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Abstract: This study aims to provide an experimental assessment of energy consumption in an existing
public building in Poland, in order to analyze the impact of occupant behavior on that consumption.
The building is naturally ventilated and the occupants have the freedom to change the temperature
set point and open or close the windows. The energy consumption is calculated and the calculation
results are compared with the experimental data. An analysis of occupants’ behavior has revealed
that they choose temperature set points in a wide range recognized as thermal comfort, and window
opening is accidental and difficult to predict. The implemented heating control algorithms take into
account the strong influence of individual occupant preferences on the feeling of comfort. The energy
consumption assessment has revealed that the lowering of temperature set point by 1 ◦C results in an
energy saving of about 5%. Comparisons of energy consumption with heating control and without any
controls showed that the potential for energy reduction due to heating control reached approximately
10%. The use of windows control, which allows to turn off the heating after opening the window and
its impact on energy savings have been discussed as well.
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1. Introduction

Currently, the global building sector has been the main consumer of world energy [1]. Energy
consumption in the existing buildings accounts for 40% of the total energy consumption in the United
States [2] and in Europe [3] where 75% of buildings are energy inefficient [4]. Therefore, the European
Commission has published a series of recommendations on the modernization of buildings including
guidance on the automation and controls of buildings [5]. However, despite the large number of
building retrofit technologies [6] and the management of heating, ventilation and air conditioning
(HVAC) systems, the implementation of these recommendations is a difficult and costly challenge.

In making any decisions regarding the modernization of a building, estimating energy consumption
in the building is of key importance. This consumption is influenced by many factors such as ambient
weather conditions, building structure and characteristics, the operation of HVAC systems and
occupancy. One of the most important factors is climate data, which plays a fundamental role in
the building design. Results presented in [7] show that an improvement of around 15% in energy
consumption in buildings can be achieved due to changes in building design such as space area, exterior
openings and material thickness and the choice of building envelope in all climates. An overview
of measures and policies adopted by different countries, allowing the monitoring, management and
reduction of energy consumption in buildings is given in [8]. The energy consumption related to
HVAC systems in different types of buildings (office, commercial and residential) is analyzed in [9].
It is widely expected that building occupancy is of great importance for energy efficient control of
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buildings. Therefore, a large number of works have been developed for the estimation and detection of
building occupancy. A comprehensive review on this problem is presented in [10]. However it should
be noted that new buildings are mostly controlled by a building management system (BMS) where
building occupants have minimal access to the controls. In these buildings energy consumption is not
strongly correlated with occupancy patterns [11].

Many factors influencing energy consumption mentioned above make the estimation of this
consumption very difficult. In [12] recently developed models for solving this problem, including
elaborate and simplified engineering methods, statistical methods and artificial intelligence methods
are reviewed. Quantitative energy performance assessment methods are described in [13]. To simplify
the calculation of energy in the building, a steady-state model was developed as CEN standards, i.e.,
energy performance of the building—calculation of energy use for space heating and cooling [14].
In this model the predicted energy consumption consists of heat transfer through the building envelope,
heat losses for ventilation, heat gain from solar radiation and internal heat gain from people and
equipment. In cold climates, such as in Poland, the energy used for heating is predominant, therefore,
knowing the thermal characteristic of the building envelope and ventilation is crucial [15]. In old
buildings, natural ventilation with operable windows is usually used. In new buildings, this type of
ventilation also becomes increasingly popular as a solution with lower energy consumption compared
to mechanical ventilation and air conditioning. Over the past decades, the impact of various parameters
on the performance of natural ventilation has been studied [16] and many models have been developed.
Important natural ventilation models and simulation tools as well as the comparisons of their prediction
capabilities are reviewed in [17]. The analysis shows that these models are generally only applicable to
specific geometries and driving forces. Furthermore, the most accurate models are developed for cases
with small and simple openings. To investigate the air flow pattern inside a building, computational
fluid dynamics (CFD) models are developed. The model based on the finite volume numerical solution
of the Navier–Stokes equations presented in [18] shows that different positions and shapes of an
opening can determine the behavior of the flow stream inside the building. It allows to determine the
condition of natural ventilation efficiency of the building. Another fluid dynamics (CFD) model allows
to investigate a wind-driven ventilation system in a building with multiple windows [19].

The study mentioned above shows the complexity of a phenomenon that has a decisive influence
on thermal comfort and energy consumption. In a naturally ventilated building, thermal comfort can
be improved and adapted to individual preferences when occupants have the freedom to change the
temperature set points and open or close the windows.

