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Abstract: The pulse width modulation (PWM) is an important segment in power electronic inverters
and multilevel inverters (MLIs) design. The space vector modulation (SVM) methods own distinct
advantages over other PWM methods. However, MLI SVM has involved more mathematics in
their executions. Hence, the digital signal processors (DSPs) or field programmable gate arrays
(FPGAs) based digital implementations are highly preferred for MLI SVM realizations, which require
exceptional properties. The conventional MLI SVMs use complex mathematical functions to solve
their internal functions to identify the space vector diagram (SVD) sub-triangle and over modulation
boundary switching on-times. Particularly these are the changes in the position of reference vector
with respect to their sub-triangle positions involving higher mathematical functions. This paper
proposes a simplified three-level MLI SVM that reduces the sub-triangle and over modulation
switching on-time calculations with reduced mathematical functions. The proposed MLI SVM
is derived based on two-level SVM without changing the reference vector position, unlike the
traditional approaches. This helps in extending the SVM for any n-level inverter with additional LUTs.
The detailed theoretical study, MATLAB-Simulink system generator simulations and Xilinx FPGA
family SPARTAN-III-3A based experimental implementations are done with three-level neutral point
MLI fed induction motor drive. The theoretical design, analysis, and experimentation results validate
the advantages of the proposed PWM design and its implementation. In addition, the proposed
implementation is executed from the MATLAB Xilinx system generator directly into target FPGA,
which makes it faithful, efficient and minimizes the time spent.

Keywords: pulse width modulation (PWM); multilevel inverter (MLI); space vector modulation
(SVM); field programmable gate array (FPGA)
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1. Introduction

The involvement of modern power electronics converters in the emerging technology is essential
for the electrical system in the current era. Very particularly, in the overall power electronics segment,
the voltage source two-level inverters are very popular and demanding, due to their application
encroachment in industrial, commercial and non-conventional energy conversion systems [1].
Compared with two-level inverters, multilevel inverters (MLIs) have substantial rewards, which
are intensive in the enhancement of the voltage and current waveform quality, reduction of harmonic
contents, and increment of power handling capability. Nabae et al. invented the first MLI based
on two-level inverter structure called neutral-point clamped (NPC) topology in 1981 [2] which was
followed by the development of cascaded H-bridge (CHB), flying capacitor (FC), and hybrid MLIs in
later years. Even though these MLIs are capable of producing the multi-stepped output voltages with
reduced dv/dt and harmonics for improved power qualities. But, considering the DC-link capacitors
balancing and common mode voltage (CMV) reduction, the MLIs are widely still investigated with
different modulation strategies [3] for compensation methods. Among them, space vector modulation
(SVM) offers better-quality voltage and current output with higher DC-link utilization. In addition,
SVM provides a switching state selection opportunity to improve the performance of the MLI [4–15].
Particularly, the SVM contributions in NPC-MLI are widely researched and applied in the various fields
of drives and renewable energy integration applications [5]. The switching selections in the multilevel
SVM are mainly associated with the space vector diagram (SVD) synthesization and switching states
on-time calculation. The multilevel SVM using two-level concepts are widely explored than the other
MLI SVM methods [4,9,12–16]. However, these methods include complex mathematics to calculate the
target reference voltage vector and recognize inner sub-triangle etc. The Zhang et al. has introduced a
method for finding switching states on-time using direct two-level SVM approach. In this method, the
three-level SVD has fragmented to a six, equal, two-level SVD, and its location of the centre of six virtual
hexagons originated through segregation of the SVD [17]. Similar to this method, in the literature,
many papers have been reported in which shifting the origin to one of the six centres, and αβ-axes are
rotated by 60◦ to use two-level on-time calculations [12–16,18–21]. Even though these methods are
calculating the individual switch on-times from segregated two-level SVM, while extending to higher
levels that need complex mathematical functions to calculate the sub-triangle. Seo et al. [18] proposed
a scheme for an MLI SVM for three-level NPC similar to Zhang et al. where the origin is shifted to
60◦ which sorts six sub-hexagons to compute on-times, thereby involving additional computations.
The three-level SVD based two-level SVD with reduced math function is proposed and implemented
for NPC-MLI [9]. The similar idea is extended to linear modulation (LM) and over modulation (OVM)
region with field programmable gate array (FPGA) implementation for NPC-MLI [19–23].

In [19], the multilevel SVD is divided into six equal two-level SVDs and switching vector on-
time calculations are made through direct transformations from three neighboring switching vectors.
However, the estimation of the on-time calculation is done by extending a set of matrix transformations,
which includes complex computations. Extending the inverter modulation index more than 0.907 is
called as OVM. It requires non-linear mathematical functions to synthesis their reference vector outside
SVD hexagon [24–26]. The industrial drives, such as direct torque and field-oriented controller need
OVM region operations, since linear modulation range operation restricts the inverter modulation
index, and hence, the drives produce limited constant torque as it utilizes only 90% of input DC-link
voltage. Hence, the inverter drive covering OVM is beneficial by means of entire exploitation of the
installed input source capacity, which results in the increased cumulative speed-torque characteristics,
as well as the operating boundary of the traction drives. However, OVM leads to complexities in
hardware implementations, due to non-linearity switching equations [20]. Due to this complexity in the
OVM region synthesization and on-time calculations, many studies are not preferred to include OVM
region operation. Very few implementations have performed in the OVM region operation [21–31].
These implementations are using complex mathematical functions to realize the OVM non-linear region
and on-time calculations. To realize the OVM region, the non-linear trigonometric functions are used



