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Abstract: There is a large number of outliers in the operation data of photovoltaic (PV) array, which is
caused by array abnormalities and faults, communication issues, sensor failure, and array shutdown
during PV power plant operation. The outlier will reduce the accuracy of PV system performance
analysis and modeling, and make it difficult for fault diagnosis of PV power plant. The conventional
data cleaning method is affected by the outlier data distribution. In order to solve the above problems,
this paper presents a method for identifying PV array outliers based on sliding standard deviation
mutation. Considering the PV array output characteristics under actual environmental conditions,
the distribution of array outliers is analyzed. Then, an outlier identification method is established
based on sliding standard deviation calculation. This method can identify outliers by analyzing the
degree of dispersion of the operational data. The verification part is illustrated by case study and
algorithm comparison. In the case study, multiple sets of actual operating data of different inverters
are cleaned, which is selected from a large grid-connected power station. The cleaning results
illustrate the availability of the algorithm. Then, the comparison against the quantile-algorithm-based
outlier identification method explains the effectiveness of the proposed algorithm.

Keywords: PV array; power curve; raw operation data; data cleaning; cleaning algorithm

1. Introduction

Rapid growth in photovoltaic (PV) capacity requires continuous improvement of smart operation
and maintenance of PV systems. The smart operation and maintenance platform for PV systems
include core functions such as performance analysis, state evaluation, fault diagnosis, and predictive
maintenance [1]. The implementation of such functions depends on high-quality and reliable
data. The actual operation of the PV system, however, produces an abundance of outliers due to
data propagation signal noise, sensor failure, communication and measurement equipment failure,
maximum power tracking abnormalities, array shutdown, and power limitation, among other issues [2].
Outliers can seriously affect the quality of the original data and affect the implementation of intelligent
operation and maintenance functions [3]. Data cleaning is the basis of intelligent PV operation and is
of great significance in practical engineering applications.

Many researchers have been exploring outlier identification and data cleaning in new energy
power generation systems. The global probability statistical method and the intelligent clustering
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method are commonly used for these purposes. Chen et al. [4], for example, proposed a method
for automatically cleaning corrupted and lost load curve data based on B-spline smoothing and
kernel-based smoothing techniques. Wang et al. [5] proposed a Copula-based joint probability model
for eliminating wind power curve outliers. This model can capture complex nonlinear multivariate
relationships among parameters based on the univariate marginal distribution. Shen [6] used the
change point grouping algorithm and the quartile algorithm to remove outliers in wind curves.
Ye [7] et al. introduced an outlier identification methodology based on a probabilistic wind farm power
curve and typical outlier distribution characteristics; this methodology combines the time-series power
data and spatial correlation between adjacent wind farms and can identify outliers effectively. Such a
method is based on the probability and statistics theory, and a statistical model can be established using
historical sample data. In short, statistical methods require prior knowledge of statistical characteristics
of outliers for direct application.

Zheng [8] proposed an empirical clustering method to calculate the outliers in a wind database via
local outlier factor (LOF) algorithm, where outliers are then used to evaluate the clustering performance.
Yesibudak [9] proposed three levels of outlier data detection methods based on wind power curves,
including K-means clustering based on the Euclidean distance, contour coefficient evaluation, and a
partition clustering method based on the Mahalanobis distance. Schlechtingen et al. [10] compared
fuzzy logic, neural network, and nearest neighbor models for data mining of wind turbine power
curves. Three models were tested under different wind speed and temperature conditions, then were
compared by the respective average absolute error, root mean square error, and average absolute
percentage of the data samples. Intelligent methods have been widely used, however they have
two main shortcomings. First, it is difficult to obtain sample data in the training process and the
generalization ability of intelligent methods is difficult to be applied in the case of large fluctuations
of PV output [11]. Second, the physical meaning of the results for intelligent clustering algorithm is
difficult to explain [12].

Scholars have attempted to mitigate the above disadvantages by combining intelligent clustering
methods with probabilistic methods. Zhao Y. [13] proposed a data-driven outlier elimination method,
which combined four-dimensional and the density-based clustering methods. Sparse outliers are first
eliminated by the quartile method, then a spatial noise clustering method based on density noise is
applied to eliminate outliers in the stack.

