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Abstract: In the paper, a modified coyote optimization algorithm (MCOA) is proposed for finding
highly effective solutions for the optimal power flow (OPF) problem. In the OPF problem, total
active power losses in all transmission lines and total electric generation cost of all available thermal
units are considered to be reduced as much as possible meanwhile all constraints of transmission
power systems such as generation and voltage limits of generators, generation limits of capacitors,
secondary voltage limits of transformers, and limit of transmission lines are required to be exactly
satisfied. MCOA is an improved version of the original coyote optimization algorithm (OCOA) with
two modifications in two new solution generation techniques and one modification in the solution
exchange technique. As compared to OCOA, the proposed MCOA has high contributions as follows:
(i) finding more promising optimal solutions with a faster manner, (ii) shortening computation
steps, and (iii) reaching higher success rate. Three IEEE transmission power networks are used for
comparing MCOA with OCOA and other existing conventional methods, improved versions of these
conventional methods, and hybrid methods. About the constraint handling ability, the success rate of
MCOA is, respectively, 100%, 96%, and 52% meanwhile those of OCOA is, respectively, 88%, 74%,
and 16%. About the obtained solutions, the improvement level of MCOA over OCOA can be up to
30.21% whereas the improvement level over other existing methods is up to 43.88%. Furthermore,
these two methods are also executed for determining the best location of a photovoltaic system (PVS)
with rated power of 2.0 MW in an IEEE 30-bus system. As a result, MCOA can reduce fuel cost and
power loss by 0.5% and 24.36%. Therefore, MCOA can be recommended to be a powerful method
for optimal power flow study on transmission power networks with considering the presence of
renewable energies.

Keywords: coyote optimization algorithm; modified coyote optimization algorithm; transmission
power system; success rate; photovoltaic systems

1. Introduction

Optimal power flow (OPF) is a very important optimization problem in power system operation
due to its huge contribution to economy and stable operation issues. The task in the problem is to
determine the most appropriate values for parameters of electric components in transmission power
networks so that all operation limitations of the power system are always in the allowable ranges and

Energies 2019, 12, 4310; doi:10.3390/en12224310 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-9312-0025
https://orcid.org/0000-0002-0951-410X
http://www.mdpi.com/1996-1073/12/22/4310?type=check_update&version=1
http://dx.doi.org/10.3390/en12224310
http://www.mdpi.com/journal/energies


Energies 2019, 12, 4310 2 of 36

predetermined objectives are also optimized [1,2]. Basically, single objective functions considered in
the OPF problem are fuel cost of generators, power losses of all branches, deviation of load voltage,
and index of voltage stability while taking into account operation constraints of all components
such as active and reactive power output limitations of generators, tap limitation of transformers,
reactive power output limitations of switchable capacitor banks, load bus voltage limitations, and
transmission line capacity limits. In the OPF problem, there are many parameters corresponding to
working parameters of electric components in transmission power networks. The parameters are
divided into two variable types, control variables and dependent variables. The former includes active
power of generators excluding the generator with the highest capacity located at the slack bus, voltage
of generators, reactive power generation of shunt capacitors, and tap position of transformers. The
latter includes other remaining parameters such as active power of the generator located at the slack
bus, reactive power of generators, apparent power of all conductors, and voltage of all load buses.
In summary, the key work in the OPF problem is to select control parameters of power networks in
order to satisfy all constraints and optimize predetermined objectives.

In the past, the mathematical model of the OPF problem did not consider non-differentiable
objectives as well as complicated constraints of generators. Therefore, the OPF problem was easily
solved by conventional deterministic optimization algorithms, which were mainly based on derivatives
and gradient techniques. Nowadays, the OPF problem becomes a complex problem under considering
non-convex or non-smooth objectives, and a high number of branches and generators. Therefore,
the applications of the deterministic optimization algorithms must be stopped and replaced with other
powerful algorithms. This issue boosts big motivations from researchers to propose new methods with
the main purpose of tackling such shortcomings. Metaheuristic algorithms comprising of standard
methods, improved methods, and hybrid methods were applied for coping with the OPF problem.
Modified evolutionary programming (MEP) has been proposed for solving the OPF problem [3]. MEP
was the combination of conventional evolutionary programming (EP) and conventional simulated
annealing algorithm (SA). In the method, the mutation technique was established by using both
Gaussian and Cauchy distributions whilst the selection technique was done by using the probabilistic
updating technique of SA. MEP was compared to EP in solving the IEEE 30-bus transmission power
network. Fuel cost comparison indicated that MEP was more effective than EP in terms of the optimal
solution. However, MEP had a longer execution time, although the two methods have been run
by setting the same values for population size and the number of iterations. Differential evolution
variants, such as conventional differential evolution (DE) [4,5], differential evolution with augmented
Lagrange multiplier method (DE-ALM) [6], improved differential evolution (IDE) [7,8], were employed
for dealing with OPF problem. In [4], the search ability of DE has been tested on the OPF problem with
two power systems considering single objective function and multi-objective function. In addition, the
Grey Wolf algorithm has been implemented for the same study cases with the intent to demonstrate
the high performance of DE for the OPF problem. DE has been evaluated to be more effective than
GWOA and other existing methods such as PSO, TLO, and GSA; however, the authors have forgot
convergence speed comparison, which is the most important factor for leading the conclusion of real
performance. As reported in [4], both DE and GWOA were run by setting 300 and 1000 to the highest
number of iterations for IEEE 30-bus system and IEEE 118-bus system, but population size was not
shown for the two methods. Clearly, the execution of DE was only for good results rather than the
demonstration of a high performance of DE. In [5], the authors have also tried to show the effectiveness
of DE by running DE on an IEEE 30-bus system with different objective functions. The study has
set different values for the number of iterations although only the IEEE 30-bus system was the test
case. For the case with the good result, the number of iterations was set to 200, but for the case with
worse results it was increased to 500 iterations. The settings in [5] obtained good results, but for the
demonstration of a real performance of DE. In [6], the authors have stated DE was not effective for the
OPF problem because mutation factor was set to a fixed value and its ability for handling inequality
constraint was not highly effective. Therefore, in DE-ALM, mutation factor and crossover factor have
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been considered as control variables. Additionally, augmented Lagrange multiplier method (ALM) was
applied for dealing with inequality constraints. DE-ALM has been compared to other metaheuristic
algorithms but the comparisons with DE have been ignored. Clearly, the proposed modifications
in [6] could not lead to any conclusions of the improved performance of DE-ALM. In contrast with
DE-ALM, IDE methods [7,8] have only focused on improvements of mutation stage by employing
dissimilar models for updated step size. In [7], IDE and conventional DE have been tested on IEEE
6-bus and IEEE 30-bus systems for comparisons. In [8], larger systems with 30 buses and 57 buses have
been used as study cases for proving the effectiveness of IDE. The two studies in [7,8] have focused
on the minimum fitness function but ignored the comparison of population size and the maximum
iterations. Therefore, the conclusion of high performance of IDE was not persuasive. In addition to
DE variants, particle swarm optimization (PSO) variants were also successfully applied for the OPF
problem considering different objectives and complicated constraints. These methods consist of PSO
with chaos queues and self-adaptive mechanisms (IPSO) [9], evolving ant direction particle swarm
optimization (EADPSO) [10], PSO with Pseudo-Gradient theory (PG-PSO) [11], graphics processing
unit based PSO (GPUA-PSO) [12], and PSO with canonical differential evolution (CDE-PSO) [13]. In [9],
the authors proved the outstanding performance of IPSO over conventional PSO through an IEEE
30-bus system considering multi-objective function. These authors have found a set of non-dominated
solutions and chosen one out of the solutions to be the best compromise solution. There was no report
of control parameters for search speed comparison. The shortcoming in [9] was tackled in [10] since the
demonstration of search speed was carried out. EADPSO and PSO have been run in the same setting
of control parameters and in different settings for further comparisons. However, the study cases
were two systems with 39 buses and 57 buses. Furthermore, the comparisons between EADPSO and
previous methods were carried out based on objective functions only. Among these methods, PG-PSO
in [11] was the most promising optimization tool thanks to the applications of the pseudo-gradient
approach and constriction factor. In PG-PSO, pseudo-gradient was in charge of finding the best
direction for each particle in order to speed up its convergence process. In addition, the constriction
factor could support finding a reasonable distance between the old solution and new solution. Via the
test results from benchmark functions and standard IEEE transmission power networks with 14, 30,
57, and 118 buses, the proposed method has been stated to be more effective than the conventional
PSO. The studies in [12,13] have also tried to prove the real effectiveness of the applied methods by
showing less fuel cost and less total power loss than other methods; however, the setting of iterations
has not been considered for comparisons. In fact, the number of iterations was set to 3000 in [12] and
1000 in [13] for an IEEE 30-bus system whereas the settings for other remaining systems were not
reported. Aside from DE and PSO variants, genetic algorithm (GA) variants were thoroughly exploited
for the OPF problem by testing the conventional genetic algorithm and analyzing its shortcomings.
Different modified versions of GA have been employed such as genetic algorithm (GA) with fuzzy
system (FS-GA) [14], enhanced GA with new decoupled quadratic load flow (DQLF-EGA) [15], efficient
GA with incremental power flow model (EGA-IPL) [16], and efficient GA with boundary method
(EGA-BM) [17]. In [14], FS-GA has been compared to GA via three test systems with 6, 26, and 30 buses.
The study has demonstrated the real effectiveness of the combination of GA and fuzzy mechanism, but
it has ignored the comparison between FS-GA and other methods. In [15], DQLF-EGA and several
PSO methods have been implemented for only the IEEE 30-bus system whereas the comparisons with
other methods have not been considered. However, both FS-GA and DQLF-EGA have been considered
as favorable methods for the OPF problem in [14,15]. In the GA method group, HEGA-BM was the
most complicated method because it was created by combining HEGA [16] and a proposed boundary
method. The strong point of such method was to solve all violations of upper and lower boundaries
of OPF easily and successfully. HEGA-BM has provided better solutions than EGA-IPL for systems
with 30 and 118 buses. However, the main limitation in [16] was that the comparisons with other
existing methods were few. In fact, just conventional methods like PSO, GA, and DE were compared to
HEGA-BM. In addition to above popular methods, a huge number of methods consisting of original
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methods, improved methods, and hybrid methods have also been suggested to cope with big challenges
from the OPF problem [18–38]. IHBMO [20] was proposed in 2011 based on the honey bee mating
optimization algorithm (HBMO) by using the mutation mechanism. The method could effectively
handle some drawbacks of HBMO such as high probability of finding local optima and converging
to global optima with long simulation time. Unlikely, ISSO [38] was the latest tool and formed from
the social spider optimization (SSO) by suggesting some improvements such as employing a new
movement method of female and male spiders and proposing a suitable ratio of female spiders to
male spiders. With the use of the proposed improvements, ISSO has found more impressive solutions
than SSO and other methods. Among the studies, multi-objective function consisting of two single
objectives such as fuel cost and power loss, power loss and voltage deviation, and fuel cost and voltage
deviation were considered in [18,19,21,23,24,27,30,33]. The main limitation in the studies was the
trade-off between two objectives since one objective was better but another was worse. Furthermore,
the set of non-dominated solutions was not high enough to determine the best compromise solution.
Almost all methods were run on an IEEE 30-bus system whereas few methods were run on an IEEE
118-bus system. For leading to a conclusion of performance for the multi-objective problem, these
studies have only focused on fuel cost, power loss, and voltage deviation but convergence speed
reflected via the setting of control parameters. Clearly, the real performance of methods for the OPF
problem was not demonstrated persuasively and their key shortcomings were as follows:

1 They have compared a proposed method with other existing methods shown in other studies
meanwhile they have forgot to demonstrate the improvement of the proposed method over the
standard method.

2 They have compared a proposed method with standard method, but they have forgot to compare
the method with other methods.

3 For the studies that compare the proposed method to both standard method and other existing
methods, the comparisons were only about objective functions not about convergence speed.

In the paper, we have tackled the disadvantages by comparing the proposed method (MCOA)
with the standard method (OCOA) and other existing methods. In addition, the conclusion of real
performance of MCOA was established by taking into account the comparison of obtained results and
the setting of control parameters.

In recent years, many metaheuristic algorithms have been developed for the purpose of
solving complicated optimization problems. Among these methods, original Coyote optimization
algorithm (OCOA) in [39] is one of the most interesting methods with strange structure and very
high performance as compared to many metaheuristic algorithms. Forty functions with different
dimensions corresponding to 92 study cases have been employed to implement OCOA and six popular
metaheuristic algorithms such as PSO, ABCA, SOSA, BA, GWOA, and FA. OCOA could improve the
result over these six methods significantly once OCOA has found a better average fitness function
for many test cases, especially for hybrid benchmark functions with high dimensions, which were
representatives of complicated optimization problems. Recently, OCOA has been successfully applied
for different optimization problems in these studies [40–43]. In [40], OCOA has been applied for
finding main parameters of three-diode based photovoltaic modules under different environment
conditions consisting of the change of temperature and the change of irradiation. Thanks to the high
performance of OCOA, the three-diode photovoltaic model could be established and it could work as
effectively as other commercial Photovoltaic modules in the market. In [41], OCOA has been applied
for reducing gas consumption of turbines in combined cycle power plants in Brazil while satisfying
pollutant emission regulations and physical limitations of turbines. OCOA has been evaluated to be
more effective than ABCA, BSA, SaDE, GWOA, PSO and the Symbiotic Organisms Search (SOS). In [42],
OCOA together with GA and PSO have been implemented for solving the economic dispatch problem
with the integration of wind turbines and thermal power plants. The first system with five thermal
power plants and one wind turbine and the second system with 10 thermal power plants and two
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wind turbines have been studied for comparisons. The target of the work was to minimize total cost of
thermal power plants and total cost of wind turbines. OCOA has reached less cost than GA and PSO for
the two systems. In [43], OCOA was applied for solving the reactive power dispatch problem in power
system optimization operation; however, OCOA was less effective than other compared methods
since quality of voltage of load buses and total power losses in transmission lines were worse than
those of other methods. Although OCOA has been applied successfully for different problems, its real
performance is still not demonstrated persuasively. Among the studies in [39–43], only optimal reactive
power dispatch problem in [43] is a real challenge for evaluating the effectiveness of OCOA. The result
comparisons in [43] indicated that OCOA could not reach good results as other methods, even the
success rate of OCOA was very low. As observing results from the first application of OCOA on
benchmark function in [39], the most optimal solutions of the considered function set had “zero” value
whereas OCOA has used a center solution in the first new solution generation technique. The center
solution approximately owns variables with middle point of upper bound and lower bound. Therefore,
the center solution is very effective for OCOA in finding new solutions as solving benchmark functions.
This regard is completely not effective for the OPF problem. In the second new solution generation
technique, OCOA has used three random variables where two ones are taken from two randomly
chosen existing solutions and another one is randomly produced within the upper and lower bounds.
At the end of each iteration, OCOA performs solution exchange action among available groups. The
action is useful for avoiding lumping solutions in each group; however, it cannot happen certainly
due to the comparison condition between a random number and a predetermined number. Clearly,
randomizations are existing in OCOA. Due to the existing shortcomings of the two new solution
generation techniques and the solution exchange technique, OCOA cannot be a promising method
for the OPF problem. It cannot find high quality solutions effectively and it must use a high number
of computation steps. For avoiding these disadvantages of OCOA, we propose modified coyote
optimization algorithm (MCOA) by applying three modifications on the two new solution generation
techniques and the solution exchange technique. In the first modification, we suggest replacing the
center solution with the best solution. In the second modification, we cancel randomizations of the
second technique by searching nearby the best solutions. In the third modification, the action of
exchanging solutions among available groups is certainly performed by canceling the comparison
condition. Consequently, the proposed modifications can bring the contributions to the proposed
MCOA method as follows:

1 The replacement of the center solution is useful in reducing computation steps and shortening
simulation time,

2 The replacement of randomizations in the second new solution technique can reduce the negative
impact of randomizations and give more chances for finding more promising solutions,

3 Quitting condition of the solution exchange to make certainty of solution exchange among
groups. This can avoid all solutions a group falling into local optimal zones and also reduce
computation steps.

In order to test the effectiveness and robustness of the proposed MCOA, three IEEE transmission
power systems with 30 buses, 57 buses, and 118 buses are utilized as main study cases. The main
task of the methods is to determine control parameter of transmission power networks meanwhile
the objective is to minimize total fuel cost of all thermal generating units and total power losses in all
transmission lines. Furthermore, for the case of the IEEE 30-bus system, one photovoltaic system with
rated power of 2.0 MW is proposed to be installed in order to reduce fuel cost of all thermal generating
units and power loss in all transmission lines. As comparing obtained results, the main contributions
of the study are as follows:

1 MCOA can reach a higher success rate than OCOA as solving the OPF problem, especially for the
largest scale system with 118 buses,

2 MCOA can find better optimal solutions than OCOA for all study cases,
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3 OCOA and MCOA methods are successfully applied for the OPF problem with the presence of a
photovoltaic system,

4 The best site of photovoltaic system (PVS) in the transmission power network found by MCOA
can result in much smaller fuel cost and power loss,

5 MCOA is superior to other compared methods.

In addition to the introduction section, the other parts of the paper are organized as follows:
the mathematical formulation of OPF problem with the presence of objective functions and power
system constraints is given in Section 2. The entire search procedure of OCOA is expressed and then
the proposed MCOA is clarified in Section 3. All computation steps of using the proposed MCOA for
the OPF problem are described in detail in Section 4. Simulation results and discussion of three IEEE
transmission power networks are presented in Section 5. Conclusions are added in Section 6.

2. Mathematical Formulation of the OPF Problem

In this part, the considered OPF problem is expressed in terms of mathematical formulations with
the presence of single objective functions and constraints. Two single objectives are considered to be
reduction of electric generation cost and reduction of power losses. All constraints in transmission
grids must be satisfied such as operating limits of all electric components and power balance at all load
buses. The objective functions and constraints are presented in detail as follows.

2.1. Single Objective Functions

2.1.1. Electric Generation Fuel Cost Reduction

In the OPF problem, power sources are thermal power plants using fossil fuels for producing
electric and supplying to loads. Therefore, the target of reducing electric generation fuel cost is
equivalent to the target of optimizing the generation of all thermal power plants. Basically, thermal
power plants’ characteristics are represented as the relationship of power output and electric generation
fuel cost. The operating efficiency of these thermal power plants can be evaluated by the total fuel cost
for the generated power. The target of reducing fuel cost can be mathematically formulated by the
following Equation (1) [5]:

Minimize
NoG∑
k=1

EGFCk =
NoG∑
k=1

a1k + a2kPk + a3kP2
k +

∣∣∣∣a4k sin
[
a5k(Pmin

k − Pk)
]∣∣∣∣ (1)

where a1k, a2k, a3k, a4k, a5k are coefficients in electric generation fuel cost function of the kth thermal
power plant; EGFCk is the electric generation fuel cost of the kth thermal power plant; NoG is the
number of thermal power plants in the considered transmission grid; Pk is the generated power of
the kth thermal power plant. In the OPF problem, control variables and dependent variables of each
solution are as follows:

CVari =
{
Pk,i, Vk,i, Tt,i, SVCc,i

}T
; i = 1, . . . , NoS, (2)

DVari =
{
P1,i, VLl,i, Qk,i, MVAbr,i

}T
; i = 1, . . . , NoS, (3)

where CVari and DVari are the control and dependent variable sets of the ith solution.
Corresponding to each variable in the two sets, the definitions are as follows:

1 k = 2, . . . , NoG for Pk,i,
2 k = 1, . . . , NoG for Vk,i,
3 t = 1, . . . , NoT for Tt,i,
4 c = 1, . . . , NoSVC for SVCc,i,
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5 l = 1, . . . , NoL for VLl,i,
6 k = 1, . . . , NoG for Qk,i,
7 br = 1, . . . , NoBR for MVAbr,i.