Energies 2019, 12, 4332 3 of 24

to find the modified on-times. These methods are relatively complex to implement [24,25]. Most of the
OVM region studies in MLI SVM have been done by charging the reference vector position [23,24,26–30].
The on-time switching calculations of OVM using virtual vectors were recognized by using modifying
hexagonal trajectory. However, in these methods, there would be portions of the line cycle, where
the preferred reference vector could not be synthesized [28], [30]. Few algorithms were developed
which use additional switching time derived from the outside hexagonal boundary projection [26,29].
However, these methods are introducing lower frequency harmonics, which are affecting the output
waveform quality.

The rapid developments in high-performance microcontrollers, DSPs and FPGAs, have encouraged
the research of work on digital PWM for rapid prototyping. Due to the development of ASIC technology,
the FPGA based implementations have become popular, since it has an ability to implement custom
hardware solutions and reprogramming flexibility. The SVM implementations on FPGA are showing
a higher interest in the current era [6,12,14,32–44]. These implementations are mainly done through
Altera and Xilinx Spartan family. The first successful single chip FPGA implementation of SVM has
been presented by Tzou et al. [33], and followed by a variety of single chip FPGA IP core three-level
SVM implementation and reported the validation [34–36,40]. These implementations have been done
through Altera Vertex and Spartan with large device utilization and computational time. These direct
VHDL code based implementations have suffered from the drawbacks of computational burden (writing
VHDL/Verilog coding), high device utilization, and higher time taken. Particularly at high modulation
ranges, due to the higher mathematical burden, the processing time is being increased [23,29,42].
These methods are very effective for implementation in terms of calculating the switching vectors
and dwell times by means of simple addition and comparison operators without using any angles,
trigonometric function and LUTs. However, the extension to OVM in n-level needed high mathematical
operations and high hardware resources. The low complexity and fewer computation approaches make
the SVM implementations very suitable for real-time application drive systems. The FPGA Spartan
processors are developed on a VHDL code to carry out the implementation into FPGA. By the use of
Xilinx system generator ISE tools, the SVM implementations have focused on increasing the processing
speed, reduce the device utilization and the reconfiguration (partial and full) implementations [37,40].
In any implementation, the resource (FFs, LUTs) utilization is a major factor. Wang et al. [45] deployed
three-level SVM in Spartan-3 FPGA with the consumption of 3,584 slices. Few more attempts were
made with the same FPGA, which were also found to have higher resource utilization [14,23,40]. As an
alternative, the same can be achieved using MATLAB/Simulink-Xilinx System generator tools with
foundation ISE tools [46].

From the wide range of literature in the MLI SVM design and FPGA implementations, the
existing methods involve higher computational complications for finding reference vector location
and the on-time calculations of switching states. Hence, the existing FPGA implementations occupy
higher device utilization and processing time. The reference vector positions in the multilevel SVD
sub-triangle and over modulation boundary on-time calculations need to be rethought. Subsequently,
the FPGA digital implementations era facilitates the exploitation of control degree of freedom in
both LM and OVM region. Therefore, in this paper, a reduced mathematical approach is developed
for identifying the sub-triangles and over modulation boundary area for calculating switching
on-times. The proposed SVM has a direct way for calculating the LM and OVM switching times using
two-level SVM. The proposed SVM is simulated using MATLAB-Simulink ISE system generator and
validated directly in Xilinx family SPARTAN-III-3A XC3SD1800A-FG676 DSP-FPGA processor board.
The implementation is verified through a three-level NPC-MLI fed induction motor drive laboratory
prototype, and the test is performed over a wide range of operating conditions. The proposed SVM
and their FPGA implementations are compared with the other reported methods. The theoretical
design, analysis, and experimentation results validate the advantages of the proposed PWM design
and its implementation.
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The organization of the paper is deliberate as follows: Section 2 explains the space vector PWM
theory for two-level and multilevel. Section 3 deals with the proposed simplified MLI SVM, including
both linear and over modulations. Section 4 accomplishes the MATLAB-Simulink implementation, and
Section 5 discusses the FPGA collaborated experimentation setup of three-level MLI. Sections 6 and 7
deal with the distributed implementation of MLI SVM in FPGA MATLAB XSG-ISE and experimental
results. In conclusion, the rewards of the proposed MLI SVM and its implementation are presented in
Section 8. The list of abbreviations and references are given in the end.