Various case studies [20,21] have shown that occupants tend to adapt to changing environmental
conditions in such a way as to achieve their individual comfort. Research on such behavior is called the
adaptive approach. The application of this approach to thermal comfort standards is considered in [22]
and an equation for naturally ventilated buildings in hot-humid climates is developed in [23]. It was
found that acceptable comfort ranges showed asymmetry and leaned towards operative temperatures
below thermal neutrality for all climates. However, other results, inter alia in [24], based on the data of
surveys conducted in a naturally ventilated building found symmetry of comfort ranges. Many studies
also confirm it is difficult to use defined comfort ranges in the real conditions because it depends on
the occupants’ physiology and subjective perception [22]. The thermal sensations of occupants inside
buildings are influenced by many factors such as air temperature and velocity, humidity, concentration
of CO2, building microclimate, as well as age, activities, preferences, etc. [25,26]. Occupants have
various means of interacting with the indoor environment: they can interact directly with a given
built environment by changing the temperature set points (or adjusting thermostats), operating the
windows, shading, or they can adjust themselves to the existing environmental conditions by changing
their clothing or activity [27]. As regards the theory of thermal comfort in buildings, a large impact
of clothing and activity on the level of comfort is represented by the most extended predicted mean
vote (PMV) index [22,25,28]. This index described the statistical response about thermal sensation
of a large group of people exposed to specific thermal conditions. Six variables, namely metabolic
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rate, clothing insulation, air and mean radiant temperatures, air velocity and relative humidity affect
the PMV index. Four of them can be recorded during the experiment, while clothing insulation and
metabolic rate are not easily measurable and their values are most often taken from [27]. For a typical
office the values of clothing insulation are 1.0 and 0.5 clo for winter and summer respectively, whereas
a typical value used for metabolic rate is 1.0 met. It is also worth noting that the occupant-building
interaction is bidirectional, which means that the building environment and interior also affect the
occupants’ behavior [25], but this interaction requires additional research to identify and describe.

The behavior of occupants is a key issue in the design of the HVAC system and its integration with
other control systems in the building as well as in the assessment of energy efficiency [29]. Various
methods of occupant behavior estimation and detection are used in [10] and models of occupant
behavior can be an efficient means to be implemented into building energy modeling programs [30].
Detecting the presence and absence of occupants allows to determine the operation time of HVAC
systems in the building. Potential annual energy savings are estimated at around 10–40%. It has been
shown in [31] that the HVAC system can save up to 9% of energy if occupancy-based HVAC schedules
are used. In [32], an algorithm for adjusting temperature set points with various indicators of occupant
discomfort tolerance has been proposed and energy savings are estimated at 20% while maintaining
the building comfort requirements. In [33], based on the detection of the instantaneous number of
occupants in the building and related behaviors, it was demonstrated that the energy consumption
of the building could be reduced by 40% without compromising the thermal comfort and air quality.
However, although there are many methods for detecting and describing occupant behavior to achieve
energy savings, their limitations are revealed when applied to real HVAC systems, and they are mainly
related to the difficulty of tracking occupant-provoked changes by the HVAC system.

The use of information about occupant behavior to control the HVAC system and estimate possible
energy savings depends on the thermal behavior of the building, which determines the heating and
cooling time of the building. Several studies have been carried out to investigate the building thermal
behavior and model predictive control (MPC), which allow better tracking of changes in the operating
mode and temperature set points [34]. The knowledge of building thermal behavior and the popular
gray box model approach are the basis for designing an HVAC control system and estimating the
energy savings potential [35,36].

As stated above, because the potential of energy savings depends on various parameters,
its estimation shows large discrepancies. This paper deals with the experimental and theoretical
evaluation of energy consumption in an existing public building in Poland. The building is naturally
ventilated and the occupants have the freedom to change the temperature set point and open or close
the windows. The effect of occupant behavior as well as heating control and window operation on
energy consumption is investigated. The main purpose of the work is to determine the impact of
window opening and the range of temperature set point chosen by the users on energy consumption.

The temperature set points in the heating zones of the building and the outdoor temperature
are measured and recorded by the KNX automation system and for these temperatures the energy
consumption is calculated taking into account heat transfer through the building envelope and heat
losses for ventilation. The calculation results are compared with the experimental data. A heating
control strategy has been implemented in the building and the energy saving potential is estimated for
this strategy.

2. Methodology

The main purpose of the work was to determine how much energy could be saved in a real
building by using heating control. It is also important to determine what factors affect the energy
savings in a building. In order to achieve this goal, energy consumption for heating was first calculated.
The calculations took into account temperatures outside the building and inside the rooms as they
occurred during the one-month period. These temperatures were recorded in the KNX system
implemented in the building. It was noted that occupants chose temperature set points corresponding
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to their thermal comfort, which differed by several degrees. In order to verify the calculations, calculated
energy values were compared with measured values. Then, it was assumed that the temperature in
the whole building was constant during the analyzed period and that the outside temperature was as
in the previous experiment. Two temperature values were selected, namely 20 ◦C and 21 ◦C. Energy
consumption for these conditions was referred to as “consumption without heating control”. The next
task was to calculate energy consumption for the same external conditions, but taking into account the
control method used in the building. This consumption was marked as “energy consumption with
heating control”. However, this required determining the temperature changes in the rooms of the
building after lowering the temperature set point. This problem was investigated experimentally and
discussed. Attention was also paid to the temperature change when the window is tilted from the top
by 30◦ from vertical. This method of window opening is often used by occupants.