Considering the random fluctuation characteristic of PV power output, some researchers have
studied the outlier identification and data cleaning of PV power systems. Zhang et al. [14] proposed a
method for the data cleaning of radiation data. He used the short-circuit current Isc as a self-reference
parameter to obtain statistical distributions based on different performance descriptors with a confidence
level of 0.99. The relationship between Isc and irradiance is good in linearity, but Isc cannot be obtained
in the actual operation process. Yu [15] proposed a least-squares-based data cleaning method for PV
historical operation data. However, this method did not consider the output characteristics of the
photovoltaic array so that the distortion of the distributed parameters caused by the outliers cannot
be eliminated. There are clear-cut relationships among the PV system output, electrical parameter
distribution, and the external environment [16,17]. Such relationships can be exploited to optimize the
PV array data cleaning design [18].

Considering the distribution characteristics of PV array outliers, this paper proposes an algorithm
for PV array outlier identification based on sliding standard deviation mutation. In this study, the
irradiance and power data are collected by a SCADA system. The raw data are grouped according
to the irradiation. Then, the variance of the data in different groups is used to determine the outlier.
The rest of this paper is organized as follows. Section 2 outlines the establishment of the curve between
PV irradiation quantity and power as well as the source distribution characteristics of PV array outliers
during actual system operation. Section 3 defines the sliding standard deviation mutation algorithm
and its step-wise solution process. Section 4 compares the data cleaning performance of this algorithm
with the quantile algorithm. Section 5 provides a brief summary and conclusion.
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2. PV Array Electrical Characteristics and the Outlier Distribution

2.1. PV Array Electrical Characteristics

The relationship between the PV array power, current, voltage, and external environmental
parameters must be established to further investigate the actual operational data distribution of the
array. The current I and voltage V under the theoretical condition of PV module can be calculated by
Formulas (1)–(2) [19]. The theoretical output power calculation formula of the PV array is shown in
Formulas (3)–(5) [20].

Im = Im−ref[1 + a(T − Tref)] ·
G

Gref
(1)

Vm = Vm−ref[1− c(T − Tref)] ln
[
e + b

(
G

Gref
− 1

)]
(2)

Gref = 1000 W/m2 is the reference solar radiation intensity, Tref = 25 ◦C is the reference temperature,
e is the base of the natural logarithm (about 2.71828), the compensation coefficients a, b, c are constant,
Voc-ref and Vm-ref are the open circuit voltage and the optimal operating point voltage of the PV module
under standard conditions, and Isc-ref and Im-ref are the short-circuit current and the optimal operating
point current of the PV module under standard conditions. For a PV array, the theoretical output
power is calculated as follows:

P = GτpvηTre f A[1 + γ(Tc − 25)] (3)

where G is the irradiance, τpv is the solar cell transmittance of the outer layer, ηTre f is the conversion
efficiency of the solar cell, γ is the value of thermal coefficient of max power for crystalline silicon
and γ = −0.0045, A is the surface area of the PV module receiving surface, and Tc is the operating
temperature of the solar cell.

The cell operating temperature is not easy to get in actual cases, so TNOCT is adopted for calculating
the cell conversion efficiency:

η = ηTre f {1 + γ[Ta − Tre f + (TNOCT − Ta)
G

GNOCT
]} (4)

where TNOCT is the temperature at normal operating cell temperature (NOCT) conditions and GNOCT

is the irradiance at NOCT conditions.
The output power of the module is:

P = GτpvAηTre f {1 + γ[Ta − Tre f + (TNOCT − Ta)
G

GNOCT
]} (5)

where Ta is the ambient temperature.
According to Formulas (1)–(5), combined with the Simulink model, the theoretical curves of the

operating current I, and the irradiance G, the power P and the irradiance G are established, as shown
in Figure 1.

As shown in Figure 1, theoretically, the two curves of the PV array’s operating current I and
irradiance G, the PV array’s output power P and irradiance G approximate a linear relationship.
The relationship between PV array operational data and environmental variables is the foundation for
analyzing the source of outliers.
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Figure 1. Output characteristic of photovoltaic (PV) module.

2.2. Source and Distribution of the Outlier

The data collected from the actual operation of the PV array usually contain a large number of
outliers. The causes of outliers in photovoltaic systems mainly include hardware failure, signal noise,
photovoltaic power limitation, and so on [21,22]. Moreover, outliers generated by various causes
show different characteristics in the electrical parameter curve. Based on the relationship between
irradiance and output power, this paper analyzes the distribution characteristics of abnormal data and
classifies the types of outliers. Figure 2a shows the PV array monitoring structure. Figure 2b shows the
distribution and source of PV array outliers.