2. State of Art of Space Vector PWM Theory for Two-Level and Multilevel

2.1. Two-Level Space Vector Modulation

Figure 1a shows the SVD of a two-level inverter [37]. Here, every sector (represented as Si, where
i = 1 to 6) is an equilateral symmetrical triangle with the height of h (=

√
3/2). Here the edge vectors

(V1 to V6) are named as non-zero (active vectors) and V0 and V7 are called zero vectors. The on-time
calculation of SVM switching in any sector is calculated among three nearest switching vectors (one
zero vector and two active vectors). The movement of the reference or target vector V* positioning
inside the sector is synthesizing the switching times. To understand the two-level switching of SVD,
the sector-1 is considered here, as shown in Figure 1b. The volts-second of V* is determined by
multiplication of V* and sampling time (Ts). Then the time integral of V* is estimated through the
summation of products of the two of non-zero vectors (V1 and V2 by referring sector-1) and their time
widths (T1 and T2).
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The reference voltage V* volts-sec equation for the sector-1 is calculated as,

V∗Ts = T1V1 + T2V2 + T0V0 (1)

where T1 and T2 represents time(sec) widths of adjacent switching vectors V1 and V2 correspondingly,
and T0 represents as time (sec) width of zero vector (V0). This zero vector state can be either [000] or
[111] switching state, or else both. The movement of V* angle (θ) within the sector is computed by

θ = tan−1
(

Vα

Vβ

)
. (2)

The θ values sample the V* in different sector (for example, when θ is 115◦, the V* approach
sector-2, since sector-2 lies in an angle between 61◦ to 120◦).

According to the V* position, whether inside or outside the hexagonal SVD (see Figure 1), SVD is
divided into linear modulation (where Ma ≤ 0.907) and over modulation (where Ma > 0.907), respectively.
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The total period is Ts = T1 + T2 + T0. T1 and T2 are calculated from projecting V* position along
α-axis and β-axis with respect to SVD origin (zero point). Henceforth, the volts-sec equations for α-axis
and β-axis are Vs

α0Ts = T1 + 0.5T2 and Vs
β0Ts = hT2. Thus, the active vector time can be written as,

T2 = Ts Vs
β0/h and T1 = Ts (Vs

α0− Vs
β0)/2h. From the given switching frequency, the T1 and T2 help to

find the zero voltage time T0.

2.2. Multilevel Space Vector Modulation

Realizing SVM for more than two-level inverter (conventional six-switch inverter) is called MLI
SVM. Numerous MLI SVM are developed and employed in MLIs for different applications [4,6,12,20].
The difficulty in the multilevel SVM is its complex mathematical needs to locate the V* and find the
individual vectors. The interesting techniques are proposed in the literature to reduce the complexity
of implementing the MLI SVM with reasonable inverter performances.

Any of the three-phase n-level SVD can be separated into six sectors (Si), where i = 1 to 6.
These sectors are further separated into (n−1)2 sub-triangles (∆i,j) where j = 0 to 3 and i = 1 to 6. Hence,
the n-level SVD consists of n3 switching states. For example, considering the three-level MLI SVD, as
shown in Figure 2, it has 27-switching states (33 = 27) and 24-sub-triangles (No. of sub-triangles in each
sector is (3−1)2 = 4; therefore, 4 × 6 = 24) [6,9]. The switching vector for any level MLI is categorized
into zero vector (ZV), short vector (SV) large vector (LV), and medium vector (MV). Here the ZV, MV
and LV lie in the origin and boundary of the SVD, whereas, SV is multiple in numbers and placed in
the middle portion of the SVD. Table 1 displays the three-level inverter SVD switching states.
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Table 1. Three-level inverter SVD switching states.

Switching vector name Switching states Total number of states

ZV [000], [111], and [−1−1−1] 3

MV [10−1], [01−1], [−110], [−101], [0−11], [1−10] 6

SV [100], [0−1−1], [110], [00−1],
[010], [101], [011], [100], [001], [110], [101], [0−10] 12

LV [1−1−1], [11−1], [−11−1], [−111], [−1−11], [1−11] 6



Energies 2019, 12, 4332 6 of 24

In three-level SVD, the SVs and ZVs have redundancy-switching states that are two for SVs and
three for ZVs. When the MLI level is increased, the number of redundancy-switching states for ZVs
and SVs are increased.

The switching states and their on-time calculations are calculated based on the rotating reference
vector, V* position in any one of the four sub-triangles in the particular sector. For example, when
V* lies in the fouth sub-triangle of first sector (∆1,4), then the nearest three vectors VS2, VM1 and VL2,
switching state are used to synthesize the V*. The duty cycle of the above nearest switching vectors
δVS2, δVM2 and δVL2 can be calculated and applied to the pulse generations.

Fixing the V* in the sub-triangle is the most difficult task in the SVD realizations. Few mathematical
approaches have been developed for finding V* at sub-triangle, which needed high-end digital
controllers to implement them [4,7,8,16]. In addition, considering the over modulation operation in
MLI, the complexity is further increased to project the trajectory location in SVD. Once the vector
moves outside the hexagonal boundary of the SVD, positioning the vector in the non-linear region
(unstructured boundary) is predicted from the available switching vector and its on-times. The MLI
SVD over modulation implementations differ from two-level SVD [19,29,30]. In MLI SVD over
modulation, the OVM boundary is operating through the crux of MVs and LVs, whereas, in two-level
SVD OVM the LVs only play to synthesis the on-time calculation of OVM pulses.