3. Building and Experimental Installation

3.1. Construction of the Building

This study deals with the activities of the Laboratory of KNX System and Evolution of Installation
Energy Efficiency (SKNX and EIEE Laboratory) at Poznan University of Technology in Poznan, located
in the north-western part of Poland (Figure 1). The building was built in the 1980s and is representative
of existing Polish buildings from that period considering building envelopes. In 2010 the building was
retrofitted and its energy efficiency improved significantly. It is a three-story building with a height of
11.48 m and the external outline surface of 236.8 m2. On the south the building adjoins another facility
up to the level of one story.
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Figure 1. External view of the KNX System and Evolution of Installation Energy Efficiency (SKNX and
EIEE) Laboratory building.

Figure 2 shows the thickness and the value of the thermal conductivity coefficient of each layer
that constitutes part of the building envelope. The thermal conductivity coefficients are taken from
PN-EN ISO 6946 [37].

The external walls (Figure 2a) with a thickness of 380 mm were built of full ceramic brick and
covered with 15 mm lime and cement-lime plasters. In the ground, the walls were made of cement
blocks and covered with two 15 mm layers of cement-lime plasters. As a thermal insulation, a 120 mm
layer of styrofoam was used on the external walls. At a height of 50 cm below and above the ground,
extruded polystyrene with a thickness of 90 mm was placed.
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The roof (Figure 2b) is multi-layered and consists of 240 mm channel slabs, 100 mm layer of
Supreme, a void of 210 mm, 20 mm cement plaster and the final layer of 45 mm roofing felt. Thermal
isolation was achieved by blowing Rockwool granules into the air void. The laboratory floor was not
thermo-modernized, and the layers in contact with the ground in the part corresponding to heating
zone 1 are presented in Figure 2c, and those corresponding to zones 2 and 3 are shown in Figure 2d.
The main layers of the floor in heating zone 1 are a 150 mm layer of concrete debris and a 300 mm
layer of granulated blast-furnace slag. Insulating roofing tar on a layer of waterproof asphalt and
cement-bonded wood fiber are used as the insulation. In heating zones 2 and 3 the floor forms layers
of concrete debris, leveling concrete and terrazzo. The whole floor in all the zones is covered with floor
gres laid on cement-plaster.

The thermal resistance of a component layer i of a building envelope is defined as Ri = di/λi, where
di is the thickness of the layer and λi is the thermal conductivity coefficient. The thermal resistance R of
a multi-layer building envelope is determined as the sum of the thermal resistance of the component
layers and the conventional internal surface thermal resistance Rsi and the external surface thermal
resistance Rse. The values of Rsi and Rse resistance depend on the type of building envelope and the
direction of heat flow. For external walls and the horizontal direction of heat flow Rsi = 0.13 m2 K/W
and Rse = 0.04 m2 K/W, for flat roof Rsi = 0.10 m2 K/W and Rse = 0.04 m2 K/W [38]. The heat transfer
coefficient, by definition, is calculated as U = 1/R.
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In the walls, there are window jambs, lintels and wall connections, which result in the formation
of thermal bridges that increase heat transfer. They are taken into account by introducing a correction
of ∆U. For external walls with windows ∆U = 0.05 W/m2 K is assumed.

The heat transfer coefficient for windows is determined as:

UW =
Ag·Ug + A f ·U f + lg·Ψg

Ag + A f
, (1)

where: Ug and Uf are the heat transfer coefficients in the middle part of double glazing and the
frame, respectively, Ag and Af are the surfaces of the glass and the frame, Ψg is the linear heat transfer
coefficient of the thermal bridge at the interface between the glass and the frame and lg is the length
of the thermal bridge. According to the technical approval for windows Ug = 0.5 W/m2 K and
Uf = 1.2 W/m2 K. The surface of the glass is 0.4544 m2 and that of the frame is 0.7781 m2. The length of
the thermal bridge amounts to 2.3 m and the linear heat transfer coefficient is taken as 0.06 W/m2 K.

The main entrance to the building leads through two doors from the west. The surface of the
single door is 3.494 m2. There is an additional door with a surface of 3.478 m2 on the east of the
building, occasionally used for moving heavy equipment. According to the technical approval the heat
transfer coefficient is 2.6 W/m2 K.

3.2. Heating Zones

The building was divided into heating zones shown in Figure 3, differing in use, size and separation
walls. The division into zones determined the pipeline system, in particular the number of heating
circuits supplying hot water to panel radiators.
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and (c) the second floor plan.