2.1.2. Total Active Power Losses (TAPL) Reduction

Total power generated by all generators is supplied to loads via transmission lines. With the
presence of resistance and reactance, transmission lines cause active and reactive power losses in which
active power loss is considered as a major objective in the OPF problem. In fact, the transmission lines
account for a high rate in all electric components in the power systems. Therefore, the active power
losses in all transmission lines must be optimized as an objective. The objective can be expressed by
the mathematical model below [4]:

Minimize TAPL =
NoG∑
k=1

Pk −

NoL∑
j=1

PL j. (4)

2.2. Constraints of the OPF Problem

The constraints of the OPF problem are similar to the constraints of control variables and dependent
variables together with the constraint of power balance at all buses. The constraint of variables is
the limits of electric components in the considered transmission grid such as generator of thermal
power plants, static VAR compensator, tap changer of transformers, loads, and transmission branches.
Among the components, the generator of thermal power plants is the most complicated due to the
consideration of active power, reactive power, and voltage. With respect to mathematical formulation,
the constraint of electric components can be expressed in terms of inequalities whereas the constraint
of power balance at all load buses can be expressed in terms of equalities. All the constraints are shown
as follows.

2.2.1. Constraints of all Electric Components

The generator of thermal power plants is constrained by upper and lower bounds of voltage,
active, and reactive power as follows [11]:

Pmin
k ≤ Pk,i ≤ Pmax

k ; k = 1, . . . , NoG, (5)

Qmin
k ≤ Qk,i ≤ Qmax

k ; k = 1, . . . , NoG, (6)

Vmin
≤ Vk,i ≤ Vmax; k = 1, . . . , NoG. (7)

In addition, transformers, static VAR compensators, load, and transmission branches are
constrained by upper and lower bounds as follows [10]:

Tmin
≤ Tt,i ≤ Tmax; t = 1, . . . , NoT, (8)

SVCmin
c ≤ SVCc,i ≤ SVCmax

c ; c = 1, . . . , NoSVC, (9)

VLmin
≤ VLl,i ≤ VLmax; l = 1, . . . , NoL, (10)

MVAbr,i ≤MVAmax
br ; br = 1, . . . , NoBR. (11)
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2.2.2. Constraints of Active and Reactive Power Balance

Two equality constraints are considered in the considered OPF problem to be the active power
balance and the reactive power balance at each bus in the transmission grid. The two constraints are
shown as follows [23]:

P j = PL j + V j

NoB∑
i=1

Vi
[
G ji cos( f j − fi) + B ji sin( f j − fi)

]
; j = 1, . . . , NoB, (12)

Q j + SVC j = QL j + V j

NoB∑
i=1

Vi
[
G ji sin( f j − fi) − B ji cos( f j − fi)

]
; j = 1, . . . , NoB. (13)

As seen from the two equalities above, generated power Pj must be equal to the sum of the load
demand PLj and the power supplying to the branch connecting bus j and bus i.

In this paper, we consider three benchmark power systems with 30, 57, and 118 buses that have
the same characteristics of a real system. In fact, the systems are comprised of transformers, capacitors,
conductors, generators, loads, and buses. These components are represented by important parts and
included in the OPF problem. For instance, transformers are represented as the tap changer and
limitations of the tap changer are considered in Equation (8). Capacitors are also concerned and installed
at some buses with the intent to supplement reactive power to loads and control voltage of load buses.
Limitations of reactive power from the capacitors are shown in Equation (9). Important parameters
of loads are active power, reactive power, and working voltage limitations. Voltage limitations of
loads are shown in Equation (10) meanwhile the balances of active and reactive power are shown
in Equations (12) and (13). Conductors or transmission lines are taken into account by the presence
of apparent power limits shown in Equation (11). In dealing with optimization problems in power
systems, the most difficult task is to collect parameters of electric components in real systems. Therefore,
the solution is to use these benchmark systems that have the same characteristics of real systems.

3. The Proposed Method

3.1. Original Coyote Optimization Algorithm

OCOA was inspired from the natural behaviors of coyotes. The strange characteristics of OCOA
are two new solution generation techniques and one more technique for exchanging solutions among
groups. OCOA is totally different from other metaheuristic algorithms since the whole population is
divided into a number of groups (NoGr) and there is a number of members in each groups (NoCoy).
Each coyote is represented by its social condition and quality of the social condition. Between the two
factors, the former is corresponding to the optimal solution and the latter is corresponding to the fitness
function value of the optimal solution. OCOA executes two techniques for producing two new solution
times. OCOA produces (NoGr × NoCoy) solutions in the first time but OCOA produces NoGr solutions
in the second time. It is noted that the result of (NoGr × NoCoy) is also population size. All solutions in
each group are newly updated in the first technique while only one solution in each group is newly
updated in the second technique. At the last step of OCOA, two randomly picked solutions in two
randomly chosen groups can be exchanged based on a predetermined condition. Therefore, it seems to
be that OCOA is a promising method for the considered OPF problem. For better understanding of
OCOA, the whole computation steps of OCOA method are described in detail as follows [39]:

Similar to other existing meta-heuristic algorithms, the first stage in the search process of OCOA is
initialization with the target of producing the initial solutions. Each coyote in each group is a solution
of the optimization problem and it is represented as Coym,g where m is the mth coyote in each group
and g is the gth group. Each solution is randomly produced based on the following model:

Coym,g = LB + λ1(UB− LB); m = 1, . . . , NoCoy; g = 1, . . . , NoGr, (14)
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where LB and UB are respectively lower and upper bounds of solutions. In addition, each solution
contains NoCV control variables.

Each solution Coym,g is evaluated by calculating fitness function FTm,g and the best solution of
each group is determined and set to Coybest,g.

3.2. Two New Solution Generations

Unlike PSO, which has one new solution generation, OCOA is provided with two techniques
of generating new solutions for each iteration. Each group produces NoCoy solutions for the first
generation but produces only one new solution for the second generation. The first technique is
performed by the meaning of the following equation:

Coym,g = Coym,g + λ2(Coybest,g −Coypr1,g) + λ3(Coycen,g −Coypr2,g). (15)

In Equation (15), Coym,g on the left hand side is the newly updated solution meanwhile Coym,g

on the right hand side is the old solution. In case that Coym,g on the left hand side and Coym,g on the
right hand side are the same, it means the solution is not newly updated. However, the possibility of
the situation is very low or nearly equal to zero. In order to determine the center solution Coycen,g,
one by one variable in the gth group is sorted in descending order of values and then the middle value
is selected for the considered variable.

For the second generation, OCOA selects one out of three ways for taking control variables for the
sole solution. Each group produces one solution Coyg, which is represented as follows:

Coyg =
[
varn,g

]
; n = 1, . . . , NoCV, (16)

where varn,g is determined by the following rule:

varn,g =


varn,pr1,g if λ4 <

1
NoCV

varn,pr2,g if λ4 <
1

NoCV + 0.5
varn,rd if ortherwire

, (17)

where varn,pr1,g and varn,pr2,g are two variables that are taken from the first randomly picked solution
and the second randomly picked solution, respectively. If the first condition, λ4 <

1
NoCV , is true,

varn,pr1,g is selected but if the second condition, λ4 <
1

NoCV + 0.5, is true, varn,pr2,g is selected. In the
case that both of the conditions are incorrect, varn,rd is randomly produced within the lower and
upper bounds.

3.3. Correction of New Solutions

New solutions Coym,g and Coyg in Equations (15) and (16) need verification and correction before
evaluating quality. The verification and correction can be carried out by the function of the following
models:

Coym,g =


UB if Coym,g > UB
LB if Coym,g < LB; m = 1, . . . , NoCoy; g = 1, . . . , NoGr
Coym,g else

, (18)

Coyg =


UB if Coyg > UB
LB if Coyg < LB; g = 1, . . . , NoGr
Coyg else

. (19)
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3.4. Solution Exchange among Available Groups

OCOA terminates each iteration by performing solution exchange among available groups.
However, the action is not always performed and dependent on the condition below:

λ5 < 0.005×NoCoy2. (20)

If the condition in Equation (20) occurs, two randomly picked solutions in two random groups
are exchanged together. Otherwise, all solutions are retained in their current position.

3.5. Modified Coyote Optimization Algorithm (MCOA)

3.5.1. The First Proposed Modification

In the first proposed modification, we suggest changing Equation (15) by replacing Coycen,g with
CoyGbest and replacing Coypr1,g and Coypr2,g with Coym,g. As a result, all solutions in the gth group are
produced by the following formula:

Coym,g = Coym,g + λ1(Coybest,g −Coym,g) + λ2(CoyGbest −Coym,g). (21)

In Equation (21), the center solution was removed due to its negative impacts on the quality
of new solutions of the OPF problem. The OCOA in [39] was applied for benchmark optimization
functions, meanwhile approximately all functions had an optimal solution with zero values. Thus,
the center solution was highly effective for generating updated steps and new solutions for OCOA
with benchmark functions. In the paper, optimal solutions of the OPF problem has a set of control
variables with different values. For instance, power output of generators is in the range of higher than
0 and can be up to 1000 MW, meanwhile reactive power of static VAR compensators can be up to
tens of MVAR. Unlikely, the tap changer of transformers and load bus voltage have values around
1.0 Pu. Consequently, center solutions can negatively influence the performance of OCOA for optimal
solutions of the OPF problem. In addition, Equation (21) has employed the old solution Coym,g instead
of two randomly picked solutions Coypr1,g and Coypr2,g like Equation (15). The modification can assure
that all solutions in the considered group are used to generate updated steps and new solutions.

