn can be written as

Tn = ∆Vk + Θ ≤ 0, (36)

Finally, an inequality of matrix Tn can be represented as

Tn ≤ λT


σ11 +

1
µC

T
k Ck NTPΓ NTPΓDd

∗ σ22 ΓTPΓDd
∗ ∗ σ33 − µId

λ
= λTΠnλ

(37)

where

Πn =


−P + ετTτ+ 1

µC
T
k Ck 0 0

∗ −εIn 0
∗ ∗ −µId


+


NTPN NTPΓ NTPΓDd

∗ ΓTPΓ ΓTPΓDd

∗ ∗

(
ΓDd

)T
PΓDd


(38)

Applying the Schur Complement Lemma [33] to Equation (38) for Πn < 0, we have:

Πn′ =


−P PΓAk − PLCk PΓ PΓDd

∗ −P + ετTτ+ 1
µC

T
k Ck 0 0

∗ ∗ −εIn 0
∗ ∗ ∗ −µId

, (39)

Similarly, Equation (30) is satisfied by applying the Schur Complement Lemma [32] to Equation (39)
for Πn′ < 0. �

Proof of Equation (27). Using Lemma 2, inequality (31) is met by applying Equation (18). �

In summary, the design procedure for the sensor fault estimator consists of the following steps:

Step 1: Build the augmented system (12) for the nonlinear discrete-time system (10).
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Step 2: Determine the matrices Q, P, F, and L = P
−1

Q by solving the LMI matrix inequalities (30)
and (31).

Step 3: Obtain the state estimate and the fault estimate as x̂k =
[

In on×p
]
x̂k, and ŝk = Csx̂k,

respectively, where Cs =
[

or×n Ip
]
.

Remark 1. This UIO reconstruction only applies to observable systems. For systems that are not possible to
observe, the reduced-order observer construction shown in [33,34] should be applied.

Remark 2. This paper uses the sensor fault reconstruction in [8,26] to design a discrete-time nonlinear observer
system for the state observer that is asymptotically stable. Here, constructing and proving Theorem 1 to apply the
LMI optimization algorithm was made simpler [8] by using Lyapunov’s stability under matrix equations. With
this sensor fault reconstruction, it is possible to estimate the faults using the UIO model, which has advantages
such as directly estimating the sensor fault on the UIO without decoupling the disturbance matrix, as shown
in [9].

Remark 3. Constructing a robust UIO reconstruction method using LMI optimization algorithm was utilized
by a function H∞ as performed in [8]. However, in this paper, by applying Lyapunov stability theory under the
formulated matrix equations, a robust UIO reconstruction method for using the LMI optimization algorithm was
demonstrated that was simpler than in [8], and in which the state observer is asymptotically stable.

4. Sensor Fault-Tolerant Control for the MMP System

4.1. Fault Diagnosis-Based General Residual from the Sensor Fault Signal

The general residual due to a sensor fault is defined as the difference between the response signal
and the feedback estimation signal from the UIO. The residual vector is calculated as [11]

rk = yk − ŷk, (40)

The FD method consists of two main tasks: fault detection and fault isolation. The fault detection
process involves determining whether a fault has occurred based on information from the RS, which
means that rk = 0 if sk = 0 without fault, and rk , 0 if sk , 0 with fault [11]. The fault isolation
process is executed to make a binary decision signal based on the fault detection process through
executing logic that is constructed via the RS and the threshold value k. The binary decision signal is 0
when |rk| ≤ k, and conversely, this signal is 1 when |rk| > k.

4.2. Sensor FTC Compensation

Sensor fault output from the measurements influences the closed-loop behavior and corrupts the
state estimation.

The FTC designed to diagnose the position SFs of the MMP system is shown in Figure 2. The PID
main controller performs conventional closed-loop position tracking control such that the measurement
signal is employed, as in [5]

yck = yk − Fsŝk, (41)
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Fault compensation is performed by a logical process wherein fault magnitude is received from
the estimated fault signal based on the residual signal to make a control decision based on the binary
signal. The fault compensation process will not be executed if the binary decision signal has a value
equal to 0; otherwise, if the binary decision signal is equal to 1, the fault compensation process will be
executed using the threshold k. [11].

