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Abstract: Wind farms (WFs) include an enormous number of wind turbines (WTs) in order to achieve
high capacity. The interaction among WTs reduces the extracted amount of wind energy because
wind speed decreases in the wake region. The optimal placement of WTs within a WF is therefore
vital for achieving high performance. This permits as many WTs as possible to be installed inside a
narrow region. In this work, the water cycle algorithm (WCA), a recently developed optimizer, was
employed to identify the optimal distribution of WTs. Minimization of the total cost per kilowatt was
the objective of the optimization process. Two different cases were considered: the first assumed
constant wind speed with variable wind direction, while the second applied variable wind speed
with variable wind direction. The results obtained through the WCA optimizer were compared with
other algorithms, namely, salp swarm algorithm (SSA), satin bowerbird optimization (SBO), grey wolf
optimizer (GWO), and differential evolution (DE), as well as other reported works. WCA gave the
best solution compared to other reported and programmed algorithms, thus confirming the reliability
and validity of WCA in optimally configuring turbines in a wind farm for both the studied cases.

Keywords: modern optimization; wind farm; energy efficiency; optimal placement

1. Introduction

A sharp increase in the demand for electrical energy can be explained by a rapid increase in
the human population. Electrical generation through renewable energy, namely, solar and wind, is
becoming a popular and promising technology option. Renewable energy sources are being used in
the field to minimize the dependence on traditional energy sources because of several benefits, such as
the low amount of carbon and harmful gas emissions from renewable sources. Renewable energy is
also clean, inconsumable, and abundant [1–4]. Therefore, securing electrical energy with minimum
cost and no environmental impact is a goal worldwide. Wind energy systems (WES) have gained
considerable attention as a green energy source as they are available in enormous amounts [5]. By the
end of 2017, the total worldwide capacity of WES had increased by around 11% compared to 2016,
reaching 539 GW. This was achieved by the addition of around 52 GW during 2017 [6]. Figure 1 shows
the total capacity of WES around the world from 2007 to 2017. The top 10 countries with the largest
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capacity of WES are shown in Figure 2. It can be seen that China, United States, and Germany are the
top three countries in terms of WES capacity, contributing 19.7, 7, and 6.1 GW in 2017, respectively. In
China, the contribution of WES in the total energy production has steadily increased in recent years,
reaching 4.8% by the end of 2017 (up from 4% in 2016 and 3.3% in 2015) [6]. For large-scale electrical
energy generation-based wind energy, an enormous number of WTs should be installed within a wind
farm (WF).
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The optimal distribution of wind turbines (WTs) plays a significant role in the design of WFs. A
nonoptimal WF design leads to the negative effect of reducing harvested electrical energy due to the
wake effect [7]. Such an effect is created by upstream WTs, which leads to a reduction in the speed
of downstream WTs. Consequently, the harvested energy produced by downstream WTs is reduced
compared to upstream WTs. Because the traditional layout of WTs significantly increases the wake
effect, the optimal placement of WTs inside a WF can be considered as a good solution for reducing
the wake effect in addition to improving the performance of the WF by increasing the harvested
energy from WTs. Accordingly, the best distribution of WTs has gained considerable attention from
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researchers in order to extract maximum harvested electrical energy from WFs with lower cost of
energy per kilowatt.

Many previous works have sought to identify the optimal distribution of WTs within a WF [8–21].
The summary of these related works is presented in Table 1.

Table 1. Summary of previously reported studies.

Author Year Optimizer Remarks

Khanali [8] 2018 Genetic algorithms

Actual wind speed data of Tehran were considered.
The main finding was that the longitudinal space

among WTs must be larger than the latitudinal
distance in order to increase WF performance. The

efficiency of WF was 89.5%.

Biswas [9] 2017 Differential evolution
algorithm

The fitness function was the maximization of
system efficiency. The decision variables were rotor

diameters and hub heights.

Bryony [10] 2016 Pattern search algorithm
Two different cases of wind were considered: (1)

constant value and direction and (2) three different
values and directions.

Grady [11] 2005 Genetic algorithms

The two-dimensional Park model proposed by
Jensen was used. The total cost of WF was

minimized and at the same time the harvested
energy was maximized.