3.5.2. The Second Proposed Modification

In the second improvement, Equation (17) is suggested to be modified due to its low effectiveness
of randomization in producing control variables of the sole new solution. The first control variable is
selected by the comparison between a random number and (1/NoCV) while the second control variable
is determined based on the comparison between the random number and (1/NoCV + 0.5). If the first
two conditions are not met, a random control variable is produced within upper and lower bounds.
Clearly, the combination of the three randomizations cannot lead to a good solution with high quality
excluding the diversification of generated control variables. For avoiding missing a promising solution,
we suggest Equations (16) and (17) should be canceled and replaced with a new one that can support
generating a more favorable solution. The new formula is as follows:

Coyg = Coybest,g + λ6(CoyGbest −Coybest,g) + λ7(Coypr1,g −Coybest,g). (22)

3.5.3. The Third Proposed Modification

In the third improvement, we suggest ignoring the comparison condition for exchanging solutions
shown in Equation (20). Regarding the review on the action of exchanging solutions among groups,
the action can diversify the solutions in each group. Thus, we select two random groups and exchange
two randomly picked solutions in the groups.
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4. Implementation of the Proposed Method for the OPF Problem

4.1. Population Initialization

OPF is a nonlinear problem with a high number of control variables and it needs to solve the
problem simply and easily. In the study, we used the proposed MCOA method to find good control
parameters of transmission power networks and then the found control parameters were added into
the Matpower program where Newton-Graphson was run to find remaining dependent parameters of
transmission power networks consisting of generation of slack bus, voltage of all load buses, reactive
power of generators, and branch currents. Each solution of MCOA contains a set of control variables
that are parameters in transmission power network such as voltage and active power of generators,
working reactive power of compensators, and secondary voltage of transformers. For evaluating the
quality of each solution, the sum of the considered objective function and the violation of all dependent
parameters is calculated. In the first step, the set of control variables consisting of Pk,i (k = 2, . . . ,
NoG), Vk,i (k = 1, . . . , NoG), Tt,i (t = 1, . . . , NoT) and SVCc,i (c = 1, . . . , NoSVC) is randomly produced
as follows:

Pk,i = Pmin
k + λ8(Pmax

k − Pmin
k ); k = 2, . . . , NoG; i = 1, . . . , NoS, (23)

Vk,i = Vmin + λ9(Vmax
−Vmin); k = 1, . . . , NoG; i = 1, . . . , NoS, (24)

Tt,i = Tmin + λ10(Tmax
− Tmin); t = 1, . . . , NoT; i = 1, . . . , NoS, (25)

SVCc,i = SVCmin
c + λ11(SVCmax

c − SVCmin
c ); c = 1, . . . , NoSVC; i = 1, . . . , NoS. (26)

4.2. Solution Quality Evaluation

After determining all control variables as shown in Equations (23)–(26), such control variables are
sent to input data of the Matpower program for execution and obtaining other dependent variables
such as P1,i, VLl,i, Qk,i, and MVAbr,i. As a result, quality evaluation of the ith solution is completed by
calculating the fitness function. In the paper, two independent optimization cases are considered to be
reduction of electricity generation fuel cost and the reduction of total active power losses. According
to the two cases, the fitness function is mathematically modeled as follows:

FTi =
NoG∑
k=1

EGFCk,i + C1(∆P1,i) + C2

NoL∑
l=1

∆VLl,i

+ C3

NoG∑
k=1

∆Qk,i

+ C4

NoBR∑
br=1

∆Qbr,i

, (27)

FTi = TAPLi + C1(∆P1,i) + C2

NoL∑
l=1

∆VLl,i

+ C3

NoG∑
k=1

∆Qk,i

+ C4

NoBR∑
br=1

MVAbr,i

, (28)

where C1, C2, C3, and C4 are penalty factors and selected by experiment. The factors are set to 103, 104,
and 105 for IEEE 30, 57, and 118-bus systems, respectively; and ∆P1,i, ∆VLl,i, ∆Qk,i, and ∆MVAbr,i are
penalty terms corresponding to violations of dependent variables. The penalty terms are obtained by
using the formulas below:

∆P1,i =


0 if Pmin

1 ≤ P1,i ≤ Pmax
1

(Pmin
1 − P1,i)

2 if Pmin
1 > P1,i

(P1,i − Pmax
1 )2 else

, (29)
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∆VLl,i =


0 if VLmin

≤ VLl,i ≤ VLmax

(VLmin
−VLl,i)

2 if VLmin > VL1,i

(VLl,i −VLmax)2 else
, , (30)

∆Qk,i =


0 if Qmin

k ≤ Qk,i ≤ Qmax
k

(Qmin
k −Qk,i)

2 if Qmin
k > Qk,i

(Qk,i −Qmax
k )2 else

, (31)

∆MVAbr,i =

 0 if MVAbr,i ≤MVAmax
br

(MVAbr,i −MVAmax
br )2 else

. (32)

4.3. Produce and Fix New Solutions

As shown in Equations (21) and (22), MCOA experiences two generations of new solutions.
Therefore, there have to be two times for checking the violation of new solutions and correcting new
solutions. Each new solution is comprised of Pk,i (k = 2, . . . , NoG), Vk,i (k = 1, . . . , NoG), Tt,i (t = 1, . . . ,
NoT), and SVCc,i (c = 1, . . . , NoSVC). Therefore, these variables must be checked and corrected by
using the following formulas:

Pk,i =


Pk,i if Pk,i ∈

[
Pmin

k , Pmax
k

]
Pmin

k if Pk,i ∈
[
− ∞, Pmin

k

]
Pmax

k if Pk,i ∈
[
Pmax

k ,+∞
] ; k = 2, . . . , NoG; i = 1, . . . , NoS, (33)

Vk,i =


Vk,i if Vk,i ∈

[
Vmin, Vmax

]
Vmin if Vk,i ∈

[
− ∞, Vmin

]
Vmax if Vk,i ∈ [Vmax,+∞]

; k = 2, . . . , NoG; i = 1, . . . , NoS, (34)

Tt,i =


Tt,i if Tt,i ∈

[
Tmin, Tmax

]
Tmin if Tt,i ∈

[
− ∞, Tmin

]
Tmax if Tt,i ∈ [Tmax,+∞]

; t = 1, . . . , NoT; i = 1, . . . , NoS, (35)

SVCc,i =


SVCc,i if SVCc,i ∈

[
SVCmin

c , SVCmax
c

]
SVCmin

c if SVCc,i ∈
[
− ∞, SVCmin

c

]
SVCmax

c if SVCc,i ∈ [SVCmax
c ,+∞]

; c = 1, . . . , NoSVC; i = 1, . . . , NoS. (36)

4.4. The Whole Procedure of Solving the OPF Problem

MCOA is a population based metaheuristic algorithm. Therefore, MCOA stops searching new
solutions if the current iteration can reach the maximum value. The whole search process of using the
proposed MCOA method for solving the OPF problem can be described as the following steps.

• Step 1: Select control variables and set values to the variables for the current population.
• Step 2: Run Matpower program to find dependent variables.
• Step 3: Calculate fitness function to determine the global best solution for all group and the local

best solution for each group.
• Step 4: Produce new solutions for all groups and fix new solutions if the solutions violate lower or

upper bounds.
• Step 5: Run Matpower program to find dependent variables.
• Step 6: Calculate fitness function of new solutions. Compare new and old solutions to retain

better ones.
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• Step 7: Produce one new solution for each solution and fix it if it violates lower or upper bounds.
• Step 8: Choose the worst solution for each group.
• Step 9: Run Matpower program to find dependent variables.
• Step 10: Calculate fitness function of the new solution. Compare the new solution and the worst

solution in each group to retain the better one.
• Step 11: Exchange solutions among the available groups.
• Step 12: Determine the best solution of the whole population.

The process with 12 steps above is included in one iteration in the iterative algorithm of solving
the OPF problem by using the MCOA method, meanwhile the detail of application for the whole
search of one trial run can be implemented as shown in Figure 1.Energies 2019, 12, x FOR PEER REVIEW 14 of 36 
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5. Simulation Results and Discussions

This section presents the simulation results from solving three transmission power systems with
30, 57, and 118 buses by using OCOA and the proposed MCOA. The whole data of the systems can be
reached by referring to [11], meanwhile the coefficients of electric generation fuel cost function of IEEE
30-bus system are taken from [5]. In addition, the whole data are also supplemented together with
the paper. For each considered objective, 50 successful runs were performed for obtaining 50 fitness
functions corresponding to 50 optimal solutions. Then, main factors consisting of minimum, mean,
and maximum of fitness function are reported for comparison. The implementation of the OCOA and
the proposed MCOA was executed on the Matlab program language with version R2016a and personal
computer with CPU: Intel Core i7-2.4GHz-RAM 4GB, GPU: Intel HD Graphics 5500, and operating
system version: Windows 8.1 Pro-64-bit.

