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Abstract: This study focuses on improving the power density of a spherical multi-degree-of-freedom
(multi-DOF) actuator. A spherical multi-DOF actuator that can operate in three DOFs is designed.
The actuator features a double air gap to reduce eddy current loss. However, a multi-DOF actuator
driven by a single actuator exhibits low power density. Therefore, a Halbach magnet array is applied
to improve the power density of a spherical multi-DOF actuator, and its output characteristics
are compared with those of an existing spherical multi-DOF actuator via finite element analysis.
Additionally, the output characteristics are analyzed based on changes in the coil pitch angle and
magneto-motive force of the rotating winding. Furthermore, it is necessary for a spherical multi-DOF
actuator to move to the command position. Hence, a stability analysis is performed to ensure that the
spherical multi-DOF actuator is stably driven based on the command position.

Keywords: Halbach magnet array; multi-degree-of-freedom (DOF); multi-DOF actuator; power
density; spherical actuator

1. Introduction

Recently, a significant amount of interest has been directed toward the robot industry owing to the
advent of the fourth industrial revolution. Currently, one-degree-of-freedom (DOF) systems require
one actuator, whereas three-DOF systems require three actuators. For systems with two or more DOFs,
an additional structure is required to connect the actuators [1–3]. Most applications that implement
such multi-DOF systems by connecting multiple actuators include robotic joints [4,5] and drone gimbal
systems [6,7]. However, the volume of the systems is high, and this constitutes a problem. Therefore,
several studies have focused on developing actuators capable of being driven in multiple axes [8–13].

Based on extant studies, two types of multi-DOF actuators and motors are known to be driven in
multiple axes, namely the permanent-magnet-type [14–17] and induction-type multi-DOF actuators [18].
Permanent-magnet-type multi-DOF actuators exhibit the advantage of large magnetic flux density.
Additionally, most of these actuators are designed with tooth-concentrated windings to improve
power density. However, for induction-type multi-DOF actuators, distributed windings are required
to decrease the effects of harmonics such as crawling phenomena. Thus, most studies tend to focus on
the structure of a permanent-magnet-type multi-DOF actuator.

Furthermore, multi-DOF actuators are divided into core-type actuators [19,20] and slotless-type
actuators [12,18]. A core-type multi-DOF actuator exhibits the advantage of low-leakage magnetic flux
because magnetic flux mainly flows through the iron core, which has high permeability. Conversely,
a slotless-type multi-DOF actuator suffers from the disadvantage of a high leakage of magnetic flux
due to the absence of an iron core within the winding. However, the slotless multi-DOF actuator is
advantageous in terms of position control given the absence of a reluctance difference between the
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stator and rotor. Multi-DOF motors also exist in the form of ultrasonic motors [21–23] and bearingless
motors [16].

Several studies have focused on multi-DOF actuators. However, most multi-DOF actuators exhibit
low power density. Moreover, multi-DOF actuators are multi-axis driven, in contrast to conventional
actuators or motors; thus, losses due to changes in magnetic flux in multi-DOF actuators are high.

In this study, a dual-airgap slotless-type spherical multi-DOF actuator was developed, as shown
in Figure 1, with the aim to decrease eddy current loss by simultaneously moving internal and
external rotors. In Section 2, the theory of dual-airgap slotless-type spherical multi-DOF actuator is
discussed. As explained in Section 3, a Halbach magnet array was applied to the actuator to improve
output characteristics.
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Figure 1. Structure of the dual-airgap slotless- type spherical multi-degree-of-freedom (multi-DOF)
actuator: (a) Full model; (b) Rotor part; (c) Stator part.