On the ground floor, there are three heating zones, namely zone 1 and 2 including high-current
laboratories and zone 3 including a workshop, sanitary facilities and a corridor. People staying in
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these rooms do not perform sedentary work and the operation of the devices causes an increase
in temperature. The first floor consists of four heating zones. These zones are the most stable in
temperature, due to the floor being closed with a staircase door and because of its location between the
heated floors of the building. The second floor was divided into five heating zones corresponding to
the rooms. The height of all zones is the same and amounts to 2.8 m.

3.3. Control System and Data Acquisition

The heating system in the SKNX and EIEE Laboratory building is designed in such a way that it is
possible to estimate the heat consumption in each room and implement various control algorithms
as well as to measure, record and visualize useful data [39]. Panel radiators are used as the heating
devices. In this system heat is carried by water supplied from the city heating network. The scheme
of the pipeline system is shown in Figure 4. In order to force the water flow through the installation,
circulation pump (P) is used. At the inflow, a control valve (CV) has been mounted and heating
water parameters are measured using a heat meter. Then, the hot water flows into three main circuits
assigned to each story and the heating water parameters are also measured at the inflow to each circuit.
The water feeds heating circuits assigned to heating zones (Figure 3): on the ground floor—three
circuits, on the first floor—four circuits and on the second floor—five circuits. Water from heating
devices returns through the pipelines on the stories and then the main pipeline to the city heating
network. Each water circuit is equipped with a heat meter and a KNX servo drive. The servo drives
are controlled by signals sent directly from the KNX bus. The KNX multi-function push-button with
a room temperature control unit is located in each heating zone. In addition, the KNX Laboratory
(heating zone 5) is equipped with a KNX touch panel that visualizes the states and parameters of
the system. A valve controller at the heating system inflow and heat meters is connected to the
ControlMaestro controller with a SCADA (superior control and data acquisition) system using an
M-Bus network (Figure 4). This system allows the visualization and acquisition of values measured in
the building heating system.
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To control the heating system KNX devices mentioned above and KNX BACS field network are
used. In the KNX system other devices are integrated, including a weather station, brightness and
temperature sensor, presence detectors and Gira HomeServer. KNX is an open standard for public,
commercial and domestic buildings [40], which allows the integration of many devices from different
manufacturers. KNX devices are most often connected by a twisted pair or RF bus and programmed
with the use of ETS software. It is worth noting that the system used in the laboratory building can be
easily expanded with new devices, and in addition, it allows testing various control algorithms through
reprogramming using the available ETS software. Two networks, M-Bus and KNX, are integrated using
a M-Bus/KNX converter (Figure 5), which enables the acquisition of all measured values and events
in the form of telegrams (standardized KNX messages) by the KNX HomeServer. The HomeServer
visualizes the results on-line, archives them and, once a day, sends the results as a csv file to specified
e-mail addresses. The recording format allows further processing of the results by external tools
and programs.

The following data were recorded by the HomeServer:

• Set point and current temperature in each heating zone from a push-button with room temperature
control unit, measured with the accuracy of ±1 ◦C (logged every 5 min);

• Temperature from the weather station and the external brightness and temperature sensor mounted
on the building facades, measured with the accuracy of ±1 ◦C (logged every 5 min);

• Wind speed from the weather station, measured with the accuracy of ±1.5 m/s (logged every
5 min);

• Occurrence (or absence) of rainfall or snowfall from the weather station (logged every 5 min);
• Illuminance level, from the weather station and the external brightness and temperature sensor,

measured with the accuracy of ±5 lux (logged every 5 min);
• Energy from the heat meters, measured with the accuracy of ±5% (logged every 30 min);
• Instantaneous power from the heat meters, measured with the accuracy of ±5% (logged every

5 min);
• Position status of the windows in each room.
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Figure 5. Integration of M-Bus and KNX networks.

In order to determine the position status of the windows and take it into account in the heating
control, the intruder alarm system (IAS) in the building was integrated with the KNX system. In window
frames, reed switches are mounted and signals from these devices are sent to the alarm control unit,
which transmits them to the KNX binary input.

3.4. Temperature Set Point

The temperature set points for the heating seasons are established based on ISO (International
Standard Organization) Standard 7730 [41], which defines the comfort ranges according to the specificity
of Europe [42]. However, it should be noted that thermal sensations differ between persons sharing the
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same environment, because there are many factors that affect the perception of human beings [26,28].
The thermal sensations experienced by a human being result mainly from the overall thermal balance
of the body. This balance includes two components, namely heat generated by a human being and heat
transferred to the environment. The first depends on the physical activity and the second depends on
clothing, as well as on environmental parameters such as air temperature, radiant temperature, air
velocity and air humidity [43].