Emami [12] 2010 Genetic algorithms The capital cost of WF was considered as objective
function.

Chen [13] 2013 Genetic algorithm

WTs with different hub heights were considered.
The main conclusion was that employing WTs with
different hub heights can increase power output in
small WFs. Different cost models were considered.

Shakoor [14] 2014 Genetic algorithm The linear Jensen’s wake model was employed
with definite selection criteria.

Turner [15] 2014 New mathematical
programming

Both linear and quadratic formulas for
optimization were considered.

Gao [16] 2015 Multipopulation
genetic algorithm

Real data from offshore Hong Kong was collected.
The WF performance was improved.

Eroğlu [17] 2012 Ant colony optimization
(ACO)

The study showed that employing ACO can help
improve the performance of WFs.

Chowdhury [18] 2012 Particle swarm
optimization

The presented approach was not applied on a large
scale. The work presented an experimental

prototype.

Feng [19] 2015 Random
search algorithm

The proposed strategy was found to be useful for
WFs that had a constant number of WTs.

Marmidis [20] 2008 Monte Carlo simulation A small-scale wind farm was used as case study.
The results did not depend on real data.

Mora et al. [21] 2007 Evolutionary algorithm The capital investment of WF was considered.
Different economic factors were also considered.

Despite the advantages of different optimization algorithms reported in the literature, it has been
proven by the “no free lunch” theorem [22] that no single algorithm is fit to deal with all different
optimization problems. Such an assumption reveals the importance of new optimizers in different fields
because the capability of an optimizer to solve a series of problems does not assure its effectiveness
in other problems [23]. Some of the recently developed optimizers, such as water cycle algorithm
(WCA) [24], salp swarm algorithm (SSA) [25], satin bowerbird optimization (SBO) [26], and grey wolf
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optimizer (GWO), have not been employed in the process of optimal placement of WTs within a WF.
This prompted the authors of the present paper to use them to determine the optimal distribution
of WTs. The main aim was to optimize the position of WTs inside a WF in order to minimize the
total cost per kilowatt. Two cases were studied: the first assumed constant wind speed with variable
wind direction (CSVD), while the second applied variable wind speed with variable wind direction
(VSVD). The results obtained were then compared with other reported works. The rest of the paper
is structured as follows. Section 2 introduces the problem formulation. A brief overview of modern
optimization algorithms is reviewed in Section 3. Section 4 presents and discusses the results. Finally,
the conclusion is presented in Section 5.

2. Problem Formulation

The wind farm problem formulation included the following: wake model, harvested power
model, wind farm efficiency model, cost model, and objective function. These are explained below.

2.1. Wake Model

The wake model of wind behavior is presented in [12]. Figure 3 illustrates the wake model, in
which the k-th WT operates under the effect of a single turbine at the m-th location. The wind velocity
of a downstream WT can be expressed by the following formula:

uk = u0k

1− 2a(
1 + am

( xmk
rm1

))  (1)

where uk is the downstream WT wind velocity, u0k is the free flow velocity at the k-th WT with no
wake effect, xmk is the space from the upstream turbine (between the m-th and the k-th turbine), a
denotes the axial induction factor, αm is the entrainment constant, and rm1 is the rotor radius of the
m-th downstream turbine. Moreover, rm1 can be calculated as a function of the turbine radius rm as
follows [12]:

rm1 = rm

√
1− a

1− 2a
(2)

where the axial induction factor a is calculated as follows:

a =
1−
√

1−CT

2
.
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Furthermore, the turbine thrust coefficient CT can be estimated as follows [9]:

CT = 4αm(1− αm) (3)

where αm is the entrainment constant [9]:

αm =
0.5

ln( hm
z0
)

(4)

where hm is the m-th turbine hub height, and z0 is the roughness of the terrain surface. In the linear
wake model, the wake region is represented in conical form with a radius written as follows:

Rwm = αmxmk + rm1 (5)

At the k-th WT, the wind speed is a function of the WT hub height as follows:

u0k = ure f log(
hk
z0
)/log(

hre f

z0
). (6)

In this work, the reference hub height and the corresponding wind speed were considered as href
= 60 m and uref = 12 m/s, respectively, with z0 being 0.3 [9].