2. Theory of Dual-Airgap Slotless-Type Spherical Multi-DOF Actuator

2.1. Operation of the Spherical Multi-DOF Actuator

The structure of the dual-airgap slotless-type spherical multi-DOF actuator is shown in Figure 1.
Figure 1a shows the structure of the full model. Figure 1b,c show the structure of the rotor and stator
parts. As shown in Figure 1a,b, the actuator consists of two rotors to decrease eddy current losses.
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Additionally, the material used for the inner rotor’s back yoke and outer rotor was steel 1001. The inner
rotor features a surface permanent magnet to form the main magnetic flux. The outer rotor is utilized
to decrease the leakage of the magnetic flux by creating paths for the magnetic flux. It is connected to
the inner rotor by the rotor shaft and both rotors move simultaneously. If the back yoke is applied to
the stator as opposed to the outer rotor, then the magnetic flux leakage is low and a magnetic flux path
is formed; however, the eddy current loss due to the back yoke of the stator increases. Therefore, the
outer rotor replaces the back yoke of the stator, and the resulting structure is capable of decreasing eddy
current loss. The rotor and stator shafts are separated using a spherical bearing for three-axis operation.
The stator windings are composed of rotating coils and tilting coils for rotation and tilting, respectively.
Additionally, a plastic-material coil support is used to wind the coil to the desired position.

Figure 2 shows the movement of the dual-airgap slotless-type spherical multi-DOF actuator
during tilting operation. Therein, the dual air gap can be identified. Here, α is a moving angle from the
z-axis, β is a moving angle from the x-axis, and δ is an angle from the moving axis to the xy-plane. The
actuator moves simultaneously based on α and β command angles because the internal and external
rotors are connected to the same rotor shaft. The stator is connected to the stator shaft, but it does not
move based on command angles such as α and β.
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Figure 2. Operation of the dual-airgap slotless-type spherical multi-DOF actuator.

The basic model specifications of dual-airgap slotless-type spherical multi-DOF actuator are listed
in Table 1. The basic model consists of three phases and exhibits low torque and efficiency.

Table 1. Specifications of the basic model of the dual-airgap slotless-type spherical multi-degree-
of-freedom (multi-DOF) actuator.

Contents Value Unit

Number of phases 3 −

Number of poles 4 −

Number of rotating coils & tilting coils 6/6 −

Number of rotating turns & tilting turns 170/250 turns
Input current 0.5 Amax

Pole pitch angle 130 ◦E
Average rotating torque (α = 0◦, β = 0◦) 410 mNm

Power density (α = 0◦, β = 0◦) 7744.3 W/m3

Efficiency at 300 rpm (α = 0◦, β = 0◦) 77.97 %
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Rotating and tilting currents flow through the rotating and tilting coils during the operation of the
actuator. The rotating currents are equated as follows:

ir,a = Ir cos
{
p(ωmt + β)

}
= ir,d (1)

ir,b = Ir cos
{
p(ωmt + β) −

2
3
π
}
= ir,e (2)

ir,c = Ir cos
{
p(ωmt + β) −

4
3
π
}
= ir, f (3)

where ir,a, ir,b, ir,c, ir,d, ir,e, and ir,f are the rotating current flowing in the phases from a to f, respectively,
and Ir is the maximum value of the rotating current, p is the number of pole pairs, and ωm is the
mechanical angular velocity.

The tilting currents are as follows:

itu,a = Itlp cos
{
π
4

(
1− lp

α
θc

cos β
)}

= −itd,a (4)

itu,b = Itlp cos
[
π
4

{
1− lp

α
θc

cos
(
β−

2π
3p

)}]
= −itd,b (5)

itu,c = Itlp cos
[
π
4

{
1− lp

α
θc

cos
(
β−

4π
3p

)}]
= −itd,c (6)

itu,d = Itlp cos
[
π
4

{
1− lp

α
θc

cos
(
β−

2π
p

)}]
= −itd,d (7)

itu,e = Itlp cos
[
π
4

{
1− lp

α
θc

cos
(
β−

8π
3p

)}]
= −itd,e (8)

itu, f = Itlp cos
[
π
4

{
1− lp αθc

cos
(
β− 10π

3p

)}]
= −itd, f ,

>
{

lp = 1 (α > 0◦)
lp = −1 (α < 0◦)

(9)

where α and β are the position angles of the rotor, itu,a, itu,b, itu,c, itu,d, itu,e, and itu,f are the tilting currents
of the upper coils, itd,a, itd,b, itd,c, itd,d, itd,e, and itd,f are the tilting currents of the lower coils, It,m is the
maximum value of the tilting current, and θc is the angle of the coil from the xy reference plane.