The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
standard [44] specifies the conditions in which a fraction of occupants find the environment thermally
acceptable. The predicted mean vote (PMV) and the predicted percentage dissatisfied (PPD) are defined
in ISO 7730 [41]. The thermal comfort index PMV-PPD reflects the degree of human thermal balance
deviation and is a comprehensive comfort indicator that represents the feelings of most people in the
same environment. PMV scales constitute seven thermal sensation points ranging from −3 (cold) to +3
(hot), where 0 means a neutral thermal sensation [45]. The PMV index involves activities (expressed
through the metabolic rate index), clothing corresponding to the total thermal resistance from the
skin to the outer surface of the clothed body and the four environmental parameters mentioned
above [41,46].

Depending on the admissible ranges for PMV and PPD, three kinds of comfort zones or categories
of thermal requirements are defined by ISO 7730 as: category I (or class A; PPD < 6%, i.e., −0.2 < PMV
< 0.2), category II (or class B; PPD < 10%, i.e., −0.5 < PMV < 0.5) and category III (or class C; PPD < 15%,
i.e., −0.7 < PMV < 0.7). The ranges of recommended air temperatures for different types of buildings
depending on the previous categories are shown in Table 1 [41]. Thus, in the study case building
the range of temperature set point was set from 19 to 25◦C and the occupant had some freedom to
choose the preferred temperature during their presence in the room. It should be noted that this value
was a subjective decision of the occupant and the prediction of occupant behavior was a factor of
considerable uncertainty in the analysis [47].

Table 1. The range of recommended air temperatures for offices and classrooms, according to ISO7730 [41].

Type of Building Activity (W/m2) Category Temperature (◦C)

Classrooms A 22.0 ± 1.0
Offices 70 B 22.0 ± 2.0

Conference room C 22.0 ± 3.0

3.5. Building Use and Heating Control Algorithm

The analyzed information about the occupancy, opening windows, operation mode of the heating
system and changing the temperature set point in each room of the building is derived from the data
recorded by Gira HomeServer. On weekdays, the building is usually occupied from 8 a.m. to 6 p.m.
In this time, the heating system operates in comfort mode with the various temperature set points
in the rooms set by the occupants. From 6 p.m. to 8 a.m. the system operates in night mode with
the constant temperature of 16 ◦C. In practice, lowering the temperature set point to 16 ◦C results in
closing the KNX servo drive and switching off the heating system. This control algorithm is considered
below and the experimental results were compared with the calculation. To assess the energy saving
potential due to heating control the same algorithm was assumed, but the temperature was constant in
comfort mode (21 or 20 ◦C). This case was referred as “with control”.

In a real heating control other functions are implemented. One of these functions is the detection
of window opening (or tilling from the top by 30◦ from vertical). This function is essential because
the occupants have free and easy access to open the windows in their own office and laboratory
rooms. Opening the window by the user in the room results in a transition of the heating system to the
anti-frost mode with a temperature of 7 ◦C. In addition, the heating control system was integrated
with the intruder alarm system. It is not possible to arm this system when a window in the building is
open. Occupants leaving the building arm the system and they must close all the windows.
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Another function is presence detection in the off time, between 6 p.m. and 8 a.m. and on weekends.
If users start work earlier, finish later or work on weekends, information about the events is transmitted
from the presence sensor to the heating control system, which changes the operating mode to comfort
mode in the room where such presence is detected.

4. Calculation of Energy Consumption

The energy consumption Qsmj in the time interval ∆tm in the j-th heating zone is estimated taking
into account heat transfer through the building envelope and heat losses for ventilation according to
the following formula [14,15]:

Qsmj =
n∑

i=1

QTij + QV j, (2)

where: QTij is heat losses for transmission through the i-th barrier in the j-th heating zone, QVj is heat
losses for ventilation in the j-th heating zone and n is the number of partitions.

The heat losses (or gains) for transmission through the i-th barrier are estimated as:

QTi = Ui·(ϑim − ϑeim)·Ai·∆tm, (3)

where: Ui is the heat transfer coefficient through the i-th barrier in W/m2 K, ϑim is the air temperature
in ◦C, in the room, in the time interval ∆tm, ϑeim is the air temperature in ◦C, outside the i-th barrier, in
the time interval ∆tm, Ai is the surface of the i-th barrier in m2 and ∆tm is the time interval in hours.

The heat loss for ventilation in the j-th heating zone in Wh is calculated as follows:

QV j = 0.333·(ϑim − ϑeim)·V j·∆tm, (4)

where: Vj is the ventilation air stream flowing into the j-th heating zone in m3.
Ventilation of the rooms is provided by ventilation ducts (Figure 3) and window ventilators

integrated in the frames. Each ventilator is equipped with a regulator allowing different air flow rates.
Due to the impact of various parameters on the performance of natural ventilation and the complexity
of the phenomenon [16–19], the volume of ventilated air in the room was estimated based on the
difference between energy consumption measured with open window ventilators and this energy
measured with completely closed ventilators and ventilation duct. This difference determines the heat
loss for ventilation and the volume Vj is estimated using Formula (4).