In the zone inside various wake flows, the velocity deficit may be improved. If the i-th WT is
considered under the effect of various wake flows with consideration of the superimposed influence of
wake flow, the wind speed at the position of the i-th WT can be calculated as follows [12]:

ui = u0i

1−
√√√√ NT∑

j=1

(
1−

ui j

u0 j

)2
 (7)

where u0i and u0j denote the local wind speeds with no wake effect, uij is the wind speed at the i-th WT
under the effect of the j-th turbine, and NT denotes the number of WTs affecting the i-th WT with wake
effects. A constrained variation in the rotor diameters and hub heights is assumed. Moreover, the
downstream WT is distant enough for the full wake influence to be considered instead of the partial
wake influence generated via the upstream turbine.

2.2. Harvested Power Model

The layout used in [10] for the study of constant wind speed and fixed wind direction was
reconsidered in the present work. In the case of constant rotor radius, the total power extracted from
each turbine can be calculated as Pi = 0.3u3, with 20 m considered as the rotor radius. Because the
radius of a WT rotor is variable, the constant factor cannot be approximated. Therefore, the power
equation can be expressed as follows:

Pi = 0.5ρπr2u3Cp/1000 kW (8)

where ρ is the density of the air, and Cp is the efficiency of the rotor.

2.3. WF Efficiency Model

After estimating the power of each WT in the WF inside the wake, the total extracted power from
the WF can be expressed as follows:

PWF =
N∑

i=1

Pi (9)
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The maximum output power from the WF neglecting the wake influence can be calculated
as follows:

PWF,max =
N∑

i=1

Pi,max (10)

where Pi,max is the maximum output power from the turbine neglecting the wake influence.
Thus, the efficiency of the WF can be expressed by the following equation:

η =
PWF

PWF,max
(11)

2.4. Normalized Cost Model

Mosetti [27] proposed a normalized cost equation of WF installation based on only the total
number of turbines. This equation is the basic model that has been used for evaluating the cost of WF
installation in most previous works. The nondimensionalized number of cost/year for WT is assumed
as 1. Moreover, the maximum cost will be reduced by 1/3 for each turbine if the number of WTs is
large. Consequently, the normalized cost of WF installation may be formulated as follows:

costNormalized= N
(2

3
+

1
3

e−0.00174N2
)

(12)

The cost model can be modified and rewritten by considering the variation in the rotor diameter
and the hub height as follows [9]:

Cost = costNormalized(1 +
1
N

v1∑
i=1

0.0039825xiNi +
1
N

v2∑
j=1

0.0016425x jN j) (13)

where costNormalized is the base cost at the base radius of 20 m and base height of 60 m, xi is the rotor
radius variation at the i-th turbine, xj is the hub height variation of the i-th turbine, v1 is the number of
turbines that have different rotor radii, v2 is the number of turbines with different hub heights, Ni is
the number of i-th turbines with different rotor radii, Nj is the number of j-th turbines with different
hub heights, and N is the number of WTs.

2.5. Objective Function

In this work, the objective function was set as the cost/kilowatt of generated power, and it can be
calculated as follows:

obj. f unction =
cos t
N∑

i=1
Pi

(14)

Figure 4 shows a flowchart illustrating the application of optimization algorithms to solve and
optimize the optimal placement of WTs within a WF. The procedure employed in the present work was
as follows. The first step involved initializing the wind turbine data by defining the WF boundaries.
After that, the wake effect was investigated for each WT, and the local velocity of each one was
determined. The proposed objective function, i.e., the cost per kilowatt power, was then calculated
based on the current layout of the WTs. Next, the end criteria were investigated, and the presented
optimization approach was applied to obtain a new WT layout that would minimize the total cost per
kilowatt. These steps were repeated until the optimal layout was achieved.
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3. Brief Overview of Modern Optimization Algorithms