A common three-phase current flows through the rotating coil to generate a rotating field. The
tilting coils are composed of a pair of upper and lower parts. The direction of the current flowing
through the upper coil is opposite to that flowing through the lower coil. Additionally, the tilting
current is a function of α and β, which are the position angles. Hence, the values of the six pairs of
tilting currents change according to the values of α and β.

2.2. Spherical Multi-DOF Actuator Using Halbach Magnet Array Structure

Conventional multi-DOF actuators have low power density. To solve the problem, a Halbach
magnet array was added to the existing magnet structure located in the internal rotor, as shown in
Figure 3. The Halbach magnet array concentrates magnetic flux and reduces leakage flux.
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Figure 3. Spherical multi-DOF actuator using Halbach magnet array: (a) Structure of spherical
multi-DOF actuator with the Halbach magnet array; (b) Internal rotor and magnetization direction.

The magnetic flux density of spherical multi-DOF actuator with a Halbach magnet array is equated
as follows [23]: 

B1 = µ0H1 Region1 : air− gap
B2 = µ0µrH2 + µ0Mr Region2 : permanet magnet
B3 = µ0µmH3 Region3 : inner rotor

(10)

where H is the magnetic field intensity, µ0 is the permeability of free space, µr is the relative permeability
of the permanent magnet, Mr is the residual magnetization vector, and µm is the relative permeability
of the inner rotor.

The residual magnetization vector of the jth permanent magnet cab be written as follows:

Mr =


Mrr

Mrα

Mrβ

 = |Mr|


cos

(
β−

(1−p)( j−1)π
pl

)
sinα

cos
(
β−

(1−p)( j−1)π
pl

)
cosα

− sin
(
β−

(1−p)( j−1)π
pl

)


>π
2 −

Lmag
2 ≤ α < π

2 +
Lmag

2 , j = 1, 2, · · · , 2pl

−
π

2pl +
π( j−1)

pl ≤ β < π
2pl +

π( j−1)
pl

(11)

where Lmag is the axial length of permanent magnet and l is the number of segments per pole. This
is l = 2.

Based on Equations (10) and (11), the residual magnetization vector and scalar potentials are
expressed as follows:

∇·Mr = ∇·

(
Br

µr

)
= 0 (12)

∇
2Φk = 0 , k = 1, 2, 3 (13)
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Additionally, the scalar potential Φk is obtained as follows [24]:

Φk =
∞∑

n=0

n∑
m=−n

(
Am

n rn + Bm
n r−(n+1)

)
Ym

n (α, β)

> Ym
n (α, β) = 1

2nn!

√
2n+1

4π
(n−|m|)!
(n+|m|)!

(
1− x2

) |m|
2 d|m|+n

dx|m|+n

(
x2
− 1

)n
(cosα)eimβ , x = cosα

= P|m|n (x)
√

2n+1
4π

(n−|m|)!
(n+|m|)! (cosα)eimβ , (m = 0, ±1, ±2, · · · , ±n)

(14)

where An
m, Bn

m, m, and n are determined by boundary conditions, Yn
m (α, β) is the spherical harmonic

function, and Pn
|m| (x) is a function represented by Legendre polynomial.

The distribution of the magnetic field is determined by a spherical harmonic function of Mrr (α, β).
Mrr (α, β) as follows:

Mrr(α, β) =
∞∑

n=0

n∑
m=−n

|Mr|cmn(am ± bmi)Ym
n (α, β)

> cmn =
∫ (π+Lmag)/2
(π−Lmag)/2

1
2nn!

