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Abstract: Accurate calculation of the vibration mode and natural frequency of a motor stator is
the basis for reducing motor noise and vibration. However, the stator core and winding material
parameters are difficult to determine, posing issues which result in modal calculation bias. To address
the problem of calibrating the stator material parameters, we developed a parameter correction method
based on modal frequency. First, the stator system was simplified to build a stator system finite element
model. Secondly, the relationship between modal frequency and material parameters was analyzed
by finite element software, the relationship between modal frequency and material parameters was
derived, and the anisotropic material parameter correction method was summarized. Finally, a modal
experiment was carried out by the hammering method, and the simulation and experimental errors
were within 3%, which verified the accuracy of the finite element model. The proposed correction
method of anisotropic material can quickly determine the stator material parameters, and the stator
core and winding anisotropic material can ensure the accuracy of the modal analysis.

Keywords: correction method of anisotropic material parameters; modal analysis; stator core;
winding; modal experiments; finite element analysis

1. Introduction

In recent years, with the continuous development of high-performance materials, the performance
of magnetic materials, such as AlNiCo permanent magnets, ferrite permanent magnets, and rare
earth permanent magnets, has continued to grow. Permanent magnet motors are increasingly being
used in electric vehicles. Compared with electric excitation motors, permanent magnet motors have
the advantages of a high torque-to-current ratio, high torque-to-volume ratio, high efficiency, small
size, and simple structure. They can not only replace some of the traditional excitation motors but
can also achieve a high level of performance that is difficult to obtain with electric excitation motors.
Therefore, many industries are interested in such motors [1–5].

Like other types of motors, permanent magnet motors generate vibration and noise during
operation. From the perspective of the motor body, the natural frequency of the motor should be
considered in order to avoid resonance, and the mechanical strength and other issues related to
high-speed permanent magnet motors also need to be considered. The vibration noise generated
during operation is still a significant problem in some specific industries and applications, such as in
aviation, ships, and automobiles.

Presently, finite element simulation of electromagnetic noise mainly adopts the magnetic field
structure–acoustic multiphysical coupling method [6–8]. The first step is mainly divided into
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magnetic field electromagnetic force calculation and structural modal calculation. Furthermore,
the electromagnetic force is mapped onto the structure to obtain the electromagnetic noise calculation
result. Therefore, the accuracy of modal analysis is a prerequisite for calculating motor noise.
Fleck and Deshpande [9] only considered the influence of winding quality on the natural frequency
of a stator system, and only added the winding quality to the stator model in the modeling process.
Rosca et al. [10] conducted a study considering theoretical and experimental methods and found
that the natural frequencies obtained both by finite element models and experimental methods did
not overlap with the working frequencies. In [11–14], finite element models of an induction motor,
claw pole alternator, permanent magnet synchronous motor, and switched reluctance motor (SRM)
were established, respectively. The windings were simplified similar to some straight conductors.
In these studies, the isotropic material parameters were separately assigned to the FE models of the
stator core and the windings. The error of the FE modal result was significant, since the stator core
and the windings were anisotropic materials. Schlegl et al. [15] established a material to predict
the natural frequency of a stator end winding and found that it was difficult to obtain the physical
parameters of the laminated core and windings, such as Young’s modulus. Hu et al. [16] proposed a
novel method for the acquisition of the equivalent material parameters considering the orthotropy
of the stator core and the windings in an SRM. In [17], a method to identify the physical parameters
of the laminated core and windings was proposed based on the modal testing of the motor stators
with different conditions. It was shown that the stator windings have a significant effect on modal
frequencies of a motor stator and cannot simply be treated as an additional mass. In addition, it
was found that the generally accepted value of Young’s modulus was not valid for a motor with
laminations and windings. Mcmeeking et al. [18] measured the material parameters of the stator of a
switched reluctance motor by an ultrasonic pulse test. The method could directly obtain the material
parameters, but the requirements for the test conditions and the cost were relatively high. According to
the change of stator mode frequency with Young’s modulus and Poisson’s ratio, a correction method
of equivalent material parameters was proposed in [19]. Kirschneck et al. [20] introduced model
reduction techniques based on various methods known from mechanical engineering that have been
used in calculations for structural analysis. These techniques were applied to electrical machines and
they reduced the number of degrees of freedom and computation time for transient analysis.