4.3. PID Control for MMP System

The control error is one of the most important factors to be chosen for evaluating the PID controller
performance. The control error is defined as

ek = yr − yck, (42)

The maximum position error ekmax of the position control error ek shown in Figure 3 can be
described as

ekmax = yrmax − yckmax, (43)

where yrmax and yckmax are the maximum values of the reference and response signals in the time
period (t1, t2).
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The minimum position error ekmin of the position control error ek is computed for the time period
(t1, t2) in Figure 3 as

ekmin = yrmin − yckmin, (44)

where t1 and t2 are the begin time and the end time of the time period used to calculate the position
control error. During the time period (t1, t2), yrmin and yckmin are the minimum reference signal and
the minimum response signal, respectively, as shown in Figure 3.

The maximum control error of the system during the time (t1, t2) is obtained as

eckmax = max(|ekmax|, |ekmin|), (45)
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The control error performance ηk of the system is defined as follows based on the maximum
control error eckmax during the time period (t1, t2):

ηk =

(
1−

eckmax

skmax

)
× 100 (%), (46)

skmax = smax − smin (47)

where smax and smin are the maximum and minimum sensor faults, respectively, during the time period
(t1, t2).

To explicitly evaluate the effect of a fault, the sensor fault error es f k is defined as

es f k = e f k − e0ck, (48)

where e f k and e0ck are the position control error in the case of sensor fault and the position control error
for the case without sensor fault, respectively.

The maximum sensor fault error es f kmax of the sensor fault error es f k is computed as

es f kmax = max
(∣∣∣e f kmax

∣∣∣, |e0ckmax|
)
, (49)

Similarly, the control error performance ξk of the system during the time period (t1, t2) is calculated
in terms of the sensor fault error es f kmax as

ξk =

(
1−

es f kmax

skmax

)
× 100 (%), (50)

5. Simulation and Experiment Results

5.1. Parameters of the MMP System

Determining the parameters of the MMP system is complex and difficult when the parameters of
the theory system are similar to the parameters of the experimental system. Therefore, we determined
the main parameters of the MMP real system to specify the parameters of the real system. These
parameters are defined as shown in Table 1 based on the values of a real system, namely, a KYB MMP
with a φ40–φ20–250 mm cylinder and a 24V DC motor. After the fundamental parameters were
confirmed by normal calculations, the other parameters were determined by using the parameter
estimation method in Matlab. Finally, the main parameters of the MMP real system are listed in Table 1.

Table 1. Basic parameters of the MMP system.

Components Values Units

Ah 0.0013 m2

Ar 9.4 × 10-4 m2

Vch 2.09 × 10-4 m3

Vcr 4.0065 × 10-5 m3

mp 10 kg
βe 2.9 × 108 Pa

Ksp 2383 Nm
ρ 870 Kg/m3

Dp 2.5 × 10−6 m3

The parameters of the MMP model in Equation (9) were determined to be

Bk =
[

0 0 0 0
]

T; Ck =
[

1 0 0 0
]
; Fs= 1;Ts = 0.001
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Ak =


1 Ts 0 0

−1.8311e− 01 9.4639e− 01 9.7297e− 08 −9.1700e− 08
0 0 1 0
0 0 0 1


where a sampling time Ts = 0.001(s) is applied to all of the simulation processes.

The reference signal is given as

yr(t) = 1.5 sin(0.8t) + 1.5, (51)

We assume that the sensor fault s(t) is given as

s(t) =



0 if t < 11
1.5t− 16.5 if 11 ≤ t ≤ 12
2251.5− 187.5t if 12 ≤ t ≤ 12.008
0 if 12.5 ≤ t ≤ 22.75
5t− 455/4 if 22.75 ≤ t ≤ 23
1.25 if 23 ≤ t ≤ 29.5
150− 5t if 29.5 ≤ t ≤ 30
0 if t > 30

, (52)

Based on design experience, we chose positive scalars τ = 30, r = 0.05, α = 0.3, ε = 0.2, and
µ = 0.1. We can solve for the matrices P, Q, L and F using the LMI defined in (30), and (31) if the
solution is feasible. We obtained the following results:

Γ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
−1 0 0 0 0


, H =


0
0
0
0
1


Q =


−3.5384e + 01
1.6396e− 05
−5.8678e− 12
5.5310e− 12
−3.5384e + 01


; L =


6.0184e + 03
−1.4685e + 02
−2.0567e− 04
1.9385e− 04
−6.0187e + 03



P =


1.1636e + 02 −6.0117e− 05 1.8585e− 11
−6.0117e− 05 3.5111e− 09 −1.5609e− 16
1.8585e− 11 −1.5609e− 16 3.3143e− 09
−1.7518e− 11 1.4711e− 16 −1.4222e− 23
1.1636e + 02 −6.0116e− 05 1.8585e− 11