According to Figure 2, the relationship between the distribution of outliers and the source is
as follows.

1 Type A outliers are “bottom stacked outliers”. They are typically caused by a fault or abnormality
that cannot be recovered immediately. These faults or anomalies cause the system to continuously
generate outliers within a short period of time. The feature of type A outlier is that the output of
the array remains zero while the irradiance is normal, and such outliers are caused by:

(1) PV arrays or inverter failure;
(2) Communication equipment or sensor failure;
(3) Power unit shutdown.

In these cases, the output power measurement of the PV array is zero or close to zero.
The distribution features are stacked at the bottom of the curve.

2 B-type outliers are “around scattered outliers”. They are irregular scattering points near the
power curve and are typically caused by faults or abnormalities that can be recovered in a short
period of time, including:

(1) Communication equipment or sensor signal propagation noise;
(2) Random volatility of external inputs;
(3) The inaccuracy of MPPT (maximum power point tracking).

The outlier caused by random factors fluctuate randomly around normal data; such outliers will
be randomly distributed outside the boundaries of the output curve.
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3. Sliding Standard Deviation Mutation Algorithm

3.1. Sliding Standard Deviation Mutation Algorithm Principle

In this paper, as mentioned above, the distribution characteristics of PV array outliers form the
basis for determining outliers. When outliers emerge in the operational data, data characteristics
such as the rate of change, mean value, variance, standard deviation, and variance rate will change,
so the appropriate mutation index can be selected to accurately identify the outliers. The standard
deviation can objectively and accurately reflect the degree of dispersion of the dataset and is most
commonly used in probability statistics as a measure of the degree of statistical distribution [23].
Therefore, the standard deviation is chosen as a suitable indicator of mutation. However, the standard
deviation between different groups of the same sample is discrete, which has a negative impact on the
accuracy of the final evaluation results. Therefore, this paper introduces the sliding standard deviation.
The advantage of the sliding standard deviation is that the design of the sliding window can be used to
maintain the continuity of the standard deviation of the data between different groups and to increase
the sensitivity of the mutation index [24].
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The known set U is divided into m mutually independent subsets Y, where U= {Y1, Y2, · · · , Ym},
m is the number of Y. Let X = {Xs, X1} be the target set. Xs represents the data subset with normal array
power generation performance, X 1 represents the data subset with abnormal array power generation
performance, and X meets Xs ∩ X1= ∅, Xs ∪ X1=U.

Set the sliding set to Zj = {(x1, y1), (x2, y2), · · · , (xa, ya)}, where Zj indicates that the sliding set in a
subset slides to the jth position, j= 1, 2 · · · n-a+1, i=1, 2 . . . n. a is the total number of data points in the
sliding set and 1 < a < n, where n is the total number of subset data points. The known subset Ym=

{(x1,y1), (x2,y2), · · · , (xn,yn)|yi<yi-1, i∈(2,n)}, where x represents irradiance, y represents power, and n is
the total number of subset data points. The sliding standard deviation within the group is calculated
as follows [25]:

σm, j =

√√√√
1
a

a+ j−1∑
i= j

(yi − µ)
2 (6)

where σm,j is the jth standard deviation value in the subset Ym, a is the total number of data points in
the sliding set, and µ is the average value of yi in the sliding set.

Then, the change-point analysis is made for the calculation result of the sliding standard deviation,
and the standard deviation threshold H is set based on the analysis result: imin = arg min

{
(ximin , yimin)

∣∣∣σm, j ≥ H
}

imax = arg max
{
(ximax , yimax)

∣∣∣σm, j ≤ H
}
+ a

(7)

where i represents the ith point in the subset Ym within the standard deviation threshold, imin is the
first point, and imax is the last point. After getting the normal point within the threshold of each subset,
there is:  Xs =

{
(xi, yi)

∣∣∣(xi, yi) ∈ Yj, imin ≤ i ≤ imax, 1 ≤ j ≤ m
}

X1 =
{
(xi, yi)

∣∣∣(xi, yi) ∈ Yj,
∣∣∣(xi, yi) < Xs, 1 ≤ j ≤ m

} (8)

where Xs is the normal data subset of the sample set U and X1 is the outlier subset of the sample set U.

3.2. Algorithm Steps in Detail

The measured irradiance and power data of a PV array are chosen to illustrate the steps of the
sliding standard deviation algorithm in detail. Figure 3 shows the flow chart of the algorithm.