3. Proposed Simplified MLI SVM for Entire Modulation Index

One of the important contributions of this paper is to propose the simple mathematical approach
to find out the V* sub-triangle position of MLI SVM. The proposed MLI SVM is developed based on
standard two-level SVM for three-level MLI, and it can be extended for n-level using simple additional
equations. In addition to proposed sub-triangle calculation, the reduced mathematical functions for
calculating OVM switching on-times is achieved by just adding the compensated on-time gain in
over modulation region with LM on-time. Hence, the proposed SVM reduces the implementation
burden, since the complex part of MLI SVM calculations of sub-triangle position and OVM on-times
are minimized.

3.1. Procedure in Generating MLI SVM in Linear Modulation

Figure 3 shows the three-level MLI SVM generation flowchart. Like two-level SVM, the MLI
SVM takes the three-phase signal to calculate two-phase voltage vectors stationary reference frame
(Vα,Vβ) [20]. Then, the Vα, Vβ are converted into reference voltage vector in polar form as V*∠ θ,
where ‘V*’ is the voltage magnitude, and ‘θ’ is the angle of the V*.

Using V* and θ, the reference vector sector position is calculated. Here, based on the V* magnitude
the SVD operation regions (either LM or OVM) are calculated. In Figure 3, the flow chart is handling
only LM MLI SVM, where the proposed sub-triangle calculations are the same for LM and OVM.

The V* sub-triangle location calculation with-in the sector is calculated through orthogonal time
slope mathematical function in Vα, Vβ plane. The stationary plane of Vs

αo and Vs
βo are calculated for

every Ts and then mapping for the reference vector V* located in sub-triangle is done by comparing
Vs
αi and Vs

βi. These logical expressions can be applied for any level for identifying the V* sub-triangle.
The next section explains the proposed sub-triangle calculations.
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3.2. Proposed Sub-Triangle Calculations

Considering the three-level multilevel SVD, shown in Figure 4, the sub-triangle 1 and 4 (type-1
triangles) can be directly calculated from the V* magnitude, sector number and its respective sector
angle (γ),

γ = rem(θ/60). (3)

However, this calculation does not support to calculate sub-triangle 2 and 3 (type-2 triangles).
Hence, in order to handle type-1 and type-2 triangles searching progress, a simple look-up table and a
searching process is developed directly from Vs

αi and Vs
βi. Once the V* sub-triangle is identified, that

particular sub-triangle can be considered as a sector and then two-level SVM is applied to calculate
the respective sub-triangle switching states on-time calculation. The same procedure is applied to all
sectors in the particular Ma and fs. The proposed sub-triangle calculation is explained through sector-1
(∆1,j) as illustrated in Figure 4.
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The calculation of proposed sub-triangle involves two approaches: (1) Type-1 sub-triangles,
(2) Type-2 sub-triangles. The V* position for Type-1 triangles ∆1,1 and ∆1,4 can be calculated directly
from Vs

αi and Vs
βi. However, the calculation of Type-2 triangles ∆1,3 and ∆1,2 (orange colored area in

Figure 5b) portions are challenging. Figure 5 shows the V* location identification for Type-1 and Type-2
triangles. According to that, the search process of the triangle of V* can be narrowed down using the
two zones in SVD (Zone-1 and Zone-2). The coordinates (Vα0, Vβ0) of these triangles are calculated
using two integer calculations of Zone-1 and Zone-2 as follows,

Zone1 = int(Vα +
(
Vα/

√

3
)
), (4)

Zone2 = int(Vα + h). (5)

In Equation (4), Zone-1 integer denotes the portion of the sector among the two lines joining
the vertices divided by distance ‘h’ and inclined at 120◦ with respect to α-axis. In Figure 5b, Zone-1
is valued as zero, it indicates that the point V* is below the line B and C. The Zone-1 appears that
the point V* lies between the points A and B and D and F. The Zone-2 denotes the part of the sector
between the two lines joining the vertices separated by distance ‘h’ and parallel to α-axis. When the
Zone-2 is valued as zero, it indicates that the reference vector tip V* is positioned between the lines A
and D and C and E. When the Zone-2 is valued as integer one, it indicates that the point V* lies above
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the line C and D. Geometrically, the Zone-1 and Zone-2 values are acquired at an intersection of two
rectangular regions (rhombus). Here, the V* may be positioned either in triangle ∆1,2 or ∆1,3.
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Figure 5. (a). Sector-1 with Zone, (b) sector-1 with Zone, and Type-1, Type-2 triangles.

Hence, the V* position in type -1 triangles (∆1,1 and ∆14) is directly identified from Zone-1 and
Zone-2 integer values. The Zone-1 and Zone-2 receipts zero integer, when the V* is located in a triangle
∆1,1. The Zone-1 and Zone-2 receipts integer one when the V* is located in triangle ∆1,4. However, the
other options from the Zone-1 and Zone-2 (integers of Zone-1 is zero and Zone-2 is one or Zone-1 is
one and Zone-2 is zero) are not assisting in identifying the ∆1,2 and ∆1,3.