−1.7518e− 11 1.1636e + 02
1.4711e− 16 −6.0116e− 05
−1.4222e− 23 1.8585e− 11
3.3143e− 09 −1.7518e− 11
−1.7518e− 11 1.1636e + 02



F =


9.9991e− 01 9.7297e− 04 4.9095e− 11
−1.8311e− 01 9.4639e− 01 9.7297e− 08

0 0 1
0 0 0

−9.9991e− 01 −9.7297e− 04 −4.9095e− 11

−4.6271e− 11 0
−9.1700e− 08 0

0 0
1 0

4.6271e− 11 0


5.2. Simulation Results

A model of the sensor FTC for the MMP system was constructed in Simulink to perform numerical
simulations using input and output signals where we assumed that the sensor is faulty, as described by
Equation (52). Simulation results of the MMP system were compared between a system without UID
(dk = 0) and a system with UID dk = 0.0025rand(2, t) (mm), which are shown in Figures 5–8. Here,
the PID controller parameters (KP = 1.63193, KI= 2.45106, and KD= 0.01068) are used in all simulations
with a set point of the initial state in the system x0k = [0, 0, 0]T.

The simulation results in Figure 4a show the effects of the fault on the PID position response
signal, as well as the fault estimate from 11s to 12.008 s, and from 22.75 s to 30 s for the case without
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FTC. We can also see that the PID position response signal follows the reference signal at locations
where there is no fault impact.
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numerical simulations using input and output signals where we assumed that the sensor is faulty, as 
described by Equation (52). Simulation results of the MMP system were compared between a system 
without UID (  0 kd = ) and a system with UID 0.0025 , ) ( 2kd rand t= (mm), which are shown in Figures 
5–8. Here, the PID controller parameters (KP = 1.63193, KI= 2.45106, and KD= 0.01068) are used in all 
simulations with a set point of the initial state in the system [ ]0 0,0, 0 T

kx = . 
The simulation results in Figure 4a show the effects of the fault on the PID position response 

signal, as well as the fault estimate from 11s to 12.008 s, and from 22.75 s to 30 s for the case without 
FTC. We can also see that the PID position response signal follows the reference signal at locations 
where there is no fault impact. 

In contrast, the PID position response signal does not follow the reference signal at locations 
where there is a fault change. The PID position response signal shown in Figure 4b is also affected by 
an unknown disturbance of the actuator. Additionally, the sensor fault and its estimate are similar to 
one another, as shown in Figure 5a, which means that the fault estimator of the UIO works well. A 
big difference between the sensor fault and the estimated fault is observed in Figure 5b under the 
impact of the disturbance kd . 

0 5 10 15 20 25 30 35
-2

-1

0

1

2

3

4

PI
D

 re
sp

on
se

 a
nd

 ít
 e

st
im

at
io

n 
(m

m
)

Time (s)

 Reference input (mm)
 PID position response (mm)
 Position estimation (mm)

 
0 5 10 15 20 25 30 35

-2

-1

0

1

2

3

4

Po
si

tio
n 

re
sp

on
se

 a
nd

 it
s 

es
tim

at
io

n 
(m

m
)

Time (s)

 Reference input (mm)
 PID position response (mm)
 Position estimation (mm)

 
(a) (b) 

Figure 4. Position and estimate of position without FTC (a) disturbance 0kd = , (b) disturbance kd . Figure 4. Position and estimate of position without FTC (a) disturbance dk = 0, (b) disturbance dk .

In contrast, the PID position response signal does not follow the reference signal at locations
where there is a fault change. The PID position response signal shown in Figure 4b is also affected by
an unknown disturbance of the actuator. Additionally, the sensor fault and its estimate are similar to
one another, as shown in Figure 5a, which means that the fault estimator of the UIO works well. A big
difference between the sensor fault and the estimated fault is observed in Figure 5b under the impact
of the disturbance dk.Energies 2019, 12, x FOR PEER REVIEW 15 of 23 
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Figure 6. Position and its estimation with FTC (a) disturbance  0 kd = , (b) disturbance kd . 