In summary, the following conclusions can be drawn:
(a) The stator core and windings were anisotropic materials;
(b) Stator material properties were difficult to measure by experiment;
(c) The stator material parameters used in all of the papers could not simulate the actual situation.
In this study, the relationship between the modal frequency of a stator system and the material

parameters was explored by the method of benchmarking. Section 2 introduces the equivalent method
of core material properties. According to the relationship between modal frequency and material
parameters, a correction method for anisotropic material parameters was developed. Section 3 presents
the modal experiment, including the stator core modal experiment and the stator winding modal
experiment. The rationality of the correction method was verified by the benchmarking of two
experiments and the finite element model.

2. Materials and Methods

2.1. Finite Element Model of Stator System

2.1.1. Simplification of Finite Element Model of Stator Core

The stator core was formed by laminating axial silicon steel sheets, which cannot be simulated
with actual structures when performing finite element modeling. Therefore, the special structure of the
stator needs to be equivalent to an anisotropic material, and it was assumed that the axial direction of
the motor was a continuous elastic body with uniform material. Figure 1 shows the equivalent model
of the stator core.
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2.1.2. Simplification of Winding Finite Element Model

A stator winding contains a number of conductors. In order to simplify finite element modeling,
it is usually assumed to be processed [11–14]. As shown in Figure 2, the winding in this study was
equivalent to a whole, which filled in the stator slot.
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Figure 2. Equivalent model of stator winding.

2.2. Parameter Setting of Stator System Materials

In this study, modal frequency calculation was analyzed by HyperMesh (14.0, Altair, Michigan,
USA), a finite element preprocessing software from Altair. Table 1 shows the input parameters of
anisotropic materials in HyperMesh software.

Table 1. Definitions of anisotropic material properties.

Parameter Definition

RHO Mass density
Gij The material property matrix
Ai Thermal expansion coefficient vector

TREF Reference temperature
GE Structural element damping coefficient

This modal experiment was carried out under constant temperature conditions, so the influence
of temperature changes was ignored. Due to the large stiffness of the stator, the effect of the structural
element damping coefficient (GE) on the natural frequency and mode shape was ignored [21]. According
to the relationship of HyperMesh built-in material attribute parameters,
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, (1)

where σi is the normal stress of different squares, τij is the shear stress in different directions, εi is the
longitudinal strain in different directions, and γij is the tangential strain in different directions.

The stator core was formed by laminating axial silicon steel sheets. Considering that the stator
radial direction (parallel plane direction of the silicon steel sheet) was different than the axial (vertical
silicon steel sheet direction) stiffness, it was considered that the silicon steel sheets had the same X and
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Y directions. The mechanical parameters were different from the Z-mechanical parameters. For the
stator core, the material parameter properties were simplified:

σx = σy

G11 = G22
(2)

τyz = τzx

G55 = G66
(3)

G12 . . .G16, G23 . . .G26, G34 . . .G36, G45 . . .G46, G56 = 0 (4)

The Gij shear modulus parameter can be set directly without adjusting the equivalent E (elasticity
modulus), G, or Nu (Poisson’s ratio) value. By measuring the stator mass of 3 kg, according to the
relationship between mass and volume, the actual density of the calculated stator core was 7680 kg/m3.
We first referred to the material properties in the relevant literature and then converted them according
to the Voigt–Reuss formula [22,23]. The approximate parameter initial value was set as shown in
Table 2.

G11 =
1− v23v32

E2E3∆
(5)

G33 =
1− v12v21

E1E2∆
(6)

G44 =
v32 + v31v12

E3E1∆
(7)

G55 =
v31 + v21v32

E2E3∆
(8)

∆ =
1

E1E2E3

∣∣∣∣∣∣∣∣∣
1 −v21 −v31

−v12 1 −v32

−v13 −v23 1

∣∣∣∣∣∣∣∣∣ (9)

where vij is the Poisson’s ratio in different directions, and Ei is the elastic modulus in different directions.

Table 2. Equivalent mechanical parameters of stator structure.

Parameter Unit Stator Core

RHO g·m-3 7680
G11 MPa 200,000
G33 MPa 20,000
G44 MPa 100,000
G55 Mpa 13,000

2.3. Stator Core Material Property Equivalent Method

We used a 2.2 kW brushless DC motor as an example, and the influence of material properties on
the natural frequency was analyzed. The basic parameters of the motor are shown in Table 3, and the
equivalent model of the stator system is shown in Figure 3.