5.1. Result Comparisons between OCOA and MCOA for IEEE 30-Bus Transmission Power Network

5.1.1. Comparisons between OCOA and MCOA Methods for the Case without PVS

In this section, we compare the real performance of the proposed MCOA method with OCOA and
other existing methods in finding optimal solutions for the IEEE 30-bus transmission power network
with the two optimization cases consisting of power losses and fuel cost. For pair comparisons between
the proposed method and OCOA, we set control parameters to the same values. However, the fair
comparisons between the proposed method and other ones are based on the number of solution quality
evaluations as well as the best fitness function values. Basically, the number of fitness evaluations
for each trial run is also equivalent to the number of times that Matpower program had to be run.
In the OPF problem, all dependent variables of each solution must be found and then both dependent
variables and control variables are used to calculate the fitness function.

For the best observation of the performance comparisons between OCOA and MCOA, we executed
OCOA and MCOA by setting different values to NoGr, NoCoy but fixing NoIter = 100. Tables 1 and 2
report the results with three different settings for the cases of minimizing total fuel cost and total active
power losses. Fitness function values of 50 successful runs are summarized by using minimum fitness,
mean fitness, maximum fitness, and standard deviation. In addition to the results, the improvement of
minimum fitness (IoMF) from the proposed method over OCOA and success rate (SR) in percent from
the two methods are also calculated by using the following equations:

IoMF(%) =
Min. fitness of OCOA − Min. fitness of MCOA

Min. fitness of OCOA
× 100%, (37)

SR(%) =
Number of successful runs

Total number of runs
× 100%. (38)

Thus, improvement of minimum fitness and SR are also seen in the tables for a better view of
performance comparison. The values of minimum fitness indicate that MCOA can find a much better
optimal solution than OCOA for the different settings. For the cost objective, the best fitness of OCOA
and MCOA are, respectively, $842.871 and $818.330 for the setting of NoGr = 3, NoCoy = 3, NoIter = 100,
$829.244 and $799.899 for the setting of NoGr = 3, NoCoy = 4, NoIter = 100, and $801.643 and $798.916
for the setting of NoGr = 4, NoCoy = 4, NoIter = 100. Clearly, the proposed MCOA method can reach a
better solution than OCOA for all the setting cases. The outstanding solutions can be evaluated by
observing the improvement of minimum fitness that are 2.91%, 3.54%, and 0.34% corresponding to the
three setting cases. Similarly, the proposed MCOA method also gets better mean fitness, maximum
fitness, and standard deviation than OCOA for the three setting cases. Table 2 also indicates high
performance of the proposed method over OCOA once the proposed method can reach much smaller
values of total active power losses and the improvement of the minimum fitness is up to 29.45%,
30.21%, and 28.05% for three setting cases. Other values from the proposed method such as mean
fitness, maximum fitness, and standard deviation are also less than those from OCOA. In the two
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tables, SR from MCOA is always higher than that from OCOA. In fact, MCOA can reach SR with
100% for the settings of NoGr = 3, NoCoy = 4, NoIter = 100 and NoGr = 4, NoCoy = 4, NoIter = 100
while the best SR from OCOA is 88% for the setting of NoGr = 4, NoCoy = 4, NoIter = 100. Therefore,
MCOA outperforms OCOA in terms of constraint handling ability.

Table 1. Results obtained by the original coyote optimization algorithm (OCOA) and MCOA
for the EGFC objective of the IEEE 30-bus transmission power network with different settings of
control parameters.

Fitness Values over
50 Successful Runs

NoGr = 3, NoCoy = 3,
NoIter = 100

NoGr = 3, NoCoy = 4,
NoIter = 100

NoGr = 4, NoCoy = 4,
NoIter = 100

OCOA MCOA OCOA MCOA OCOA MCOA

Min. fitness 842.871 818.330 829.244 799.899 801.643 798.916
Mean fitness 846.024 819.628 840.338 810.026 812.368 800.184
Max. fitness 929.852 822.835 886.162 812.391 856.667 803.314

Std. deviation 10.493 1.112 8.785 1.099 8.493 1.086
SR (%) 68 86 82 100 86 100

IoMF (%) 2.91 3.54 0.34

Table 2. Result obtained by OCOA and MCOA for the total active power losses (TAPL) objective of the
IEEE 30-bus transmission power network with different settings of control parameters.

Fitness Values over
50 Successful Runs

NoGr = 3, NoCoy = 3,
NoIter = 100

NoGr = 3, NoCoy = 4,
NoIter = 100

NoGr = 4, NoCoy = 4,
NoIter = 100

OCOA MCOA OCOA MCOA OCOA MCOA

Min. fitness 4.125 2.910 4.085 2.851 3.957 2.847
Mean fitness 5.480 3.272 5.454 3.233 5.277 3.194
Max. fitness 15.338 5.061 14.727 4.997 14.277 4.941

Std. dev fitness 1.642 0.423 1.584 0.422 1.528 0.414
SR (%) 69 88 80 100 88 100

IoMF (%) 29.45 30.21 28.05

For a better view of outstanding performance of the proposed method over OCOA, 50 fitness
function values of 50 successful runs and the convergence characteristic of the best run are plotted in
Figures 2 and 3 for the cost objective and in Figures 4 and 5 for the loss objective. The figures are results
from the setting of NoGr = 4, NoCoy = 4 and NoIter = 100. Figures 2 and 4 show that the red curve has
very tiny fluctuations and many red points have the same fitness as the best red point, while the blue
curve has very high fluctuations and few blue points have smaller fitness than the worst red point.
Figures 3 and 5 point out the significantly faster search speed of the proposed method whereas OCOA
is very slow. It can be seen that the fitness of the proposed method at the 20th iteration is much smaller
than that of OCOA at the final iteration. Therefore, it can be stated that the proposed MCOA method is
superior to OCOA in terms of:

1 Finding much better optimal solutions.
2 Reaching more stable search ability.
3 Converging to high quality solutions with significantly faster manner.
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objective of the IEEE 30-bus transmission power network.
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5.1.2. Comparisons between OCOA and MCOA Methods for the Case with PVS

In this section, we survey the real performance of OCOA and MCOA on a more complicated
case of IEEE 30-bus system. A photovoltaic system with rated power of 2.0 MW was decided to be
installed in the system. We suppose that geographical location of buses 3, 7, 8, 15, 18, 19, 20, 21, 22, 24,
26, 29, and 30 is appropriate for installing the PVS with power of 2.0 MW. We suppose the PVS uses an
inverter to convert DC into AC without battery storage systems. Therefore, environment issue is not a
problem in the installation of PV system. Thus, the duty of OCOA and MCOA in this studied case is to
determine the location of installed PVS and other control variables of the conventional OPF problem.
As a result, the control variable set for this studied case consists of SPi, Pk,i, Vk,i, Tt,i, and SVCc,i.

For implementing OCOA and MCOA for minimizing total power losses, we used the best setting
of Section 5.1.1, i.e., NoGr = 4, NoCoy = 4, and NoIter = 100. The obtained results from the two methods
over 50 successful runs including minimum, mean, and maximum power losses are compared. Results
of total fuel cost are plotted in Figures 6–8 meanwhile those of total power losses are plotted in
Figures 9–11. Figures 6 and 7 indicate that OCOA and MCOA can reduce total fuel cost due to installing
PVS. Namely, OCOA and MCOA can improve fuel cost by 0.7% and 0.88%. Similarly, Figures 9 and 10
also show less power losses from OCOA and MCOA with PVS. Namely, OCOA and MCOA can
improve power loss by 8.5% and 3.8%. As comparing results from OCOA and MCOA for the case of
installing PVS, Figures 8 and 11 show better cost and better loss of MCOA, respectively. As compared
to OCOA, MCOA can improve fuel cost up to 0.51% and power loss up to 24.36%. Clearly, installing
PVS can support OCOA and MCOA find better solutions with less total cost and less power losses.

The best location of PVS found by OCOA and MCOA is, respectively, at buses 30 and 15 for fuel
cost objective, and at buses 22 and 30 for power loss objective. Figures 12 and 13 show the IEEE 30-bus
system with the installation of PVS found by MCOA.
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Figure 7. Comparison of total fuel cost obtained by MCOA for the cases with and without PVS.
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Figure 9. Comparison of total power losses obtained by OCOA for the cases with and without PVS.
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5.2. Comparisons of Result from MCOA and Other Method for the IEEE 30-Bus Power System

Comparisons of total fuel cost and total power losses from MCOA and other methods are shown in
Tables 3 and 4, respectively. In addition to the best, mean, and worst values of cost and loss, three other
factors including population size, the maximum number of iterations, and the number of solution
quality evaluations are also mentioned for performance comparisons. Among the factors, population
size and the number of solution quality evaluations of the proposed method are calculated by using
the following equations:

Npop = NoGr×NoCoy, (39)

NoSqe = NoIter× [(NoGr×NoCoy) + (NpGr× 1)]. (40)

Although the population size of other methods is a known factor, the number of solution quality
evaluations must be calculated [38]. The best cost reported in Table 3 and the best power loss reported
in Table 4 can reveal that the proposed method is more effective than other compared methods in
finding higher quality solutions since its best cost and loss are less than those of others. In fact,
the proposed method can reduce the cost from $0.0776 to $3.342 and the loss from 0.006 to 2.22 MW
corresponding to the improvement level from 0.01% to 0.417% for the cost and from 0.21% to 43.88%
for the loss. The mean and the maximum cost indicate that the proposed method and other ones have
approximately equal stabilization because the deviation is not high. The mean and the maximum
power loss of other methods have not been reported for comparison. In addition, the number of
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solution quality evaluations between the proposed and other ones should be mentioned. NoSqe of the
proposed method is 2000 while that of others is much higher, from 4500 to 25,000 excluding SSO and
ISSO with NoSqe = 690. However, the best cost and the best loss from SSO and ISSO are higher than
those of the proposed method. Consequently, it can be concluded that the proposed method is more
effective than other ones for the IEEE 30-bus transmission power network.