Energy consumption in the analyzed period is estimated as the sum of heat losses calculated in
time intervals m in which various temperature increases ϑim − ϑeim occurred, therefore:

Qsj =
∑

m
Qsmj. (5)

5. Results and Discussion

5.1. Ambient Weather Temperature and Daylight Illuminance

The analysis of energy consumption was carried out for the month of January 2017. January is
usually the coldest month of the year in Poland. The calculations were performed taking into account
the actual ambient temperature measured by the weather station installed on the south-eastern facade
of the building. In calculation it is ϑeim temperature. However, the temperature was also measured by
the external brightness and temperature sensor mounted on the northern facade. It should be noted
that the values measured by these two sensors on a sunny day differ from each other. Two phenomena
are responsible for the measurement discrepancies. The first one is the insolation of the building
walls, which is stronger for the south-eastern wall than for the north wall. On cloudy days there is no
difference in the heating of the walls by sunlight and the measured temperatures are close to each other.
The second is the direct impact of sunlight on the weather station. This effect is mainly observed on a
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sunny day with high variability of daylight. In this case, variations in illuminance and temperature
occur simultaneously. The lowest and highest temperatures on each day of January measured by the
weather station and the brightness sensor are shown in Figure 6a. The lowest temperature in the month
was about −13 ◦C and the highest about 4 ◦C. The temperature difference during the day reached 10 ◦C.
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sensor BS: (a) the lowest and highest temperature and (b) the highest daylight illuminance level.

When the illuminance levels measured by the weather station and the brightness sensor are the
same (Figure 6b), it means that the day is overcast and the walls are not heated by sunlight. This is from
18 to 21 January. Obviously, there is a time shift between variations in the illuminance level and the
temperature. On 18 January, the wall was still warmed up by daylight and there was a difference in the
measured temperature values. Due to these temperature differences, on a sunny day, the temperature
values measured by the brightness and temperature sensor are represented as ϑeim temperature in the
calculation. Time intervals ∆tm are determined, in which the temperature ϑeim differs by 1 ◦C. The air
temperature ϑim is taken as the current temperature in the heating zone, measured by the push-button
with room temperature control unit and recorded by the HomeServer.

5.2. Temperature Changes Inside the Building

The implementation of heating control algorithms must take into account temperature changes in
the rooms as a result of lowering the temperature set point, switching off the heating, opening the
window and other events. Anyway, heating control usually consists in lowering the temperature
at night and on weekends and turning off the heating after opening the window. The change in
temperature will depend on the thermal properties of the building and the ambient conditions, i.e.,
temperature, wind speed, rainfall and daylight. Figure 7a shows the temperature inside and Figure 7b
the temperature outside the building during three days, i.e., from 0:00 on 10 April to 24:00 on 12 April,
which is during 4320 min. To investigate temperature changes in the building, the temperature was
first lowered by fully opening (on 9 April) one window in zones 4 and 5. The heating system switched
to the anti-frost mode and until 9:40 on 10 April (in 580 min) the temperature in these zones decreased
to 20.9 and 21.8 ◦C, respectively. At that time, the windows were closed and the temperature increased
to the temperature set points. Further temperature changes were forced at 18:40 (in 1120 min) by
turning the heating system off and then at 9:30 on 12 April (in 3450 min) by turning this system on.
Temperature changes in zone 4 prove the high thermal inertia of this zone and it may take several
hours to reach a higher temperature set point or comfort mode temperature after earlier turning off the
heating. On the other hand, the temperature reduction after switching off the heating is small when the
windows are closed. For the considered conditions it was approximately 1 ◦C for about 39 h. It is worth
noting that the temperature changes in zone 4 were even smaller than in zone 5. In zone 3 the window
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was not open and the temperature increased around 750 and 2100 min as a results of insolation and an
increase of temperature outside the building. A slight effect of the outside temperature on the inside
temperature could also be seen in zones 4 and 5.
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Figure 7. Impact of changing the heating system operating mode on the temperature inside the building.
Temperature from 0:00 on 10 April to 24:00 on 12 April: (a) in the heating zones and (b) outside
the building.