The simulation results in Figure 7a,b shows that the sensor fault and disturbance of the actuator 
decreased to approximately zero after the SFTC compensation procedure. This demonstrates that the 
SFTC technique and the sensor fault estimator work well for the MMP system. Disturbances coming 
from the actuator can be cancelled after each fault compensation, so we can use only a sensor FTC for 
fault compensation without needing an additional actuator FTC for fault compensation. 
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Figure 5. Sensor fault and estimated fault without FTC: (a) disturbance dk = 0; (b) disturbance dk .

In contrast, we see in Figure 6a,b that the PID position response signal and the reference signal are
approximately the same when the SFTC technique is applied to implement the fault compensation
process. The system still operates normally, even when the fault and disturbance are compounded.
Figure 6 shows that the response signal nearly replicates the desired signal, and this issue also proves
that the PID position response signal with the disturbance and without disturbance is approximately
the same, although the system is impacted by the disturbance.
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Figure 6. Position and its estimation with FTC (a) disturbance dk = 0, (b) disturbance dk.

The simulation results in Figure 7a,b shows that the sensor fault and disturbance of the actuator
decreased to approximately zero after the SFTC compensation procedure. This demonstrates that the
SFTC technique and the sensor fault estimator work well for the MMP system. Disturbances coming
from the actuator can be cancelled after each fault compensation, so we can use only a sensor FTC for
fault compensation without needing an additional actuator FTC for fault compensation.Energies 2019, 12, x FOR PEER REVIEW 16 of 23 
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The results of the PID controller performance are shown in Table 2. The results were used to
evaluate the effectiveness of the SFTC technique of the PID controller based on data related to the
maximum control error eckmax and the control error performance ηk. The evaluation was conducted
by numerical simulation with and without a disturbance and corresponding cases with SFTC and
without SFTC, respectively. We can clearly see that the maximum control error eckmax for the case
without a disturbance strongly decreased when SFTC was applied, which decreased from 1.424 to
0.175 from 0.1 s to 15 s, 0.431 to 0.041 during 15 s to 25 s, and 0.388 to 0.139 from 25 s to 35 s. The
control error performance ηk of the PID controller was high when the SFTC was used, as it showed the
average error performance eckmax (ηk) increased from 46.52% to 92.67% for the cases without and with
SFTC, respectively. Similar results also show the maximum control error eckmax for the cases when the
disturbance strongly dropped from 1.450 to 0.185, 0.608 to 0.062, and 0.480 to 0.062, corresponding to
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times of 0.1 s to 15 s, 15 s to 25 s, and 25 s to 35 s, respectively, while the average error performance
eckmax (ηk) significantly increased from 38.77% to 92.58% when SFTC was employed, as shown in
Table 2. The disturbance showed a pretty big influence in the case without SFTC, with an average error
performance eckmax from 46.52% to 38.77% which is compared to average error performances eckmax
from 92.67% to 92.58% for the case using SFTC. Overall, most of the impacts of the disturbance and
sensor fault were reduced under SFTC technology.

Table 2. Error assessment eckmax using the PID controller.

Content
Without FTC With FTC

dk=0 With dk dk=0 With dk

eckmax(mm) ηk(%) eckmax(mm) ηk(%) eckmax(mm) ηk(%) eckmax(mm) ηk(%)

From 0.1 s to 15 s 1.424 5.06 1.450 3.30 0.175 88.33 0.185 87.65
From 15 s to 25 s 0.431 65.53 0.608 51.40 0.041 96.71 0.062 95.07
From 25 s to 35 s 0.388 68.97 0.480 61.57 0.139 92.98 0.062 95.03

Average error performance
eckmax from 0.1s to 35s - 46.52 - 38.77 - 92.67 - 92.58

Moreover, the results in Figure 8 clearly show the influence of sensor faults on the control error
signal eck in the cases without disturbances and without SFTC. In contrast, when we utilize the SFTC
technique to implement a simulation in a case without a disturbance, the effect of the sensor fault is so
small that the control error signal eck in the case with a sensor fault is approximately the control error
signal eck in the case without a sensor fault, which is shown in Figure 8b.
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Figure 8. The position control error eck of the PID controller without disturbance dk for the cases:
(a) without SFTC, (b) with SFTC.

We can also see the influence of the sensor fault on the control error signal es f k in the cases without
disturbance and without SFTC more clearly in Figure 9a as well as in Figure 9b for the case without
disturbance and with SFTC.
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Figure 9. The position control error es f k of the PID controller without disturbance dk for the case:
(a) without SFTC, (b) with SFTC.