Table 3. Comparison of EGFC obtained by MCOA and other methods for the IEEE 30-bus transmission
power network.

Method Minimum
Cost ($)

Mean Cost
($)

Maximum
Cost ($) Npop NoIter NoSqe

DE [4] 801.23 801.282 801.622 - - -
DE [5] 799.2891 - - 50 500 25,000

EADPSO [10] 800.2276 800.2625 800.3274 50 250 12,500
GPUA-PSO [12] 800.53 - - - - -
DQLF-EGA [15] 799.56 - - 60 200 12,000

EGA-IPL [16] 799.56 799.6497 799.688 60 76 4560
EGA-BM [17] 800.0435 800.12 800.159 60 200 12,000

GSA [22] 798.6751 798.9131 799.0284 100 200 20,000
ABCA [23] 800.6600 800.8715 801.8674 - - -
GWOA [26] 799.5585 - - - - -

MELMM [28] 800.0781 - - - - -
MCBOM [29] 799.0353 - - 50 500 25,000

MSM [32] 800.5099 - - - - -
ACO [33] 802.148 - - - - -

EACO [33] 802.097 - - - - -
MFO [34] 799.072 - - 40 500 20,000
SCA [37] 800.102 - - NA 500 NA

MSCA [37] 799.31 - - NA 500 NA
SSO [38] 802.2580 - - 20 30 ≈690
ISSO [38] 798.9936 - - 20 30 ≈690
MCOA 798.916 800.184 803.314 16 100 2000

Table 4. Comparison of TAPL obtained by MCOA and other methods for the IEEE 30-bus transmission
power network.

Method Minimum
TAPL (MW)

Mean TAPL
(MW)

Maximum
TAPL (MW) Npop NoIter NoSqe

DE [4] 3.38 - - - - -
IPSO [9] 5.0732 - - 100 200 20,000

DQLF-EGA [15] 3.2008 - - 60 200 12,000
EGA-IPL [16] 3.244 - - 60 75 4500

ABCA [23] 3.1078 - - - - -
MSM [32] 3.1005 - - - - -
MFO [34] 2.853 - - 40 500 20,000
SCA [37] 2.9425 - - - - -

MSCA [37] 2.9334 - - - - -
SSO [38] 3.8239 - - 20 30 ≈690
ISSO [38] 2.8678 - - 20 30 ≈690
MCOA 2.847 3.194 4.941 16 100 2000

5.3. Result Comparisons for the IEEE 57-Bus Transmission Power Network

In the section, the proposed method is compared to OCOA and other methods based on results
from minimizing fuel cost and power losses of the IEEE 57-bus transmission power system. OCOA
and MCOA are executed by setting NoGr = 4, NoCoy = 4, and NoIter = 250. Comparisons of cost and
loss for the system are shown in Tables 5 and 6, while fitness function values of 50 runs and the best
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convergence characteristic of OCOA and MCOA are shown in Figures 14–17. Comparisons between
OCOA and MCOA show that MCOA can find less cost and less power loss than OCOA by $360.38
and 2.03 MW. These better results are corresponding to the improvement level of 0.86% and 17.3%.
In addition, the mean and the maximum cost and loss of MCOA are also less than those of OCOA.
For the network, MCOA and OCOA can reach SR with 96% and 74%, respectively. Therefore, MCOA
still gets better ability of handling constraints than OCOA. With respect to graphic comparisons shown
in Figures 14–17 for 50 successful runs and the best convergence characteristic, MCOA also shows
smaller fluctuations, high number of better solutions, and faster convergence speed. Therefore, the
proposed MCOA method is really more robust than OCOA in finding the best solutions, reaching
higher success rate, having better stabilization of the search process, and converging to a solution faster.

The comparisons between the proposed MCOA and other ones emphasize that the proposed
method is more effective than other ones since it can find less cost and less loss than all methods.
As compared to the second best method and the worst method, the proposed MCOA can find less
cost by $6.63 and $450.81, and less power loss by 2.81 MW and 2.77 MW. The results were converted
to improvement level and this is 0.02% and 1.07% for cost, and 2.82% and 22.2% for power loss.
Furthermore, the proposed method is also faster than nearly all methods because NoSqe of the proposed
method is 5000 while that of other is from 5000 to 110,000 excluding SSO and ISSO with NoSqe = 1700.
Therefore, it can be concluded that the proposed method is really effective for the IEEE 57-bus
transmission power network.

Table 5. Comparison of EGFC obtained by MCOA and other methods for the IEEE 57-bus transmission
power network.

Method Minimum
Cost ($)

Mean Cost
($)

Maximum
Cost ($) Npop NoIter NoSqe

EADPSO [10] 41,697.54 - - 50 150 7500
PSO [11] 42,109.723 44,688.420 4,9320.666 25 200 5000

PG-PSO [11] 41,688.500 42,032.706 4,4748.034 25 200 5000
ITLBO [18] 41,638.382 - - - - -
GSA [22] 41,695.871 - - - - -

ABCA [23] 41,693.958 - - 70 200 14,000
IICM [24] 41,738.44 - - 220 500 110,000
COA [25] 41,901.997 42,176.351 43,982.642 - - -

GBBICM [27] 41,715.710 - - - - -
DSM [30] 41,686.82 - - - - -
MSM [32] 41,673.723 - - - - -

BA[35] 41,716 41,808 41,889.0 - - -
IBA [35] 41,673 41,720 41,790 - - -
TSA [36] 41,685.07 41,687 41,689.05 10 1000 10,000
SSO [38] 41,734.337 - - 30 50 ≈1700
ISSO [38] 41,665.540 - - 30 50 ≈1700

OCOA 42,019.298 51,348.818 84,053.088 16 250 5000
MCOA 41,658.913 42,158.042 44,411.362 16 250 5000
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Table 6. Comparison of TAPL obtained by MCOA and other methods for the IEEE 57-bus transmission
power network.

Method Minimum
Loss (MW)

Mean Loss
(MW)

Maximum
Loss (MW) Npop NoIter NoSqe

IDE [8] 10.5581 - - - - -
IICM [24] 11.8826 - - 220 500 110,000

SKHM [31] 10.6877 11.111 12.0016 60 200 12,000
TSA [36] 12.473 12.54 12.60 10 1000 10,000
SSO [38] 10.6144 - - 30 50 ≈1700
ISSO [38] 9.9843 - - 30 50 ≈1700

OCOA 11.731 16.176 31.431 16 250 5000
MCOA 9.703 19.285 39.713 16 250 5000
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objective of the IEEE 57-bus transmission power network.
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Figure 16. The fitness function values of 50 successful runs obtained by OCOA and MCOA for the
TAPL objective of the IEEE 57-bus transmission power network.
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objective of the IEEE 57-bus transmission power network.

5.4. Result Comparisons for the IEEE 118-Bus Transmission Power Network

In the section, the IEEE 118-bus transmission power network is employed as the most complicated
study case with 118 buses and 130 control variables. NoGr, NoCoy and NoIter were, respectively, set to
5, 5, and 300. From these settings, Npop and NoSqe from OCOA and MCOA are calculated to be 25 and
9000. Result comparisons are shown in Table 7. For the test system, both MCOA and OCOA cannot
reach SR of 100% due to the impact of the large scale system. However, the success rate of the proposed
MCOA is much higher than that of OCOA since SR of OCOA and MCOA is, respectively, 16% and
52%. SR from other compared methods in Table 7 was not reported in previous studies, so we cannot
compare the constraint handling ability of the proposed method and these ones. For comparison of
the best cost, the proposed method can find less cost than OCOA by $2469.78 corresponding to the
improvement of 1.87%. As observing minimum cost of all methods, the proposed method can reach a
better optimal solution than all methods with less cost by $168.91 to $9098.85, corresponding to the
improvement from 0.13% to 6.55%. The reported values are not compared to GPUA-PSO because
study [12] did not report control variables for checking. The mean cost and the worst cost of the
proposed method are less than those of all methods. Furthermore, NoSqe of the proposed method is
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9000 while that of others is from 9000 to 225,000. Therefore, the proposed method is superior to all
compared methods and it is really powerful for the IEEE 118-bus transmission power network.

Table 7. Comparison of EGFC obtained by MCOA and other methods for the IEEE 118-bus transmission
power network.

Method Minimum
EGFC ($)

Mean EGFC
($)

Maximum
EGFC ($) Npop NoIter NoSqe

PSO [11] 145,520.0109 158,596.1725 184,686.824 40 250 10,000
PG-PSO [11] 139,604.1326 152,204.2608 170,022.972 40 250 10,000

GPUA-PSO [12] 129,627.03* - - - 500 -
MPM [21] 130,114.429 - - - - -
COA [25] 133,110.4316 138,260.4028 153,110.431 - - -

MCBOM [29] 135,121.570 - - 90 2500 225,000
ACO [33] 138,809.3896 142,189.2573 149,097.287 - 100 -

EACO [33] 138,757.7521 142,062.4122 148,567.872 - 100 -
SSO [38] 132,080.4118 - - 40 200 ≈9000
ISSO [38] 129,879.45361 - - 40 200 ≈9000

OCOA 132,180.3208 135,442.69 139,587.82 25 300 9000
MCOA 129,710.5410 132,861.75 134,172.02 25 300 9000

Note: Method with * did not report optimal solution.

In the Appendix A, optimal control variables reached by the proposed MCOA are presented
in Tables A1–A4.