3.1. Water Cycle Algorithm

The WCA was proposed by Eskandar [24]. The core idea of WCA is extracted from water moving
below or above the Earth’s surface. Generally, streams influx into rivers, and rivers influx into the
sea. The main advantage of WCA is that it only has a few number of tuning parameters. The initial
population is selected in a random way after a rain event. The sea is selected as the best individual,
the river is considered as a number of good individuals, and the rest represents the stream [24]. The
streams are generated from rain drops, which form a river after joining each other. Additionally, some
streams outflow directly into the sea, which is considered as the optimal solution. Figure 5 explains the
movement of streams toward a specific river through a line of distance d. A similar idea can also be
used for river fluxing to the sea.
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The stream and river positions can be estimated using Equations (15) and (16), respectively [24,28]:

xt+1
Stream = xt

Stream + rand×C×
(
xt

River − xt
Stream

)
(15)

xt+1
River = xt

River + rand×C×
(
xt

Sea − xt
River

)
(16)

where xStream
t, xRiver

t, and xSea
t are the stream, river, and sea positions at the t-th iteration, respectively,

and rand is a random value in the range [0, 1]; C is selected as 2.

3.2. Salp Swarm Algorithm

SSA a modern metaheuristic algorithms that was introduced in 2017 by Mirjalil [25]. Salps are
members of the Salpidae family and have diaphanous cylinder bodies; they are similar in movement
and tissues to jelly fish. Water is pumped through the body as propulsion for the salps to move forward.
The shape of an individual salp and a swarm of salps, which is also called salp chains, is shown in
Figure 6.
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A string of salps attempts to detect a better location of food source through a screening procedure
assisted by the chief salp; the remainder salps are followers. Similar to differential evolution (DE)
techniques, the particle position in the search area is explained with the nPop × nDim matrix, where
nPop denotes the number of salps, and nDim denotes the number of dimensions. The number of salps
is selected based on the user, whereas the number of dimensions relies on the number of variables that
require optimization. Next, each salp location is modified based on information received from the
chief salp to swallow the best food [25]. The position of the leader is updated according to the food
position as follows:

x1
j =

 F j + r1
((

ub j − lbi
)
r2 + lbi

)
r3 ≥ 0

F j + r1
((

ub j − lbi
)
r2 + lb j

)
r3 < 0

(17)

where xj
1 is the leader’s position in the j-th dimension; Fj is the place of food source in the j-th

dimension; ubj and lbj are the upper and lower bounds of the j-th dimension, respectively; r1, r2, and r3

are numbers with random value. The coefficient r1 is considered as the effective parameter in salp
swarm algorithm due to its role in maintaining a balance between the exploration and exploitation
stages [25]. Equation (18) shows how to mathematically determine the value of this coefficient:

r1 = 2e−(
4t
T )

2
(18)

where t indicates the present iteration, and T is the total number of iterations. The parameter r2 and r3

are random numbers that have value between [0, 1]. The follower’s location is updated based on the
following equation [25]:

Y j
i = 0.5at2 + v0 (19)
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where t is the time, v0 is the initial speed, and a is the ratio between the initial and final speeds. The
rate of discrepancy among iterations is considered as 1, and v0 is equal to zero. Due to the optimization
time in the iteration, Equation (19) can be expressed as follows:

Y j
i = 0.5

(
Y j

i + Y j
i−1

)
(20)

The main steps of the SSA optimizer are explained in Figure 7 [29]. The optimizer starts the
process by setting a random position for each salp. Then, it estimates the cost function for each salp,
finds out the leader salp that has the maximum fitness, and assigns the position of the leader salp as
the food source to be chased by the salp string. Next, the new positions for salps are modified. If any of
the salps exceeded the search space, it will be recovered on the boundaries. This process is continued
until the end criteria are achieved.Energies 2019, 10, x FOR PEER REVIEW  10 of 20 
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3.3. Satin Bowerbird Optimization

Satin bowerbirds live inside Australian rainforests. Throughout the autumn and winter seasons,
bowerbirds disuse their own locations and stir to open woodlands to devour fruits and pests. However,
during the breeding period, bowerbirds drove together in little groups, inhabiting territories that they
clearly inhabit year after year [26,30]. According to the SBO technique, adults build up a trellis with
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various materials on the ground during the mating period. Based on the moralities of a bowerbird’s
life, the SBO approach is applied to update the new position as follows [26,30]:

xnew
ik = xold

ik + λk

((x jk + xelite,k

2

)
− xold

ik

)
(21)

where xi denotes the i-th vector of the solution, xik is the k-th member, xj is the target solution in the
current iteration, xelite denotes the position of the elite, and λk determines the bower’s attraction power.