Similarly, the results of the control error signal eck show a pretty big influence under disturbance
conditions for the case without a SFTC as shown in Figure 10a. Although the system does have a
disturbance and sensor fault, the system successfully removed faults when the SFTC was performed as
shown in Figure 10b.Energies 2019, 12, x FOR PEER REVIEW 18 of 23 
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(b) with SFTC.

The influence of sensor fault on the control error signal es f k in Figure 11a,b showed a result similar
to that shown in Figure 9a,b.
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Similarly, an evaluation of the SFTC technique based on the maximum sensor fault error es f kmax
and the error performance ξk is shown in Table 3. The average performance ξk for the sensor fault error
es f kmax is 44.53% without SFTC and 94.91% with SFTC for the case without disturbance dk. The lowest
performance interval (0.61%) is from 0.1 s to 15 s. The average performance ξk is reduced by increasing
the disturbance dk. The system achieves a performance of only 36.74% without SFTC. However, the
system achieves a performance of 93.78% when SFTC technology is applied for the disturbance dk case.
High average performance ξk was obtained by applying the SFTC technique to the MMP system in the
cases without a disturbance (94.91%) and with a disturbance (93.78%). These results demonstrate that
the SFTC technique works well.The results of the control error evaluation shown in Tables 2 and 3 can
demonstrate the superiority of the proposed FTC method compared to the traditional PID method.
This superiority can be shown in average error performance eckmax which was increased by 46.15%
(from 46.52% to 92.67%) of without disturbance case and by 53.81% (from 38.77% to 92.58%) of with
disturbance case that shown in Table 2.

Table 3. Error assessment es f kmax using the PID controller with disturbance dk.

Content
Without FTC With FTC

dk=0 With dk dk=0 With dk

esfkmax(mm) ξk(%) esfkmax(mm) ξk(%) esfkmax(mm) ξk(%) esfkmax(mm) ξk(%)

From 0. 1 s to 15 s 1.464 2.37 1.490 0.61 0.215 85.64 0.225 84.95
From 15 s to 25 s 0.431 65.49 0.609 51.30 0.006 99.54 0.023 98.15
From 25 s to 35 s 0.428 65.75 0.521 58.31 0.006 99.54 0.022 98.24

Average error performance
es f kmax from 0.1 s to 35 s - 44.53 - 36.74 - 94.91 - 93.78

In addition, this evaluation can also show in Table 3 by average error performance es f kmax which
was increased by 50.38% (from 44.53% to 94.91%) of without disturbance case and by 57.04% (from
36.74% to 93.78%) of with disturbance case.

5.3. Experimental Results

5.3.1. Diagram of the Testbed for the MMP System

In this section, the configuration of the EHA testbed setup is presented, where the EHA system
includes a hydraulic cylinder, which is adjusted directly by operation of the bidirectional pump, as
shown in Figure 12a. This means that changes in the cylinder speed depend on electric power shifts of
the motor.
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Figure 12. The testbed for the EHA system: (a) structure of the testbed for the EHA system,
(b) experimental EHA testbed.

Therefore, to control the piston position of the cylinder, the relationship between electrical energy
changes of the motor and piston position changes needs to be established. To do this, a linear variable
differential transformer (LVDT) sensor is used to obtain data from the piston in the form of a digital
signal. When the LVDT sensor TCLA-30A touches the surface of object Mp, as shown in Figure 12, the
signal will be transferred to amplifier DSI-301B. Then, this signal will be transferred to the computer
through a PCI card (NI 6251). Conversely, if the difference between the desired signal and the feedback
signal from the LVDT sensor is zero, then the computer will send the analogue signal to the motor
driver via PCI card NI 6251. As a result, the system operates under closed-loop control. The controller
for the testbed is implemented on a personal computer (core 2 Duo 2.2 GHz) using Matlab Simulink
version 2013b (32 bits) and the Real-time Windows Target Toolbox.

5.3.2. Results

SFTC experimental scheme of the MMP real system is performed using the setup shown in the
diagram in Figure 12a,b. This technique is proposed to improve the performance of the PID controller
for the MMP real system. The principle of this process is as follows. The feedback signals from the
LVDT sensor signal where these sensor signals are filtered by a lowpass filter in combination with
the mean value to smooth out the noise, which makes control easier. The experimental results were
performed under a predetermined fault condition in (52) and the reference input in (51) for the MMP
system. The results are shown in Table 4. The value of the error performance ηk for the case without
SFTC was −5.69%, which indicates low performance. A negative value for the performance implies
that the real system is affected by several faults, disturbances, and noises that are unknown.