Hence, the Type-2 sub-triangles (∆1,2 and ∆1,3.) are calculated in rhombus using diagonal slope
coordinate comparisons. The V* co-ordinates point with respect to rhombus point B can be written as,

Vαi = Vα − int(Zone1) + 0.5 int (Zone2) (6)

Vβi = Vβ + 0.5h (7)

Figure 6a shows the sub-triangle ∆1,2 and ∆1,3 rhombus and its slope calculations. The sub-triangle,
anywhere in reference vector V* is situated by relating the slope of B and slope of BE. The slope B and
BE can be written as,

Vβi ≤
√

3Vαi (8)

Now, comparing the Equation (8) inequality of the Type-2 sub-triangles (∆1,2 and ∆1,3.) is identified.
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3.3. Sub-Triangle Switching On-time Calculations

The flowchart (See Figure 3) shows the complete interpretation of the sub-triangle lookup table
(LUT) identification for Zone-1 and Zone-2. To simplify the switching on-time calculations, all
sub-triangles are further considered into two categories based on their base position either bottom
or top. The first category is called as group-1 triangles (∆1,1, ∆1,2 and ∆1,4), where it has a base at
the bottom. Similarly, group-1 triangle (∆1,3) is placed in SVD with the base side at the top. Figure 7
shows the group-1 and group-2 triangle for the calculation of switching on-times. For the group-1
and group-2 triangle valuations, the proposed SVM uses simply the calculation by using Zone-1 and
Zone-2 triangle positions.Energies 2019, 11, x FOR PEER REVIEW   
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The group-1 triangle is determined by solving the following Equations (9) and (10),

int(zone1)2 + 2 int (zone2); either ∆1,1, ∆1,3 and ∆1,4 (9)

Else,
int(zone1)2 + 2 int (zone2) + 1; either∆1,2 (10)

Thus the coordinates of group-1 triangle and group-2 triangles can be calculated as Vs
αi, Vs

βi and
0.5 Vs

αi, h−Vs
βi.

From the individual sub-triangle α, β coordinates, the switching states on-time of each sub-
triangle can be calculated similarly to two-level SVM.

T1 = Ts(Vs
αo −Vs

βo/
√

3) (11)

T2 = Ts(Vs
βo/h) (12)

This calculation can be used for n-level MLI by the accumulation of the group sub-triangles.



Energies 2019, 12, 4332 11 of 24

3.4. Extending to Over Modulation

To move the V* from LM to OVM region, the V* is moved to outside the hexagonal trajectory.
During this circumstance, the Ma is valued more than 0.9 and the V* moves outside SVD hexagonal
boundary. Thus, the synthetization of V* in the OVM region is unrealistic (non-linear nature movement).
As a result, to achieve the OVM region operation and calculating its switching state on-times, the
traditional approach used trigonometric functions to calculate the OVM voltage vector switching state
on-times [20,24,30]. These methods consume more mathematical and implementation complexity.
In addition, these methods are producing higher low frequency harmonics. The proposed OVM method
has a straightforward nature to realize switching on-time from the LM switching time. Hence the
non-linearly can be minimized, which helps to avoid the additional lower frequency harmonics.
The OVM region is operated in two zones as OVM-1 (V* is lies from 0.908 to 0.958) and OVM-2 (V* is
lies from 0.958 to one).

In the OVM-1 region, as shown in Figure 8, there would be portions of the OVM line cycle, which
are placed partly within the SVD hexagon and partly outside the hexagon. Hence the two relations are
derived for calculating the on-time for V* circular region and hexagonal region. To differentiate these
two boundaries, the crossover angle (θC) is calculated from the reference vector Ma,

θc = 30◦ − cos−1(Π/(2
√

3Ma)). (13)

Now the V* angle θ fulfills the position θC ≤ θ < Π/3 − θC, the V* remains in hexagonal trajectory,
and another portion follows the circular trajectory (0 ≤ θ <θC to Π/3 − θC ≤ θ < Π/3). Based on the V*
position in SVD, the OVM-1 coordinates (Vα and Vβ) of V* can be calculated from θ and level (n),

Vα = (
√

3(n− 1))/(
√

3 + tan θ), (14)

Vβ = (
√

3(n− 1) tan θ)/(
√

3 + tan θ). (15)

From the Vα and Vβ, the Vs
αo and Vs

βo are calculated for deriving modified switching on-time,

T1 = Ts(Vs
αo −Vs

βo/
√

3); To = 0; T2 = Ts. (16)

To realize the circular trajectory and hexagonal trajectory switching on-times, the gain factor (Gt)
can be calculated from the OVM-1 maximum boundary and its actual Ma values. The maximum
volt-seconds loss in OVM-1 region is proportional to (0.9535 − 0.907). Hence, the Gt can be obtained
from LM Ma as,

Gt = (OVM− 1− 0.907)/(0.9535− 0.907). (17)

Adding and subtracting the Gt with T0, T1 and T2, the circular trajectory and hexagonal trajectory
switching on-time can be calculated by modifying the V*.