The detailed steps of the algorithm are as follows (the solar irradiance and power of PV array
have been normalized).

(1) Select raw data U. The selected data contain the measured solar irradiance and power data of the
PV array of one year.

(2) Divide U into subsets Ym. The maximum value of irradiance data in the sample data is 1100 W/m2

and the minimum value is 0 W/m2, so the range of irradiance is 0–1100 W/m2. The data are
divided into several subsets according to the irradiance interval. According to the rule of the
algorithm, the data of each subset must meet the requirement of minimum data size. This
restriction can be adjusted according to the total amount of sample data. The minimum data
size of the selected data is 60. Therefore, when the data points in the subset are less than 60, the
subset is merged with the previous subset until the data size requirements are met. The irradiance
interval is set as T = 10 W/m2, and the sample data are divided into 110 subsets Ym that meet the
rule. The calculation process of each subset is similar, so the 90th subset is taken as an example,
of which the irradiance range is 900–910 W/m2.

(3) Sort the subset data in descending order. There are 110 power points in the 90th subset, and the
data points are arranged in descending order to satisfy yi<yi-1, i∈(2,110). The 90th subset is Y90 =

{(x1,y1), (x2,y2),· · · ,(x110,y110)}, where xi is the irradiance and yi is the power of the ith data point
(xi, yi).
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(4) Calculate the sliding standard deviation. Set the data capacity of the sliding to a = 30. The subset
data are brought into the sliding set Zj where j = 1, 2, · · · , 81, as shown in Figure 4. Calculate
sliding standard deviations of 81 sliding sets. The 81 sliding standard deviations and other
specific data are shown in Table 1.

(5) Set the threshold to identify outliers. First, set the threshold based on the distribution of sliding
standard deviations. Calculate the deviation of 110 subsets Ym and divide the 110-subset deviation
data into 11 groups according to the irradiance interval (100 W/m2). Then, number the 11 groups
by Roman numerals (I for the 0–100 W/m2 irradiance interval, II for the 100–200 W/m2 irradiance
interval, and so on).Energies 2019, 12, x 7 of 17 
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Table 1. The 90th subset’s sliding standard deviations and other data.

Sliding Set Date Power (W)
Ambient

Temperature
(◦C)

Irradiance
(W/m2)

Module
Temperature

(◦C)

Normalized
Power

Sliding
Standard
Deviation

Z1
17/4/24
11:39 497,520.1 21.15 909.99 40.71 0.816 0.023

Z2
17/6/25
13:39 444,015.9 29.69 909.97 46.69 0.728 0.021

...
...

...
...

...
...

...

Z80
17/5/16
10:49 459,500 26.35 902.87 47.36 0.754 0.185

Z81
17/5/28
12:20 459,062.6 34.87 902.73 54.34 0.753 0.221

The box diagram is shown in Figure 5. The statistical distribution of the 110 subsets’ sliding
standard deviations shows that most of the normal values are concentrated between 0.015 and 0.025.
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After the threshold is set to 0.02, the sliding standard deviation curve of the subset Y90 is shown in
Figure 6a. The curve on the left side of the 20th value and the right side of the 73rd value is significantly
upturned with no tendency to stabilize. The steady trend in the middle of the curve indicates that the
sliding standard deviation of this part is similar and that the data fluctuation range is small, which are
the normal data. By combining the threshold and formula (7), the 20th data point of the subset Y90 and
the 103th data point are determined as the mutation points. Therefore, the first 19 data points (“Upper”
area in Figure 6a) and last 8 data points (“Lower” area in Figure 6a) are identified as the outliers. The
cleaning result is shown in Figure 6b.

(6) Data cleaning for data set U. The final results of the above stepwise process are shown in Figure 7.
The normal data distribution trend in Figure 7 is consistent with the theoretical curve of the PV
array irradiance and power in Figure 1.
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4. Verification

In order to further verify the effectiveness of the outlier cleaning method proposed in this paper,
the operational data of a PV array combiner box are chosen for the verification. The operational data
are selected from a large grid-connected photovoltaic power station in China. All irradiance data and
power data have been normalized.

4.1. Case Study

The total installed capacity of the grid-connected PV power station is 39.3 MW, and there are 74
centralized inverters installed, each of which is connected to six array combiner boxes. Sixteen PV
branches are connected to each array combiner, and each branch has 16 PV modules connected in
series. The model number of the module is CEC6-72-300P. The actual operation data of the two array
combiner boxes in 2017 are selected as cleaning sample data (numbered 4A, 37A). The data resolution
is 10 min.