5.5. Discussion

OCOA and MCOA are meta-heuristic algorithms based on randomizations similarly to other
meta-heuristic algorithms such as GA, PSO, DE, etc. In the structure of search process, OCOA is
particularly dependent on randomizations, especially the second generation in Equation (17) with
three variable selection choices, varn,pr1,g, varn,pr2,g, and varn,rd. Furthermore, the selection of one out
of the three variables is decided by another randomization condition. That is either λ4 < 1/NoCV
or λ4 > 1/NoCV + 0.5. In addition, in the step of exchanging solutions, OCOA is also based on one
more randomization condition of λ5 < 0.005.NoCoy2. The randomizations are not effective, but they
are time consuming. Therefore, we modified Equation (17) and canceled using the condition for
exchanging solutions. The task can reduce ineffective computation steps as well as shorten execution
time. As a result, MCOA can avoid the ineffective randomizations. However, MCOA cannot eliminate
randomizations completely as shown in Equation (21) and (22) and the task of exchanging solutions.
The randomization in Equations (21) and (22) are the characteristic of meta-heuristic algorithms
because the randomizations can support production of different solutions similarly to PSO, DE, etc.
The randomization in exchanging solutions is also useful for avoiding lumping all solutions in each
group, leading to a very low possibility of converging local optimum. Consequently, MCOA solved
the OPF problem more effectively than OCOA. In Sections 5.1.1 and 5.1.2, we ran OCOA and MCOA
by setting different values to the number of groups and the number of coyotes in each group. The
result comparisons indicated that MCOA was completely more effective than OCOA. For each study
case, we ran the two methods, and 50 trials and results in terms of minimum, mean, and maximum
fitness are reported in Tables 1 and 2 and Figures 6–11. The result comparisons indicate that MCOA
can reach better solutions than OCOA with less fuel cost and less power losses.

For solving the three systems, the proposed MCOA tackled several disadvantages that its original
method suffered such as slowly finding high quality solutions, having a high impact on randomizations,
owning a high number of computation steps, and using a long simulation time. As shown in sections
above, the proposed method could reach better results than OCOA such as
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1 Finding higher quality solutions: the best fuel cost and the best total power loss of MCOA are
less than those from OCOA for all study cases,

2 Having more stable search ability: figures showing fitness function of 50 trial runs indicated that
approximately all runs of MCOA had lower fitness function than those of OCOA,

3 Reducing simulation time: MCOA can reduce a number of computation steps by canceling
randomizations in the first and the second generations. Furthermore, the fast search speed can
reduce the number of iterations and shorten simulation time.

However, we had to cope with several difficulties to reach high performance for the search process
of the proposed MCOA in dealing with the OPF problem, especially for a large scale system with 118
buses and a high number of control variable cases such as the case with installation of PVS for the IEEE
30-bus system. As we knew, the proposed MCOA method has three basic control parameters including
the number of coyotes in each group NoCoy, the number of groups NoGr, and the number of iterations
NoIter. The population size of the proposed MCOA method is equal to (NoGr × NoCoy) meanwhile the
number of new solutions produced for each iteration and for one run is, respectively, (NoGr × NoCoy +

NoGr) and (NoGr × NoCoy + NoGr) × NoIter. Therefore, the task of tuning the most appropriate values
for NoCoy, NoGr, and NoIter is not easy. In fact, during the implementation of the proposed MCOA we
considered the comparison criterion, which is the number of solution quality evaluations NoSqe shown
in Equation (40). As shown in Tables 1 and 2, we set different values for NoCoy and NoGr but fixed
NoIter = 100. However, it is just one setting of the trial settings for reaching the best results of MCOA.
During the implementation, we also reduced NoIter and increased the result of (NoGr × NoCoy). For
the setting of (NoGr × NoCoy), we also increased NoGr or NoCoy and decreased the remaining one. As a
result, we concluded the most appropriate setting for the parameters and we applied the settings for
all study cases of the considered system. Results shown in sections above indicated that four was the
best value for both NoGr and NoCoy for the IEEE 30-bus system and IEEE 57-bus system but five was
the best value for both NoGr and NoCoy for the IEEE 118-bus system. It is clear that the setting of the
control parameters of MCOA is not an easy task and it must take long simulation time. The difficulty
will become more serious if the selection of control variables is not certain and there are many choices
of control variables. Fortunately, the OPF problem is complicated but the selection of control variables
is predetermined by using the MatPower program. As using the Matpower program, input data must
be active power output of all generators excluding generator at slack bus, voltage of all generators,
reactive power output of capacitors, and tap changer of transformers. Therefore, all the variables are
predetermined as control variables and there is no difficulty for the selection of control variables. For
the case of installing PVS, the position of one load bus must be selected for providing 2.0 MW to the
load and reducing 2.0 MW supplied from the transmission lines. Therefore, the selection of control
variables was also an easy task for the more complicated case of installing PVS. In the future, we will
consider other clean power sources such as wind turbines and hydropower plants as a real power
system. In addition, a multi-period problem will be studied instead of single period problem in this
study. In daytime hours, PVS together with other sources will supply electricity to the load but the
presence of PVS will not be taken into account at night. The task of the new problem is to determine
the best location for installing PVS and wind turbines meanwhile the location of hydropower plants
and thermal power plants is known.

6. Conclusions

In this paper, a novel coyote optimization algorithm was proposed for solving the OPF problem.
The proposed method was developed by modifying two techniques of generating new solutions and
one technique of exchanging solutions among available groups. By testing on IEEE 30, 57, and 118-bus
transmission power networks with two cases of minimizing electric generation fuel cost and total active
power losses, the proposed method was demonstrated to be more effective and robust than OCOA in
terms of better quality of the best solution, better stabilization of search process, faster convergence,
and higher success rate. The result comparisons are as follows:
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1 The best success rate of the proposed method the three systems was, respectively, 100%, 96%,
and 52%, meanwhile that of OCOA was, respectively, 88%, 74%, and 16%.

2 The improvement level of cost from MCOA over OCOA could be up to 3.54% while the
improvement level for power loss could be up to 30.21%.

As compared to other methods, the method could be more effective in finding better solutions
with a faster manner. The result comparisons can be summarized as follows:

1. The proposed method could obtain improvement levels of cost and loss as 0.417% and 43.88%
for the IEEE 30-bus transmission power network, and 1.07% and 22.2% for the IEEE 57-bus
transmission power network, while the improvement level of cost for IEEE 118-bus transmission
power network was 6.55%.

2. The proposed method used either an equal or smaller number of solution quality evaluations.

For further investigation of the performance, OCOA and MCOA were run to install a PVS in the
IEEE 30-bus system. The results were promising as follows:

1 Both OCOA and MCOA could reduce the cost by 0.7%–8.5% and the power loss by 8.5% and
3.8%.

2 As compared to OCOA, MCOA could reduce fuel cost and power loss by 0.5% and
24.36%, respectively.

Consequently, it is recommended that MCOA is a favorable optimization tool for solving the OPF
problem and for more complicated studies with the presence of renewable energies.
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Abbreviations

ABCA Artificial bee colony algorithm
ACO Ant colony optimization
AGSO Adaptive group search optimization
BA Bat Algorithm
BSA Backtracking Search algorithm
COA Cuckoo optimization algorithm
DSM Differential search method
EACO Enhanced ant colony optimization
FA Firefly algorithm
GBBICM Gaussian bare-bones imperialist competitive method
GSA Gravitational search algorithm
GWOA Grey Wolf Optimization algorithm
IBA Improved bat algorithm
IEEE Institute of Electrical and Electronics Engineers
IHBMO Improved honey bee mating optimization
IICM Improved imperialist competitive method
ISSO Improved social spider optimization
ITLBO Improved teaching learning based optimization
MCBOM Modified Colliding Bodies Optimization method
MELMM Modified electromagnetism-like Mechanism method
MFO Moth-flame Optimizer
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SaDE Self-adaptive Differential Evolution
SCA Sine-Cosine algorithm
SKHM Stud krill herd method
SOSA Symbiotic Organism Search algorithm
SSO Social spider optimization
TSA Tree-seed algorithm
MPM Mathematical programming method
MSCA Modified Sine-Cosine algorithm
MSM Moth swarm method
Nomenclature
B ji, G ji Susceptance and conductance of the feeder connecting bus j and bus i
C1, C2, C3, C4 Penalty factors
Coycen,g The center solution of the gth group
Coym,g The mth solution in the gth group
Coypr1,g, Coypr2,g Two randomly picked solutions from the gth group
Coyworst,g The worst solution in the gth group
CoyGbest The best solution in the whole population
CVari The control variable set of the ith solution

∆MVAbr,i
The penalty term for the violation of apparent power of the brth feeder corresponding
to the ith solution

∆P1,i
The penalty term for the violation of active power at slack bus corresponding to the
ith solution

∆Qk,i
The penalty term for the violation of reactive power at the kth generator bus
corresponding to the ith solution

∆VLl,i
The penalty term for the violation of voltage at the lth load bus corresponding to the
ith solution

EGFC The total electric generation fuel cost of all thermal power plants

EGFCk,i
The electric generation fuel cost of the kth thermal power plant corresponding to the
ith solution

FTi Fitness function of the ith solution
f j, fi Phase angles of voltage at the jth bus and the ith bus
FTworst,g Fitness value of the worst solution in the gth group
Iter Current iteration
λ1, λ2, λ3, λ4, λ5, λ6,
λ7, λ8, λ9, λ10, λ11