In order to estimate the effect of window operation on energy consumption, the temperature
changes after tilting the window from the top by 30◦ from vertical were analyzed. It is worth noting
that such window operation was often used by occupants. The window was tilted on 6 April at
16:15, 975 min from 0, which corresponds to 0:00. Figure 8a shows that after tilting the windows the
temperature in both zones dropped to about 23 ◦C, then due to the increase in the outside temperature
(Figure 8b) the temperature inside the zones increased too. However, the temperature increase in the
two zones was different due to the difference in insolation of these rooms. In zone 4 the windows were
located on one wall of the room on the north-east side, while in zone 5, the windows were on two sides
of the room, i.e., north-west and north-east. The illuminance level of daylight is shown in Figure 8c.
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Figure 8. Impact of window operation on the temperature inside the building. (a) Temperature change
due to one window tilting from the top inside zones 4 and 5; (b) temperature outside the building and
(c) daylight illuminance level.

On 8 April, the daytime temperature dropped below 10 ◦C and then to around −1 ◦C at night.
This resulted in a lower room temperature, more significant in zone 4. On 9 April at 9:40 (4900 min)
the windows were closed in both zones, the heating system turned on and the temperature started
increasing to the set point value. It should be noted that tilting of only one window in the room
led to a temperature decrease of around 3 ◦C during the considered time, which corresponds to the
weekend time.

5.3. Energy Consumption Experiment and Calculation

Energy consumption in the heating zones on days of January 2017, measured by the heat meters,
is shown in Figure 9, and Table 2 presents the measured and calculated energy consumed over the
whole month. The results were obtained with no heating control and the actual room temperatures
were equal to the temperature set points. The occupants had the freedom to choose the temperature set
points and, as can be seen in Table 2, the range of the selected set points was wide: from 19 to 24.5 ◦C.
It reveals a strong influence of individual occupant preferences on the feeling of comfort.
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Figure 9. Energy consumption on days of January 2017 measured with heat meters: (a) in heating
zones 1–3; (b) in heating zones 4–7; (c) in heating zones 8–12 and (d) on the stories of the building.

The highest energy consumption (Figure 9a) was in heating zone 1 due to the large volume of air
to be heated, which results from the fact that this zone includes not only the laboratory room but also
the entrance of the building and the open space of the staircase. The energy consumption in heating
zone 2 was higher than in zone 3 due to the heat transfer through the door in zone 2 and a lower
temperature in zone 3. The comparison of energy consumption on the three floors of the building
(Figure 9d) shows that the highest consumption was on the ground floor due to the poor thermal
insulation of the floor and the volume of heated air. The lowest energy consumption occurred in the
rooms on the first floor (Figure 9b). On the second floor, where there was heat transfer through the
roof, energy consumption was higher than on the first floor.

Table 2. Experimental and calculated energy consumptions in the heating zones, in the month of
January 2017.

Heating Zone Temperature Energy Consumption—
Experiment (GJ)

Energy Consumption per
Unit of Room Area (GJ/m2)

Energy Consumption—
Calculation (GJ)

Energy
Difference (%)

Ground floor—zone 1 22.0 7.21 0.1105 7.78 7.9
Ground floor—zone 2 22.0 4.25 0.0724 4.62 8.7
Ground floor—zone 3 19.0 2.48 0.0399 2.83 14.1

First floor—zone 4 24.5 2.39 0.0366 2.60 8.8
First floor—zone 5 24.0 1.86 0.0331 2.10 12.9
First floor—zone 6 21.0 0.39 0.0176 0.42 7.7
First floor—zone 7 24.0 1.32 0.0311 1.51 14.4

Second floor—zone 8 20.0 2.96 0.0454 3.31 11.8
Second floor—zone 9 20.0 2.84 0.0752 3.06 7.7
Second floor—zone 10 22.0 1.53 0.0872 1.69 10.4
Second floor—zone 11 21.0 1.78 0.0803 2.01 12.9
Second floor—zone 12 22.0 2.97 0.0648 3.24 9.1

Energy consumption in each room depended on their volume, temperature set point and insolation,
therefore it was better to compare the energy consumption per unit of room area, at which the above
conclusions were rather obvious. Another good example is the comparison of energy consumption per
unit of room area in heating zones 4 and 8 with the same volume, which showed that the consumption
in zone 4 was lower despite a higher temperature. It is worth noting that the calculated value was
always larger than the measured value, and it seemed to be the case for two reasons. Firstly, heat
gains from insolation, people and equipment were not included in the calculations. Secondly, at small
energy values measured, heat meter indications were burdened with significant errors, namely the
values were underestimated. As the measurement of thermal energy by the heat meter was carried out
indirectly, on the basis of measuring the volume of the water and the temperature difference at the
inflow and return, the measurement error could be relatively large (±5%). However, the difference
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between the calculated and measured energy consumption values in relation to the measured value did
not exceed 15% and the estimation of energy consumption could be considered sufficiently accurate.