Table 4 shows the different core equivalent material parameters, where RHO is the material density.
By changing the shear modulus Gij parameters, the modal changes were observed. The number 1-n
in the table refers to changing the G11 parameter, while the other parameters remained unchanged;
number 2-n refers to changing the G33 parameter, while the other parameters remained unchanged;
number 3-n refers to changing the G44 parameter, while the other parameters remained unchanged;
and number 4-n refers to changing the G55 parameter, while the other parameters remained unchanged.
The effect of a single variable on the modal frequency was determined.
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Table 3. Machine parameters.

Parameter Unit Value

Number of poles / 5
Number of stator slots / 15

Number of phases / 3
Stator outer/inner diameter mm 140/99.6
Rotor outer/inner diameter mm 98.6/30

Active axial length mm 77.5
Rated power kW 2.2

Winding / Concentrated
Coil turns / 3
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Table 4. Equivalent material parameters of stator core.

Parameter
RHO G11 G33 G44 G55

ID

1-1 7680 200,000 20,000 100,000 13,000
1-2 7680 195,000 20,000 100,000 13,000
1-3 7680 190,000 20,000 100,000 13,000
1-4 7680 185,000 20,000 100,000 13,000
1-5 7680 180,000 20,000 100,000 13,000
2-1 7680 185,000 50,000 100,000 13,000
2-2 7680 185,000 40,000 100,000 13,000
2-3 7680 185,000 30,000 100,000 13,000
2-4 7680 185,000 20,000 100,000 13,000
2-5 7680 185,000 10,000 100,000 13,000
3-1 7680 185,000 20,000 110,000 13,000
3-2 7680 185,000 20,000 100,000 13,000
3-3 7680 185,000 20,000 90,000 13,000
3-4 7680 185,000 20,000 80,000 13,000
3-5 7680 185,000 20,000 70,000 13,000
4-1 7680 185,000 20,000 100,000 13,000
4-2 7680 185,000 20,000 100,000 12,500
4-3 7680 185,000 20,000 100,000 12,000
4-4 7680 185,000 20,000 100,000 11,500
4-5 7680 185,000 20,000 100,000 11,000

The effects of different parameters on the natural frequency are provided in Appendix A.
As shown in Figure 4, when the shear modulus G11 parameter was changed by 10,000, the frequency

of the different mode modal frequencies changed. The abscissa represents the mode shape, and the
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ordinate represents the change value and relative change rate of the modal frequency. From the graph,
the modes of the core modes (m, 0) and (m, 1) were proportional to the size of the shear modulus G11,
the G11 parameters (m, 0) and (m, 1) were increased, and the frequency of the state had increased.
The degree of change of the shear modulus G11 to (m, 0) was greater than (m, 1). The (m, 0) order
change rate increased with the increase of the order, and the relative change gradually increased.
For the (m, 0) mode, the shear modulus G11 had a greater influence on the higher order than the lower
order, and the shear modulus G11 had the greatest influence on the (2, 0) order, which had a relative
change rate of 2.05%. For the (m, 1) order mode, as the order increased, the relative rate of change
gradually increased. Therefore, the shear modulus G11 had a greater influence on the higher order
than the lower order.
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modulus G33 parameter was changed by 10,000. It can be seen from this that when changing the 
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of the equivalent material. 

Figure 4. Effect of shear modulus G11 on modal frequency.

Figure 5 shows the degree of change of the modal frequency of different orders when the shear
modulus G33 parameter was changed by 10,000. It can be seen from this that when changing the shear
modulus G33, for the variation curve of each order mode frequency, changing the shear modulus G33
had less influence on the (m, 0) and (m, 1) order modal frequencies. The shear modulus G33 had no
effect on the (m, 0) mode frequency. The influence on the (m, 1) order mode was also small, and the
relative change rate was about 0.1%. Therefore, the influence of G33 on the modal frequency was small,
and the change of the shear modulus G33 was not considered in the selection of the equivalent material.
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Figure 6 shows the effect of the change of shear modulus G44 on the modal frequencies of different
orders. Taking the (2, 0) order in the figure as an example, when the shear modulus G44 was reduced
by 10,000 MPa, the modal frequency was reduced by 5 Hz. When the shear modulus G44 was further
reduced by 10,000 MPa, the modal frequency was reduced by 7 Hz, so the modal frequency change
amount was the modal value relative to the former. It can be seen from the figure that, from a certain
order, the modal frequency change gradually increased with the decrease of the shear modulus G44,
and the smaller the G44 material parameter, the greater the influence of the change value on the modal
frequency. From (m, 0) and (m, 1), the shear modulus G44 had a greater influence on the (m, 0) mode
frequency. From the overall order, when the shear modulus was reduced by 10,000 MPa, the high-order
modal frequency changed more.
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Figure 6. Influence of shear modulus G44 on modal.