Now from Equations (11), (12), and (17), the hexagonal trajectory switching on-time is derived as,

T1 OVM−1 HT = Ts(Vs
αo −Vs

βo/
√

3) + 0.5G2
t To, (18)

T2 OVM−1 HT = Ts(Vs
βo/h) + 0.5G2

t To, (19)

To OVM−1 HT = Ts − T1 OVM−1 HT − T2 OVM−1 HT. (20)

Similarly, the circular trajectory switching on-time is derived as,

T1 OVM−1 CT = Ts(Vs
αo −Vs

βo/
√

3) − 0.5G2
t T1, (21)

T2 OVM−1 CT = Ts(Vs
βo/h) − 0.5G2

t T2, (22)
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To OVM−1 CT = Ts − T1 OVM−1 HT − T2 OVM−1 HT. (23)

When the V* modulation index Ma is more than 0.9535, then the V* is entered into OVM-2 region.
During this time the V* is allowed only in the hexagonal trajectory (beyond the OVM-1 HT), and only
six LVs are needed to operate. Hence, the holding angle (θh) is derived using a similar strategy [9] to
keep the V* at one of the large vectors. The relations 0 ≤ θ < θh and Π/3 − θh ≤ θ < θh help to find
one of the LV in the particular sector with changing V* position. The on-time equations of OVM-2 are
obtained as,

0 ≤ θ < θh ; T1 = Ts, T2 = To = 0, (24)

Π/3− θh ≤ θ < Π/3 ; T2 = Ts, T1 = To = 0. (25)

The proposed LM and OVM do not change V* position. Hence, it allows simple implementations.
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The proposed MLI SVM design is established using MATLAB 13.b Simulink with five 
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4. MATLAB-Simulink Implementation of Three-level SVM

The proposed MLI SVM design is established using MATLAB 13.b Simulink with five subsystems
that are connected through In and Out Xilinx SG that helps to implement the MLI SVM directly from
MATLAB-Simulink (.mdl) file to target FPGA. Figure 9 illustrates the detailed MATLAB-Simulink
design flow of proposed MLI SVM.

1) The first block is the “Clarke’s transformation”, in which the three-phase reference rotating frame
are converted into Vα, Vβ.

2) The 2nd block named ‘Sector and γ identifier’ block holds four sub-systems namely reference
vector Ma, θ, sector and γ.

3) The next block is calculating the local vector reference frame ( Vs
α0 and Vs

β0) and finding the
sub-triangle. Then the switching on-times T1, T2, and T0 are calculated (based on two-level SVM).

4) The fouth subsystem is calculating the LM and OVM boundary based on the reference vector Ma.
The subsystem receives the sub-triangles, Vs

α0 and Vs
β0 to sample switching pulse period for the

Ts. The switching events of all 27 switching states are stored in LUT.
5) Finally, based on the sector number, sub-triangle number, and Ma boundary, the switching

on-times are calculated and mapped into the corresponding switching states.

The performance of the MLI SVM for 0< Ma ≤0.99 is simulated on a three-level NPC-MLI drive
with 460V DC-link, two 470 µF DC-link capacitors, and 10 kHz switching frequency. The 2.45 kW,
1440 rpm, four poles, and 50 Hz induction motor is used as a load. Figure 10 shows the inverter line
voltage (Vuv) waveform for LM, OVM-1 and OVM-2 operations. Initially, the simulation studies are
conducted for Ma = 0.5. Here the line voltage (Vuv) is measured as a 2-level output, because only
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the SVs and ZVs have participated in the switching sequence. Hence, the Vuv resulted in 2-level
output was 147.8 V with THD value of 13.06 %. Next, the same simulation study is extended for the
higher modulation ranges (more than 0.5) and resulting in increased voltage magnitude. When the
inverter is operated at maximum LM range of 0.907, the Vuv resulted is 268.4 V, as shown in Figure 10.
As expected, the fundamental voltage is increasing linearly by increasing Ma. Here the line voltage at
Ma = 0.950 and Ma = 0.990 is observed as 282 V and 295 V, respectively.Energies 2019, 11, x FOR PEER REVIEW   
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5. FPGA Collaborated Experimentation Setup of Three-Level MLI

The experimental setup diagram and FPGA are collaborated Three-phase three-level NPC
MLI is shown in Figure 11. The NPC-MLI is designed with three integrated surface-mounted
SK100MLIO66T-SEMIKRON four IGBT modules.Energies 2019, 11, x FOR PEER REVIEW   
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Two 100 µF, 1000 V rating DC-link capacitors are used for providing DC-link voltage of the
MLI. The switching module used HCPL4506 opto-isolator to provide the isolation between the FPGA
controller, and IGBT. The Xilinx family SPARTAN-III-3A XC3SD1800A-FG676 DSP-FPGA controller is
used to implement and generate the proposed SVM. The 2.45 kW, 1440 r/min, 50 Hz, 4-pole three-phase
squirrel-cage induction motor (SCIM) drive is used as a load. The YOKOGAWA spectrum analyzer is
used for capturing the experimental results.

6. MATLAB-Simulink built FPGA Habitat for Hardware Implementation

The MATLAB-Simulink support Xilinx ISE project navigator system generator (SG) tool is used
for the proposed SVM implementations as it allows the minimization of the time spent for design and
cost of implementation.

The architecture of the proposed SVM FPGA implementation is shown in Figure 12. The FPGA
core contains the two main modules: (1) The processing unit; and (2) switching and its mapping unit,
as shown in Figure 13. These modules can perform in parallel that helps to minimize the processing
time. The processing unit comprises functional blocks to calculate the V*, sector, sub-triangle, αβ
coordinates for LM and OVM trajectory, and logical routes. The mapping unit consists of switching
vectors for the corresponding sub-triangles. The switching vector-mapping unit uses memory (LUT).
It maps the pre-stored switching sequence for the MLI based on sector, sub-triangle.
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The core also considers some key design measures for improving computation accuracy and
simplifying hardware design and the fixed-point arithmetic unit is adopted for implementing the
calculations. The IP core is designed to operate at 20MHz clock frequency, and high switching
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frequency, as well as the td, is adjustable. The architecture of the proposed SVM sub-blocks is described,
as follows:

1. 3/2 axis converter block: It performs the abc to d-q conversion, which generates the V*and
angle (θ).