5.4. Effect of Room Temperature and Heating Control on Energy Consumption

In the heating season 2017/2018, between the end of September and the beginning of May, time
control of the heating was implemented. Due to different weather conditions, the experimental results
of two heating seasons could not be compared in order to estimate the effect of heating control on
the reduction of energy consumption. Therefore, the calculations were carried out for the weather
conditions in January 2017: first, without heating control, assuming that the room temperature was 21
and 20 ◦C. The value of 21 ◦C corresponds to the recommended indoor air temperature in education
rooms of category A and 20 ◦C in rooms of category B (Table 1). Then, based on the observation, it was
assumed that after the transition of the heating system to night mode, the temperature dropped in the
rooms located on the ground floor by an average of 1.5 ◦C at night (during 14 h). At weekends (during
62 h), the reduction was about 4 ◦C. These temperature drops were, respectively, about 0.5 ◦C and
1.5 ◦C in the rooms on the first floor and 1 ◦C and 3 ◦C on the second floor. The calculation results
are given in Table 3. This calculation shows that reducing the temperature set point by 1 ◦C gives an
energy saving of about 5% compared to energy consumption at 21 ◦C.

Table 3. Energy consumptions in the heating zones without and with control, calculated considering
the weather conditions in the month of January 2017. * The energy saving potential is determined in
comparison with the energy consumption at the temperature of 21 ◦C.

Heating Zone
Energy Consumption

without Control at
21 ◦C (GJ)

Energy Consumption
without Control at

20 ◦C (GJ)

Energy Consumption
with Control at

21 ◦C (GJ)

Potential of Energy
Saving * (%)

Ground floor—zone 1 7.42 7.06 6.66 10.2
Ground floor—zone 2 4.40 4.19 3.96 10.1
Ground floor—zone 3 3.13 2.98 2.81 10.3

First floor—zone 4 2.23 2.12 2.14 4.0
First floor—zone 5 1.83 1.74 1.76 3.6
First floor—zone 6 0.42 0.40 0.401 3.8
First floor—zone 7 1.41 1.34 1.36 3.8

Second floor—zone 8 3.48 3.31 3.22 3.2
Second floor—zone 9 3.22 3.06 2.98 7.6

Second floor—zone 10 1.62 1.54 1.50 7.6
Second floor—zone 11 2.01 1.91 1.86 7.5
Second floor—zone 12 3.09 2.94 2.86 7.5

The comparison of energy consumption with and without heating control reveals that the energy
saving potential mainly depended on the temperature drop after the set point lowering. The greater
the decrease, the greater the potential for energy savings. In the study case, in the rooms with a poorly
heat-insulated floor, the energy reduction due to heating control reached about 10%. A slightly lower
reduction of about 7.5% was estimated for the rooms on the second floor, where heat was transferred
through the roof, and the smallest reduction of less than 4% was estimated for the rooms on the
first floor. This proves that in well-insulated rooms with a low energy consumption for heating the
implementation of the control system gave relatively little benefit.

For energy saving, a very important function was to control the opening of a window. As shown
in Figure 8 the tilt of the top of only one window in the room led to a temperature decrease of a few
degrees. Leaving the window open before night or weekend would result in a significant increase in
energy consumption, by about 5% per 1 ◦C drop.

6. Conclusions and Future Work

In this paper, the potential of energy savings in an existing public building in Poland was
estimated. This estimation includes the most important parameters affecting energy consumption for
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heating. Experimental verification of the building case study showed that the calculation of energy
consumption in a cold climate including the heat transfer through the building envelope and heat
losses for ventilation were sufficiently accurate. In such calculations, a good knowledge of the thermal
characteristics of the building, the volume of ventilated air and the temperature outside and inside the
building is crucial.

Using the KNX system implemented in the building, the behavior of occupants was investigated
revealing that occupants choose temperature set points in a wide range recognized as thermal comfort,
and window opening was also accidental and difficult to predict. The proposed heating control
algorithms took into account the strong influence of individual occupant preferences on the feeling
of comfort. However, in order to reduce energy consumption, the anti-frost mode was applied
after opening the window, as well as integration with the intruder alarm system. Investigation of
temperature changes in the building with changes in the temperature set points and after opening the
window showed that from the point of view of energy saving, the most important issue is the window
opening control.

Finally, detailed comparisons of energy consumption with heating control and without any
controls were performed. It shows that the energy saving potential depended on the temperature
drop after lowering the set point, and thus on the dynamics of the thermal behavior of the building.
The greater this drop, the greater the potential for energy savings. In the case study, in rooms with
poorly heat-insulated floors, the energy reduction potential due to heating control reached about
10%. A slightly lower potential of about 7.5% was estimated for rooms on the second floor, where
heat was transferred through the roof, and the smallest potential of less than 4%, for rooms on the
first floor. This proved that in a well-insulated room with a low energy consumption for heating,
the implementation of the control system gave relatively little benefit.

Future work will include an analysis of information from presence detectors to describe occupant
behavior, and the implementation of such information to control heating and estimate energy savings.
Research associated with the optimal operation of the heat source will also be undertaken.
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