3.4. Grey Wolf Optimizer

The GWO is considered as a modern metaheuristic algorithm that is utilized for optimization
of nonlinear problems. GWO was introduced by Mirjalili, and it simulates the social hierarchy and
hunting mechanism of grey wolves [31]. Generally, GWO contains three phases: searching for prey,
encircling prey, and attacking prey. Grey wolves are segmented into four levels. The best level of
solution is called alpha (α) wolf. The second and third solutions are named beta (β) and delta (δ)
wolves, respectively. The last level of solution is omega (ω) wolf, which is deemed as the lowest degree
in grey wolves.

During the hunting period, grey wolves surround the prey, and the behavior of encircling can be
represented by the following equations [31,32]:

→

D =

∣∣∣∣∣→C →Xp(t) −
→

X(t)
∣∣∣∣∣ (22)

→

X(t + 1) =
→

Xp(t) −
→

A
→

D (23)

where t is the current position,
→

Xp is the vector of the prey’s position,
→

X is the vector of the position of

grey wolves,
→

A and
→

C indicate the coefficient vectors, which are calculated as follows [31,32]:

→

A = 2
→
a
→
r1 −

→
a (24)

→

C = 2
→
r2 (25)

where
→
r1 and

→
r2 are random vectors and magnitude in the period [0, 1],

→
a is the component vector,

which decreases from 2 to 0. More details about the mathematical representation of the GWO process
can be found in [32]. Agents modify their positions according to the position of the best search agent
as follows:

→

Dα =

∣∣∣∣∣→C →Xα −→X∣∣∣∣∣
→

Dβ =

∣∣∣∣∣→C →Xβ −→X∣∣∣∣∣
→

Dδ =

∣∣∣∣∣→C →Xδ −→X∣∣∣∣∣
→

X1 =

∣∣∣∣∣→Xα − →A1
→

Dα

∣∣∣∣∣
→

X2 =

∣∣∣∣∣→Xβ − →A2
→

Dβ

∣∣∣∣∣
→

X3 =

∣∣∣∣∣→Xδ − →A3
→

Dδ

∣∣∣∣∣
→

X(t + 1) =
→

X1+
→

X2+
→

X3
3

(26)

Figure 8 shows a flowchart of the GWO optimization process. The approach of GWO begins with
initializing a population of agents. The corresponding fitness function is calculated, and the wolves’
positions are updated via updating the vectors Xα, Xβ, and Xδ. The fitness function due to the updated
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positions is calculated, and the presented constraints are investigated. The process is continued until
the optimal solution is found.
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4. Results and Discussions

The analysis in this work was based on a square wind farm with 100 possible locations for wind
turbines (10 × 10). Each WT was positioned in the center of a cell. Each cell had the dimension 200 m,
which was five times the rotor diameter (5D), as shown in Figure 9. The selection of the cell dimension,
equal to 5D, was to prevent the wake effect between turbines in one column with others in the adjacent
columns. Additionally, it achieved the rule of thumb of the required spacing in both horizontal and
vertical directions.
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The main objective was to optimize the placement of WTs inside the WF in order to minimize the
total cost per kilowatt. Two cases were studied: the first assumed constant wind speed with variable
wind direction, while the second applied variable wind speed with variable wind direction. The WF
used in this study had specifications tabulated in Table 2. The site ground roughness z0 was assumed
to be 0.3 m.

Table 2. Specifications of WF.