Threshold settings directly influence data cleaning results, and different threshold setting schemes
alter the data cleaning results. The threshold setting range is presented in Section 3. The data of the
37A array combiner box are taken as an example here to illustrate the cleaning effect of the sliding
standard deviation mutation algorithm of different threshold settings. There is a linear relationship
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between power and irradiance, so the linear correlation coefficient is introduced as the evaluation
index. The calculation results are shown in Table 2.

As shown in Table 2, the threshold setting affects the data deletion rate and linear correlation
coefficient of the cleaning result. Within the designed threshold range, the linear correlation coefficient
is stable above 99% and increases slightly as the threshold decreases. At the same time, the data
deletion rate markedly increases as the threshold decreases. A smaller threshold setting causes a
denser normal data distribution (Figure 8) and a larger threshold setting causes a more dispersed
normal data distribution.

Table 2. Data cleaning results of different threshold.

Threshold Value Raw Data Volume Residual Data
Volume

Data Deletion
Rate

Linearly
Dependent
Coefficient

0 22,151 14,336 35.28% 99.78%
0.01 22,151 17,605 20.52% 99.69%
0.015 22,151 18,604 16.01% 99.65%
0.02 22,151 19,281 12.96% 99.62%
0.025 22,151 19,590 11.56% 99.60%
0.03 22,151 19,984 9.78% 99.42%
0.04 22,151 20,697 6.56% 99.25%

The threshold settings need to be adjusted to the actual application scenario. For example, for the
modeling a PV system, the data must be prioritized over a smaller threshold. In this case, the data
threshold range for 37A can be set to 0–0.01 to delete some of the discrete, correct data for higher quality
and for more densely distributed normal data. In this case study, we aimed at prevent misidentification
to the greatest extent possible by analyzing the threshold settings. Table 3 and Figure 8 together
show that a smaller threshold setting results in a slight increase in the linear correlation, but the
corresponding data deletion amount significantly increases to the point that certain normal points
are incorrectly identified as outliers. A larger threshold setting results in less data deletion, and the
smaller the linear correlation coefficient, but more outliers are not recognized. The optimal threshold
setting range for the 37A data is 0.02 to 0.025. Under the same principle, the optimal threshold setting
range for the other two sets of data is 0.02–0.025.
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Two arrays of data of 4A and 37A are cleaned by the proposed method, and thresholds of the two
sets of data are all set to 0.02. The data cleaning results are shown in Figure 9. The outliers of 4A and
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37A’s data can been effectively identified by the algorithm. The data marked in red in Figure 9 are
identified as normal data, which are close to the theoretical PV power curve. The results of the two
groups also prove that the bottom-curve stacked and around-curve scattered outliers are effectively
identified by the proposed algorithm, which make it feasible and effective for data cleaning in large
grid-connected PV arrays.Energies 2019, 12, x 12 of 17 
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4.2. Comparison with Other Algorithms

In order to illustrate the performance of the proposed method, it is compared with the quantile
method, which is the most common used in data cleaning. In this section, the quantile is set to quartile.
The original operation data of 4A and 37A array in the above example are used as data samples for
the quantile method and the sliding standard deviation mutation algorithm. Two kinds of methods
are used to clean the sample data under different outlier distributions. Then, the cleaning effect,
data deletion rate, and linear correlation coefficient are compared.

Three kinds of data conditions (outlier accumulation at the bottom, outlier around the top,
and normal outlier distribution) are designed to assess the cleaning effect of the two methods. The
cleaning results under different outlier distributions are shown in Figures 10–12.
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Figures 10–12 show that in the case of bottom outlier accumulation and outlier around the top,
the data identified as normal data by the quartile algorithm are offset to the accumulation side of
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the outlier due to the distribution of outliers. Some data are misjudged, which means some normal
data are identified as outliers and some outliers are identified as normal data. The sliding standard
deviation algorithm proposed in the paper has not been affected by the outlier distribution, which
means that the algorithm can still classify the outliers from the operation data.

To analyze the performance of the proposed method, the raw operation data of the 4A, 37A,
and another array numbered 17B is cleaned by the quartile method and the sliding standard deviation
mutation algorithm, respectively.