2. Ma block: Depending upon the V* requirement, the Ma value of the inverter can be given through
the Ma block.

3. Switching period block: It holds the sampling frequency for the inverter switches.
4. Sector identification block: This block finds the V* location based on the angle (θ) and

V* magnitude.
5. Triangle identifier block: The block computes V* sub-triangle location.
6. Trajectory identifier block: This block measures the trajectory identifier (LM, OVM boundary)

and V* location based on the Ma values. It also calculates θC and θH angles for OVM operation.
7. On-time calculation block: This block calculates the respective switching state on-times based

on two-level SVM calculations. This unit uses the LUTs to store the switching states and the
switching sequences. Lastly, SVM generator unit generates the pulses to the 3-level NPC-MLI
after inserting the dead time (td).

8. Switching state unit: It holds the 27-switching event.
9. Dead time register block: Holds the timer to add or reduce the td.
10. SVM Generating Unit: This block produces the pulses to the NPC-MLI after inserting the td.

To simplify the interface with the processor, commands to these registers are routed through a
decoder and interface circuit. The clock is acting as a base time for PWM generator and is operated at
100MHz. The overflow flag from PWM generator unit indicates the value of PWM counter when it
reaches the maximum count, which can be used to trigger events for the inverter.

6.1. Implementation of the Proposed MLI SVM Scheme in FPGA

The XSG FPGA environment implementation is divided into five stages as follows: MATLAB
code generation through XSG, VHDL code generation and its simulation, register transfer level (RTL)
file and bit file generation, synthesis and download into target FPGA. Once the RTL file is generated,
the proposed SMV architecture RTL view (shown in Figure 14) and off-line simulation is done to
view the generated inverter pulses using ModelSim 5.8e. Figure 15 shows the ModelSim simulation
results for the proposed MLI SVM. It ensures the desired pulse pattern, td values. After successful
synthesis, the device utilization and power utilization report is generated. It provides the number
of logical blocks, LUTs and FFs to be used in architecture. The proposed MLI SVM uses only 3.7%
LUT memory space in the FPGA, since it uses simple 2-level SVM, and hence, does not require any
additional calculations for calculating the switching on-time. It also minimizes the processing time
for LM and OVM operations. Figure 16a shows the internal structure based on the described SVM
implementation design. After RTL synthesis, the net list is saved as an NGC file. Afterwards, the
JTAG serial mode (“IEEE Standard 1149.1") configuration interface card is used to download the code
to the Target FPGA SPARTAN-III-3A XC3SD1800A-FG676. The JTAG configuration is through the
independent boundary scan selection. Then the regenerated bit file is generated. Finally, the developed
RTL is converted to bit stream format, and then the UCF is written for pin assignment for the mapping
process. Mapping is done to fit the design into the available resource of the target FPGA processor.
Finally, placing the code in target FPGA is done.
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6.2. MLI SVM FPGA Implementation Results

There are three types of floor views that are generated for the SVM IC, which are overall floor
view of device utilization, input port assign view, and output port assign view. From Figure 16a, it is
observed that the proposed code occupies very less resource/area. Figure 16b shows the input and
output port of the proposed implementation. The proposed PWM design I/O’s are mapped properly
using UCF based on reduction of the power losses. The implementation consumes only 0.13 W power
utilization for one cyclic operation of pulse generation.

Due to the simplification of sub-triangle calculations and OVM-1 switching mapping, the overall
device utilization of the proposed SVM implementation becomes 5.88%, which is less than the earlier
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implementations [14,23,40,45]. The simplified calculation to find the rhombus sub-triangles selection
and OVM-1 on-time calculations are the primary reasons for the memory reduction (around 0.17%),
while considering the implementation reported in [23]. The additional reductions are achieved by way
of reducing the LUT usage for operation by repeating switching states.

The processing time of the proposed implementation for LM OVM-1, and OVM-2 are calculated
using [37], and the values are 13.017 µs, 14.561 µs, and 15.532 µs, respectively. From the results, it can
be understood that the proposed FPGA implementations are taking the same time for all LM values as
13.017 µs, since sub-system calculation is same for all the range of LM from 0.5 to 0.907. However,
during over modulation operations, the processing time for the proposed implementation is increased.
The increase in time is because of Gt calculation for the new on-times. Nevertheless, when compared
to the early implementations, the time taken for OVM is less for the proposed method [23], and it is
expected while implementing with other family FPGAs. Similarly, considering the device utilization
(memory occupied) on FPGA for the proposed implementations, it is considerably lesser. From the
above analysis and results, it is clear that the proposed MLI SVM algorithm and its Sparten-3 FPGA
implementation improved in terms of their owning mathematical complexity and implementation.
Hence, due to this reduced mathematical burden, less device utilization and processing time, the
proposed implementations fit to be considered as an IP core that can be incorporated into a System
On-Chip with other IP cores and it can greatly reduce the area of a PCB and improve the immunity to
interferences for the power converters design.