Table 4. Evaluation of the error eckmax using the PID controller.

Content
Sinusoidal Reference Signal

Without FTC With FTC
eckmax(mm) ηk(%) eckmax(mm) ηk(%)

From 0.5 s to 15 s 1.721 −4.74 0.903 39.80
From 15 s to 25 s 0.979 21.64 0.254 59.99
From 25 s to 35 s 1.550 −3.96 0.254 79.68

Average error performance from 0.5 s to 35 s - −5.69 - 59.82

The experimental results are shown in Figure 13. The PID position response signal is significantly
improved when using the SFTC technique, as shown in Figure 14a,b. The effectiveness of this technique
was evaluated using error performance ηk, as shown in Table 4. The differences between the average
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error performances are listed in Table 2 and 4 for the cases with and without SFTC, showing the
effectiveness of the technique. Specifically, the control error performance ηk is 59.82% for the case in
which the SFTC technique was applied, which is shown in Figure 14a,b.
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Figure 14. PID position error in the experiment: (a) the case without SFTC, (b) the case with SFTC. 

6. Discussion 

In this paper, a mathematical model was developed based on [3]. In addition, a UIO based on 
the system reconstruction approach is applied to perform state and fault estimation. These 
techniques were studied and improved upon based on the proofs in previous papers [11,21]. 
Asymptotic stability of the state observer is guaranteed using the LMI optimization algorithm. Here, 
the numerical simulation process was conducted successfully on the MMP model. In particular, the 
SFTC technique was implemented effectively in the simulations and experiments. The experimental 
results showed that the position response in the case of SFTC was better than without SFTC. This 
performance of the applied SFTC resulted in an increase of 65.51% (from −5.69% to 59.82%) as shown 
in Table 4. 
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The SFTC technique was performed successfully in simulations and experiments for a nonlinear 
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cancelled out when the SFTC technique was applied. In experiments using a real MMP system, the 
average performance was 59.82% when the SFTC technique was used. With the SFTC technique, the 
average performance increased by 65.51% (from −5.69% to 59.82%) and the control error improved, 
as shown in Table 4 and Figure 14a,b. Thus, the system can work well even when faults occur. 
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Figure 14. PID position error in the experiment: (a) the case without SFTC, (b) the case with SFTC.

6. Discussion

In this paper, a mathematical model was developed based on [3]. In addition, a UIO based on the
system reconstruction approach is applied to perform state and fault estimation. These techniques were
studied and improved upon based on the proofs in previous papers [11,21]. Asymptotic stability of the
state observer is guaranteed using the LMI optimization algorithm. Here, the numerical simulation
process was conducted successfully on the MMP model. In particular, the SFTC technique was
implemented effectively in the simulations and experiments. The experimental results showed that the
position response in the case of SFTC was better than without SFTC. This performance of the applied
SFTC resulted in an increase of 65.51% (from −5.69% to 59.82%) as shown in Table 4.

7. Conclusions

The SFTC technique was performed successfully in simulations and experiments for a nonlinear
EHA system. The SFTC performance in simulations was approximately 93.78% in the case with a
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disturbance and 94.91% in the case without a disturbance. The fault and disturbance were nearly
cancelled out when the SFTC technique was applied. In experiments using a real MMP system, the
average performance was 59.82% when the SFTC technique was used. With the SFTC technique, the
average performance increased by 65.51% (from −5.69% to 59.82%) and the control error improved, as
shown in Table 4 and Figure 14a,b. Thus, the system can work well even when faults occur.

Author Contributions: The mathematical modelling of the MMP system which is constructed to apply to the
UIO reconstruction. An inequality under matrix is performed to determine observer gain by LMI optimization
algorithm and a procedure for evaluating the tracking performance of the MMP system under disturbances and
sensor faults is proposed. Constructing the evaluation process of the error performance during simulations and
experiments was performed to determine the level achieved. T.V.N. and C.H.’s major contribution in this paper is
that the proposed SFTC technique is successfully applied to reduce minimum impacts of faults and disturbances
aimed at stability and safety insurance for the system.
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