Figure 13 shows the data cleaning results for 37A by the two methods. Both methods can identify
bottom-stacked outliers, overall. The normal data identified by the quartile method are shifted
downwards. The outlier in 37A is stacked in the lower part of the scatter, which influences the quartile
method’s cleaning effect, resulting in a deviation of normal data recognition. The sliding standard
deviation algorithm will not be affected by the distribution of outliers.

Table 3 shows the cleaning results by the two methods. The two methods show different cleaning
results of the outlier around the normal data. The two methods’ linear correlation coefficient of the
cleaned data can reach 99%. The data deletion rate of the quartile method for three arrays is 45.43%,
37.24%, and 32.14%, respectively, which is much larger than the 16.38%, 19.87%, and 12.96% data
deletion rates of the sliding standard deviation mutation algorithm. Figures 10–13 show that the
quartile method identifies some normal data as outliers, so the quartile method has a higher normal
data loss rate than the proposed method.
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In summary, the data cleaning method based on the sliding standard deviation mutation algorithm
can effectively identify bottom-stacked and around-curve scatter data in the array power-irradiance
curve of different PV arrays. Although the outliers distort the distribution of the data, the proposed
method can still effectively identify the outliers.
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Table 3. Data cleaning results of two different algorithms.

Raw Data Linear Correlation
Coefficient Before Cleaning Method Data Deletion

Rate
Linear Correlation

Coefficient after Cleaning

4A 95.46%
Quantile algorithm 45.43% 99.81%

Proposed algorithm 16.38% 99.46%

17B 94.48%
Quantile algorithm 37.24% 99.75%

Proposed algorithm 19.87% 99.56%

37A 96.60%
Quantile algorithm 32.14% 99.71%

Proposed algorithm 12.96% 99.62%

5. Conclusions

In order to effectively clean the outlier existing in the PV array, this paper presents the cleaning
method based on the sliding standard deviation. The main work of the thesis includes: The distribution
characteristics and sources of outliers in the actual operating data of PV arrays are analyzed and
summarized. A method based on sliding standard deviation mutation is proposed for identifying
PV array outliers. In the case study, the different actual operational data are selected as the cleaning
sample. The results prove the availability of the algorithm, and the performance comparison with
the quartile algorithm shows the effectiveness of the proposed algorithm. Based on the above works,
the highlights of the paper can be summarized as follows:

(1) The typical source and distribution features of PV array outliers are revealed. This study finds that
the outliers of PV arrays can be sorted into two categories (bottom-stacked data and around-curve
scatter data), and then summarizes the source and distribution of these two types outliers.

(2) The linear relationship between PV array operational data and environmental variables is used
as the foundation of the cleaning method. The proposed method is consistent with the output
characteristic of PV array, which can improve the recognition rate. The cleaning results are
consistent with the theoretical relationship between irradiance and output power.

(3) The outlier data distribution will affect the effect of classical data cleaning algorithm and lead
to misidentification. In this paper, it is found that the classical quantile method will be affected
by different distributions of the outlier, and such influence will lead to misidentification of the
outliers and reduce the accuracy. The method of this paper can avoid the negative effects of
outlier distribution by the algorithm design of sliding groups.

The proposed method can be used to preprocess the original operational data of the PV array.
By cleaning out irrelevant outliers, high-quality data samples are provided for subsequent work of the
operation and maintenance of the power plant.
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Nomenclature

G Irradiance (W/m2)
I Current (A)
V Voltage (V)
P Power (W)
T Temperature (◦C)
e The base of the natural logarithm
a, b, c Constant
A Surface area of the PV module receiving surface (m2)
η Cell conversion efficiency
τpv Solar cell transmittance of the outer layer
Isc Short-circuit current (A)
Isc-ref Short-circuit current under standard conditions (A)
Im-ref Optimal operating point current under standard conditions (A)
Vm-ref Optimal operating point voltage under standard conditions (V)
Voc-ref Reference open-circuit voltage (V)
Iref Reference current (A)
Vref Reference voltage (V)
Gref Reference irradiance (W/m2)
Tref Reference temperature (◦C)
ηTre f Conversion efficiency at reference temperature conditions
γ Thermal coefficient of max power for crystalline silicon
Tc Operating temperature of the solar cell (◦C)
Ta Ambient temperature (◦C)
GNOCT Irradiance at normal operating cell temperature conditions (W/m2)
TNOCT Temperature at normal operating cell temperature conditions (◦C)
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