7. Experimental Results and Analysis

In order to validate the proposed MLI SVM FPGA implementation, the experimentation study is
conducted for 2.3 kW three-phase induction motor supplied from three-phase three-level NPC-MLI.
The DC-link voltage of the NPC-MLI is maintained at 560 V through an uncontrolled rectifier.
The two 100 µF DC-link capacitors C1 and C2 are connected with DC-link to clamp the voltage.
The switching frequency of 10 kHz and dead time of 6µsec is used between two complementary
switches. The experiment study is performed with modulation index value from 0.7 to maximum
over modulation range (Ma = 0.99). During the study, the speed of the motor is recorded using
digital tacho-generator.

Figure 17a–d depicts the experimental results of MLI line-voltage (Vuv) and corresponding current
(Iu) for Ma = 0.7, Ma = 0.9, Ma = 0.95, and Ma = 0.99, respectively. In the LM region, the inverter
output voltage is obtained as 205.2 V and 262.4 V for Ma = 0.7 and Ma = 0.9, respectively. However,
while increasing the Ma from LM to OVM, the fundamental voltage is increased linearly. The Vab for
Ma = 0.7 and Ma = 0.9 is obtained as 280.3 V and 292.5 V, respectively. From the results, it can be seen
that the inverter voltage and current waveforms are changing based on the modulation index value.

However, the voltage and current waveforms are smooth in all the range of modulation indices.
This demonstrates that the proposed SVM is working with full control degree of freedom in the
linear and over modulation region. Figure 18a–d shows the voltage and current harmonics spectrum.
The voltage and its corresponding current harmonics in the LM are lesser when compared with those
in the OVM regions. The line voltage percentage THD is observed as 10.2%, 12.9%, and 13.5% for
Ma = 0.9, Ma = 0.95 and Ma = 0.99, respectively. This increase is due to the non-linearity in the switching
on-times in the OVM region operation. Similarly, the current percentage THD in OVM is higher than
that in LM. When compared with the other multicarrier and selective harmonics elimination PWM
methods, the proposed SVM has lower current and voltage THD in both LM and OVM. In addition,
while changing the inverter operation from one region to another region, the voltage and current
waveforms are smooth, and there are no abrupt changes.
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Ma = 0.997.

The induction motor speed variations for the modulation index range from Ma = 0.7 to Ma = 0.99
are measured and plotted in Figure 19. From the results, it can be seen that the motor speed changes
in linear with the SVM modulation index. This illustrates that the proposed SVM can be directly
employed to open-loop drives. In closed-loop operation, depending on the control requirement,
the proposed SVM voltage reference magnitude and frequency can be changed easily without any
additional mathematical calculations.
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8. Conclusions

In this paper, the detailed theoretical analytical study on MLI SVM and its digital implementation
practices are explained. In addition to the previous method of SVM, the paper has also proposed a
simplified mathematical approach to find out the MLI SVD sub-triangles, switching on-time calculation
in both linear and over modulation. The proposed three-level MLI-SVM is exhibited based on two-level
SVM without changing the reference vector position, unlike the traditional approaches. Hence, it can
be easily prolonged with additional LUTs for any n-level inverter without any significant increase in
computations. The proposed MLI SVM is comprehensively analyzed and validated for implementation
in Xilinx family SPARTAN-III-3A XC3SD1800A-FG676 FPGA. The mathematical procedure involved
in the proposed MLI SVM is reduced compared to the early attempts; hence, the device utilization
and processing time are considerably reduced. The MATLAB–Simulink SG based simulation and
SPARTAN-III-3A XC3SD1800A-FG676 FPGA implementation are performed to validate the proposed
SVM with 2 kW three-phase three-level NPC MLI fed induction motor drive system. The presented
results are confirming the performance of the MLI SVM at different modulation depths of the NPC
MLI. The proposed implementation fits to be considered as an IP core that can be incorporated into a
System On-Chip with other IP cores.

Author Contributions: All authors are involved in developing the concept, simulation and experimental validation
and to make the article error free technical outcome for the set investigation work.
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Nomenclature

V* Reference vector
Vα,Vβ Voltage vectors stationary reference frame
δVS2 Duty cycle of SV
δVM2 Duty cycle of MV
δVL2 Duty cycle of LV
∆i,j Sub-triangle within the sectors
θ Angle of the reference vector
γ Sector angle
h Vertices height
Vs
αo, Vs

βo Individual Sub-triangle α, β coordinates
θC Crossover angle
θh Holding angle
PWM Pulse Width Modulation
MLI Multilevel Inverter
SVM Space Vector Modulation
SVD Space Vector Diagram
LM Linear Modulation
OVM Over Modulation
NPC Neutral-Point Clamped
ZV Zero Vector
SV Small Vector
MV Medium Vector
LV Large Vector
IP Intellectual Property
HT Hexagonal Trajectory
CT Circular Trajectory
THD Total Harmonic Distortion
IGBT Insulated-Gate Bipolar Transistor
SCIM Squirrel-Cage Induction Motor
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SG System Generator
RTL Register transfer level
LUT Lookup Table
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