Figure 7 shows the degree of change of the modal frequency of different orders when the shear
modulus G55 parameter was changed by 500. It can be seen that the shear modulus G55 had no effect
on the (m, 0) mode frequency. The shear modulus G55 mainly affected the (m, 1) modal frequency,
and as the order increased, the influence of the G55 parameter on its modal frequency variable rate
gradually decreased. Therefore, the G55 parameter mainly affected the lower-order modal frequency
of (m, 1).
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2.4. Modal Testing Analysis

2.4.1. Modal Experiment of Stator Core

In order to ensure the accuracy of the finite element model, the stator core was subjected to free
modal testing. Figure 8 shows the arrangement of the motor stator core modal experiment. The stator
core was suspended by an elastic nylon rope to simulate the free mode of finite element simulation.
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Figure 8. Stator core modal experiment.

As shown in Figure 8, the stator core was evenly arranged with 12 excitation points in each layer
in the radial direction, for a total of 60 excitation points, and four three-way acceleration sensors
were arranged.

When using software for the measurements, we first set up the test model of the motor, input the
coordinates of each measuring point, and connected 60 excitation points according to the actual
structure of the motor, as shown in Figure 9. The modal test method was the hammer method,
which entailed tapping on 60 excitation points. The vibration direction of the stator core was mainly
radial circumferential vibration, so the vibration mode of the stator core could be obtained only by
tapping the Z direction. When hammering the motor, each excitation point was tapped five times.
When striking at the same point, we ensured that each force and direction was the same and then took
the average of five test results to reduce the error. Figure 10 shows the first seven modal modes and
modal frequencies of the stator core.Energies 2019, 12, x FOR PEER REVIEW 10 of 23 
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2.4.2. Modal Experiment of Stator Winding

In order to further verify the accuracy of the equivalent parameter method, the stator windings
were subjected to finite element analysis and modal experiments. Figure 11 shows the stator winding
modal experiment. Figure 12 shows the first five mode shapes and frequencies obtained from the
stator winding experiment.
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3. Results

3.1. Correction Method of Anisotropic Material Parameters

Since the stator material was anisotropic, it was very difficult to test both the actual material of
the stator material and the material properties of the stator finite element model. Therefore, in the
actual finite element analysis, the material properties of the stator needed to be treated equivalently.
By analyzing the influence of the material parameters on the modal frequencies of different orders,
a method for correcting the parameters of the stator core material was derived.

Figure 13 shows the anisotropic material parameter correction method. Firstly, the material
parameters of the iron core were roughly calculated according to the empirical formula, and the
initial modal results were calculated. Then, the simulation results were compared with the modal
experimental results to generate the a and b relative errors. If the relative error was within the acceptable
range, the core material parameters did not need to be adjusted. Otherwise, the material parameters
were adjusted appropriately, referring to the material parameter adjustment basis shown in Figure 13,
in which Ms (m,n) is the finite element modals initial result, Mt (m,n) is the experimental result, a is the
relative error of M (m,0), b is the relative error of M (m,1), and e is an acceptable error range.

Energies 2019, 12, x FOR PEER REVIEW 11 of 18 

 

Figure 12. Stator core mode shape and frequency: (a) modal shape (2.0); (b) modal shape (2.1); (c) 
modal shape (3.0); (d) modal shape (3.1); (e) modal shape (4.0). 

3. Results 

3.1. Correction Method of Anisotropic Material Parameters 

Since the stator material was anisotropic, it was very difficult to test both the actual material of 
the stator material and the material properties of the stator finite element model. Therefore, in the 
actual finite element analysis, the material properties of the stator needed to be treated equivalently. 
By analyzing the influence of the material parameters on the modal frequencies of different orders, a 
method for correcting the parameters of the stator core material was derived. 

Figure 13 shows the anisotropic material parameter correction method. Firstly, the material 
parameters of the iron core were roughly calculated according to the empirical formula, and the initial 
modal results were calculated. Then, the simulation results were compared with the modal 
experimental results to generate the a and b relative errors. If the relative error was within the 
acceptable range, the core material parameters did not need to be adjusted. Otherwise, the material 
parameters were adjusted appropriately, referring to the material parameter adjustment basis shown 
in Figure 13, in which  is the finite element modals initial result,  is the 
experimental result, a is the relative error of , b is the relative error of , and e is an 
acceptable error range. 