Parameter Value

Hub height (z) 60 m

Rotor radius (r0) 20 m

Thrust coefficient 0.88

WF area 2 Km × 2 Km

Air density 1.2254 kg/m3

Rotor efficiency 0.4

The proposed approach incorporating WCA was applied to both cases, and the results were
compared with other reported methods. This included methods proposed by Grady [11], Mosetti [27],
and Feng [19] as well as other programmed approaches, namely, DE, GWO, SSA, and SBO. All
approaches were simulated with a population size of 200 and a maximum iteration of 100. The lower
and upper bounds were set as 0 and 1, respectively, while the dimension of the problem was 100. In
the first studied case, a constant wind speed of 12 m/s was considered with equal probability of wind
flow from any direction. This was done by considering 36 angles from 0◦ to 360◦ in steps of 10◦. The
presented WCA was applied in this case, and the optimal solution is tabulated and compared with other
reported and programmed approaches in Table 3. The optimal configuration of wind farm obtained
via WCA in comparison with those obtained by Grady [11] and Mosetti [27] is given in Figure 10.
Referring to Table 3, it can be seen that the best solution was obtained from the proposed approach
incorporating WCA. This approach gave annual power of 17,878.32 kW obtained from 40 turbines,
with a total cost of $1.538/W and efficiency of 86.22%. The second best solution was obtained via DE.
Figure 11 shows the time responses of the programmed approaches compared with WCA. As can be
seen, the response of WCA was the best one compared to the others. Bar charts of the optimal WCA
solution and the other programmed approaches are given in Figure 12. The obtained results confirmed
the superiority of WCA in optimally configuring the wind farm.

Table 3. Optimal solution obtained in the case of constant wind speed with variable wind direction
(CSVD).

Method Number of Turbines Pt (kW Year) Cost/W ($) Efficiency (%)

Grady [11] 39 17,220 1.567 85.174
Mosetti [27] 19 9244 1.736 NA
Feng (1) [19] 39 17,406 1.547 NA

DE 40 17,877 1.538 86
GWO 40 17,817 1.543 86
SSA 39 17,175 1.567 85
SBO 40 17,254 1.593 83

WCA 40 17,878.32 1.538 86.22
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To confirm the validity of the proposed methodology in optimally configuring the wind farm,
variable wind speed with variable wind direction was considered. In this case, three wind speeds
were considered—8, 12, and 17 m/s—with 36 directions in steps of 10◦ [1,2]. The proposed WCA was
performed, and the results are tabulated and compared with reported and programmed approaches in
Table 4. Referring to Table 4, it can be seen that the proposed WCA gave the best optimal solution
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by configuring 40 turbines with annual cost per watt of 0.832 and total extracted annual power of
330,055 kW. The optimal configuration of the wind farm obtained with WCA in comparison to Grady
and Mosetti are illustrated in Figure 13. Figure 14 displays the time responses of the proposed approach
and the programmed approaches of DE, SSA, SBO, and GWO. It is clear that the response of the
proposed WCA was the best compared to the others. Bar charts of the annual power, cost per watt,
and efficiency of the presented approaches compared to WCA are given in Figure 15.

Table 4. Optimal solution obtained in the case of variable wind speed with variable wind direction
(VSVD).

Method Number of Turbines Pt (kW Year) Cost/W ($) Efficiency (%)

Grady [11] 39 31,850 0.840 86.619
Mosetti [27] 15 13,460 0.994 NA
Feng (1) [19] 39 32,096 0.839 NA

DE 40 32,901.41 0.836 86
GWO 38 31,498 0.837 86
SSA 41 33,099 0.848 85
SBO 40 32,501.28 0.846 85

WCA 40 33,005 0.833 87
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Finally, the obtained results confirmed the reliability and validity of the proposed WCA in
optimally configuring turbines in a wind farm for both the studied cases as the algorithm gave the best
solution compared to other reported and programmed algorithms.

5. Conclusions

The optimal placement of wind turbines was determined using the recently developed water cycle
algorithm. Minimization of the total cost per kilowatt was selected as the objective function during the
optimization process, while the decision variables were represented by the wind turbine position and
the generated output power. Two different cases were considered: (1) fixed speed and variable wind
direction and (2) variable speed and variable wind direction. The results were compared with those
obtained by SSA, SBO, GWO, DE, and other reported works. In the first case, the presented WCA
succeeded in extracting total annual power of 17,878.32 kW with total annual cost per watt of $1.53765
and efficiency of 86.22%. This confirmed WCA to be the best optimizer compared to other reported
approaches, followed by DE. In the second case, the WCA again gave the best optimal solution, with
total annual power of 33,005 kW, total cost per watt of $0.833, and efficiency of 87%. A comparison of
the different methods confirmed that the WCA-based optimal placement of WTs was the best among
other considered methods. Advanced methods to estimate aerodynamic wake, such as modeling with
computational fluid dynamic tools, should be considered in future work.
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