Randomly generated numbers in the range from 0 to 1

MVAbr,i The apparent power flowing through the brth transmission of the ith solution
MVAmax

br The highest apparent power of the brth feeder
NoB The number of buses in the considered transmission power network
NoBR The number of transmission branches in the considered transmission grid
NoCV The number of control variables included in each solution
NoCoy The number of solutions in each group
NoGr The number of groups
NoIter The maximum number of iterations
NoL The number of load buses in the considered transmission grid
NoSqe The number of solution quality evaluations
NoS The number of solutions or population size
NoSVC The number of static VAR compensators in the considered transmission grid
NoT The number of transformers
Npop Population size
P1,i Active power of the thermal power plant at slack bus corresponding to the ith solution
Pj, Qj Active and reactive power generated at the jth bus

Pk,i, Qk,i, Vk,i
Active power, reactive power and voltage of the kth thermal power plant
corresponding to the ith solution
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Pmin
k , Pmax

k The smallest and highest active power output of the kth thermal power plant
Pmin

1 , Pmax
1 The smallest and highest active power output of the thermal power plant at slack bus

PLj Active power demand of the load at the jth bus
PLk The active power demand at the kth bus
Qmin

k , Qmax
k The smallest and highest reactive power output of the kth thermal power plant

SP Site of photovoltaic system
SPi Site of photovoltaic system corresponding to the ith solution

SVCc,i
The reactive power of the cth static VAR compensator corresponding to the ith
solution

SVCj The reactive power of static VAR compensator generated at the jth bus
SVCmin

c , SVCmax
c Lower bound and upper bound of the cth static VAR compensator

Tt,i Tap changer of the tth transformer corresponding to the ith solution
Tmin, Tmax The smallest tap changer and the highest tap changer of transformers
Vmin, Vmax Lower bound and upper bound of voltage of thermal power plant generators
Vi, Vj Magnitude of voltage at the ith bus and the jth bus
Varn,g The nth control variable of the solution in the gth group
VLl,i Voltage of load at the lth load bus corresponding to the ith solution
VLmin, VLmax Lower bound and upper bound of load bus voltage

Appendix A

Table A1. Control variables obtained by the proposed MCOA method for the IEEE 30-bus transmission
power network.

Variable EGFC Objective TAPL Objective

PG1 177.2642 51.2489
PG2 48.7616 80.0000
PG5 21.1802 50.0000
PG8 20.6942 35.0000
PG11 12.0994 30.0000
PG13 12.0066 39.9980
VG1 1.1000 1.1000
VG2 1.0879 1.1000
VG5 1.0608 1.0820
VG8 1.0682 1.0899
VG11 1.0999 1.1000
VG13 1.1000 1.1000
Qc1 5.0000 4.3753
Qc2 4.7782 0.0001
Qc3 4.3765 4.9727
Qc4 4.5808 5.0000
Qc5 4.8757 5.0000
Qc6 5.0000 5.0000
Qc7 3.3788 1.0161
Qc8 4.9352 5.0000
Qc9 2.7671 1.2002
T11 1.0389 1.0598
T12 0.9000 0.9066
T15 0.9827 0.9758
T36 0.9658 0.9667
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Table A2. Optimal solutions obtained by MCOA for the case with PVS in the IEEE 30-bus system.

Variable Optimize Total Power Losses Optimize Total Fuel Cost

PG1 50.1323 177.3232
PG2 79.0242 47.7038
PG5 50 21.0492
PG8 34.9821 21.3667
PG11 30 10.5512
PG13 40 12.0120
VG1 1.1 1.1000
VG2 1.096 1.0862
VG5 1.0806 1.0533
VG8 1.0888 1.0649
VG11 1.1 1.1000
VG13 1.1 1.0984
Qc1 0 4.9479
Qc2 4.7165 4.8779
Qc3 5 4.8243
Qc4 5 3.9381
Qc5 5 2.6789
Qc6 4.2267 4.6555
Qc7 1.2101 3.0685
Qc8 4.9853 3.9158
Qc9 3.5789 4.9469
T11 0.9434 0.9508
T12 1.1 0.9977
T15 1.0115 0.9883
T36 1.0037 0.9762
SP 30 15

Table A3. Control variables obtained by the proposed MCOA method for the IEEE 57-bus transmission
power network.

Variable Fuel Cost Minimization Power Loss Minimization

PG1 144.9455 209.1483
PG2 89.9556 3.0094
PG3 44.8814 140
PG6 64.8987 100
PG8 460.005 299.3124
PG9 99.3167 99.2739
PG12 361.3249 409.7594
VG1 1.0981 1.1
VG2 1.091 1.0944
VG3 1.0907 1.0999
VG6 1.1 1.0985
VG8 1.1 1.0969
VG9 1.0805 1.0793
VG12 1.0938 1.0893
Qc1 9.8097 0
Qc2 5.1456 5.0375
Qc3 6.2944 6.3
T1 1.1 1.1
T2 1.0981 0.9
T3 1.0701 1.005
T4 1.0309 0.9001
T5 0.9416 0.95
T6 1.0057 0.9642
T7 0.9885 0.9866
T8 0.9467 0.9005
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Table A3. Cont.

Variable Fuel Cost Minimization Power Loss Minimization

T9 0.9 0.9002
T10 0.987 0.9899
T11 0.953 0.9945
T12 0.9808 1.0009
T13 0.9518 0.9524
T14 0.9906 1.0826
T15 1.0194 1.0722
T16 0.9794 0.9279
T17 1.0053 0.9868

Table A4. Control variables obtained by the proposed MCOA method for the IEEE 118-bus transmission
power network.

Control
Variable Value Control

Variable Value Control
Variable Value

P1 (MW) 24.8557 P103 (MW) 38.0638 V76 (PU) 1.004

P4 (MW) 0.023 P104 (MW) 0.4972 V77 (PU) 1.0311

P6 (MW) 0.0015 P105 (MW) 1.5594 V80 (PU) 1.0435

P8 (MW) 0.0767 P107 (MW) 34.5069 V85 (PU) 1.028

P10 (MW) 399.7336 P110 (MW) 11.6535 V87 (PU) 1.0372

P12 (MW) 86.179 P111 (MW) 36.2049 V89 (PU) 1.0447

P15 (MW) 20.4286 P112 (MW) 33.962 V90 (PU) 1.0211

P18 (MW) 11.7113 P113 (MW) 0.3254 V91 (PU) 1.0209

P19 (MW) 22.2119 P116 (MW) 0.0002 V92 (PU) 1.0304

P24 (MW) 0.236 V1 (PU) 1.0005 V99 (PU) 1.0332

P25 (MW) 194.5895 V4 (PU) 1.0296 V100 (PU) 1.0379

P26 (MW) 281.4839 V6 (PU) 1.0211 V103 (PU) 1.0335

P27 (MW) 11.4272 V8 (PU) 1.0781 V104 (PU) 1.0188

P31 (MW) 7.3547 V10 (PU) 1.0929 V105 (PU) 1.0169

P32 (MW) 14.089 V12 (PU) 1.0157 V107 (PU) 1.0118

P34 (MW) 3.3261 V15 (PU) 1.0162 V110 (PU) 1.0527

P36 (MW) 4.4716 V18 (PU) 1.0202 V111 (PU) 1.0867

P40 (MW) 46.8342 V19 (PU) 1.0167 V112 (PU) 1.0474

P42 (MW) 38.953 V24 (PU) 1.0394 V113 (PU) 1.0263

P46 (MW) 19.2667 V25 (PU) 1.0587 V116 (PU) 1.0505

P49 (MW) 193.4075 V26 (PU) 1.0871 SVC5 (MVAr) −0.1794

P54 (MW) 49.3797 V27 (PU) 1.0211 SVC34 (MVAr) 0.0217

P55 (MW) 32.1311 V31 (PU) 1.0125 SVC37 (MVAr) −0.0246

P56 (MW) 37.4034 V32 (PU) 1.0187 SVC44 (MVAr) 0.0024

P59 (MW) 149.0935 V34 (PU) 1.0257 SVC45 (MVAr) 0.0011

P61 (MW) 147.9593 V36 (PU) 1.0232 SVC46 (MVAr) 0.0146

P62 (MW) 0.009 V40 (PU) 1.0122 SVC48 (MVAr) 0.0047
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Table A4. Cont.

Control
Variable Value Control

Variable Value Control
Variable Value

P65 (MW) 352.0099 V42 (PU) 1.0119 SVC74 (MVAr) 0.0026

P66 (MW) 349.0427 V46 (PU) 1.032 SVC79 (MVAr) 0.0593

P70 (MW) 0.1006 V49 (PU) 1.043 SVC82 (MVAr) 0.0059

P72 (MW) 0.0192 V54 (PU) 1.0165 SVC83 (MVAr) 0.1876

P73 (MW) 0.7076 V55 (PU) 1.0151 SVC105 (MVAr) 0.0983

P74 (MW) 14.0153 V56 (PU) 1.0152 SVC107 (MVAr) 0

P76 (MW) 35.1036 V59 (PU) 1.0329 SVC110 (MVAr) 0.0069

P77 (MW) 0.0044 V61 (PU) 1.0362 T8 (pu) 1.0361

P80 (MW) 428.8456 V62 (PU) 1.0363 T32 (pu) 1.0135

P85 (MW) 0.0897 V65 (PU) 1.0626 T36 (pu) 1.0298

P87 (MW) 3.6106 V66 (PU) 1.0535 T51 (pu) 1.0152

P89 (MW) 498.136 V69 (PU) 1.066 T93 (pu) 0.9999

P90 (MW) 0.0061 V70 (PU) 1.0398 T95 (pu) 1.0153

P91 (MW) 0.0414 V72 (PU) 1.0396 T102 (pu) 0.9929

P92 (MW) 0.0123 V73 (PU) 1.0446 T107 (pu) 0.9344

P99 (MW) 0.3744 V74 (PU) 1.0135 T127 (pu) 0.9971

P100 (MW) 229.5969 - - - -
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