 
Equivalent material 

properties of stator core

Create finite element modal 
of stator coreModal test

Finish

Yes

No

Basis of material parameter adjustment

a>0,b>0 G11/G44   

a>0,b<0 G11/G44   
G55

a<0,b>0 G11/G44   
G55

a<0,b<0 G11/G44   

 
Figure 13. Correction method of anisotropic material parameters. 

3.2. Modal Testing Results 

3.2.1. Modal Testing Results of Stator Core 

The material parameters of the finite element simulation stator were G11 = G22 = 195,000 MPa, 
G33 = 20,000 MPa, G44 = 10,000 MPa, and G55 = G66 = 11,500 MPa. According to the comparison of 
the modal experiment results and the simulation results of the stator core (Figure 14), the finite 
element simulation frequency and mode were very close to the experimental results, and the errors 
were all below 1.0%. It was proved that the anisotropic material can accurately predict the modal 
frequencies and modes of a stator core. 

The FE simulations of the stator core are provided in Appendix B. 

Figure 13. Correction method of anisotropic material parameters.

3.2. Modal Testing Results

3.2.1. Modal Testing Results of Stator Core

The material parameters of the finite element simulation stator were G11 = G22 = 195,000 MPa,
G33 = 20,000 MPa, G44 = 10,000 MPa, and G55 = G66 = 11,500 MPa. According to the comparison of
the modal experiment results and the simulation results of the stator core (Figure 14), the finite element
simulation frequency and mode were very close to the experimental results, and the errors were all
below 1.0%. It was proved that the anisotropic material can accurately predict the modal frequencies
and modes of a stator core.
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Figure 14. Comparison of finite element analysis and experiment of stator core: (a) modal frequency
and (b) error analysis.

The FE simulations of the stator core are provided in Appendix B.

3.2.2. Modal Testing Results of Stator Winding

Through the analysis of the above-discussed finite element method, the materials of the
anisotropy of the winding were calculated as G11 = G22 = 200 MPa, G33 = 100 MPa, G44 = 10 MPa,
and G55 = G66 = 20 MPa. Figure 15 shows the results of the stator winding modal test and the finite
element simulation. The simulation and experimental errors were within 3%, demonstrating that the
equivalent mode of the anisotropic material can be used to accurately predict the modal frequencies
and modes of the stator.
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The FE simulations of the stator winding are provided in Appendix C.

4. Discussion

In this study, the stator system was simplified first, and the material parameters of the stator core
were initially estimated. Secondly, the material parameters and modal frequencies were analyzed,
and the parameter correction methods of stator anisotropic materials based on modal frequency were
summarized. Finally, the modal test of the stator core and stator windings was completed by the
hammering method, and the simulation and experimental results were compared. The error was
within 3%, which guarantees the accuracy of the finite model and lays a foundation for calculating the
electromagnetic noise of the motor. The following conclusions were obtained:
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(1) The analysis showed that the modal frequency was sensitive to material properties. The shear
modulus G11 parameter affected the (m, 0) and (m, 1) modal frequencies. The shear modulus
G33 parameter affected the (m, 1) modal frequency. The shear modulus G44 parameter affected
the (m, 0) and (m, 1) modal frequencies. The shear modulus G55 parameter affected the (m, 1)
modal frequency.

(2) The effect of shear modulus G11 on (m, 0) was greater than that on (m, 1), and the effect on the
higher order was greater than that on the lower order. The shear modulus G44 had a greater
influence on the modal frequency than G11, and the modal frequency changed gradually as the
material parameters decreased. The lower order (m, 1) was more sensitive to the shear modulus
G55 parameter than the higher order.

(3) The anisotropic material properties of the stator can guarantee the accuracy of the finite element
model. The anisotropic material parameter correction method proposed in this paper can quickly
determine the equivalent material parameters of a stator and winding.
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A single variable was controlled and the relationship between the natural frequency and the
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Figure A1. Stator core natural frequency with shear modulus G11: (a) modal shape (2, n); (b) modal 
shape (3, n); (c) modal shape (4, n), and (d) modal shape (5, n). 
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shape (3, n); (c) modal shape (4, n), and (d) modal shape (5, n).
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Figure A3. Stator core natural frequency with shear modulus G44: (a) modal shape (2, n), (b) modal
shape (3, n), (c) modal shape (4, n), and (d) modal shape (5, n).
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