√
2n+1

4π
(n−|m|)!
(n+|m|)!

(
1− x2

)|m|/2 d|m|+n

dx|m|+n

(
x2
− 1

)n
(cosα) sin2 αdα

am ± bmi =
2pl∑
j=1

∫ π(2 j−1)/2pl
π(2 j−3)/2pl cos

(
β−

(1−p)( j−1)π
pl

)
e−imβdβ

(15)

Therefore, the air-gap magnetic flux density of the spherical multi-DOF actuator with the Halbach
magnet array is obtained as follows [23]:

B1 =


Br

Bα
Bβ

 =


∞∑
n=2,4,···

n∑
m=−n

(
(n + 1)µrB−m

n r−(n+2)
)
Ym

n (α, β)

∞∑
n=2,4,···

n∑
m=−n

(
−µrBm

n r−(n+2)
)∂Ym

n (α,β)
∂α

∞∑
n=2,4,···

n∑
m=−n

(
−µrBm

n r−(n+2)
)

sin−1 θ
∂Ym

n (α,β)
∂β


(16)

where Br, Bα, and Bβ are the air-gap magnetic flux densities in the r, α, and β directions of the spherical
coordinate system, respectively, m and n are determined by boundary conditions, Bn

m is the magnetic
flux density obtained by the boundary condition, r is the distance from the center of the spherical
coordinate system, and Yn

m (α, β) is the spherical harmonic function.

3. Power Density Improvement

3.1. Output Characteristics Based on Magnet Array Structure

The dual-airgap slotless-type spherical multi-DOF actuator exhibits different output characteristics
based on the magnet array structure. Figure 4 shows the magnetic flux density vector of the internal
rotors of the basic model and that of the Halbach magnet array model under a no-load condition for
the same pole pitch angle. Additionally, Table 2 summarizes the fundamental wave components of the
air-gap magnetic flux density (Bg1) of the basic and Halbach magnet array models. The fundamental
wave component of the Halbach magnet array model is larger than that of the basic model because
the magnetic flux density is concentrated in a wider area. Furthermore, the fundamental wave of the
air-gap magnetic flux density is large in the model with the Halbach magnet array; thus, the output
characteristics of the spherical multi-DOF actuator with the Halbach magnet array are excellent. The
output characteristics of the basic model and Halbach magnet array model are summarized in Table 3.
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array model.

Table 2. Fundamental wave components of air-gap magnetic flux density of the basic model and
Halbach magnet array model.

Contents Basic Model Halbach Magnet Array Model Unit

Air-gap magnetic flux
density (Bg1) 0.39 0.41 T

Table 3. Comparison between the output characteristics of the basic model and Halbach magnet
array model.

Contents Basic Model Halbach Magnet Array Model Unit

Speed 300 rpm
Pole pitch angle 130 ◦E
Average torque 482.4 523.3 mNm

Torque ripple rate 24.4 10.2 %
Power 15.2 16.4 W

Power density 8749.8 9119.5 W/m3

Efficiency 80.7 81.9 %

3.2. Detailed Design of Spherical Multi-DOF Actuator Using Halbach Magnet Array

The rotating coils of the existing spherical multi-DOF actuators exhibit a low fill factor rate.
Therefore, the fill factor rate increases based on the arrangement space of the rotating coils in order
to improve the power density. Thus, the number of rotating windings increases as shown in Table 4.
Furthermore, the output torque increases when the electric load increases.

Table 4. Comparison of output characteristics with increased the number of rotating windings.

Contents Halbach Magnet Array Model New Halbach Magnet Array Model Unit

Speed 300 rpm
Pole pitch angle 130 ◦E

Number of rotating turns 170 370 turns
Average torque 523.3 811.9 mNm

Power 16.4 25.5 W
Power density 9119.5 13,601.3 W/m3
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The Halbach magnet array structure concentrates the magnetic flux passing in the direction of the
air gap. However, the width of the Halbach magnet is inversely proportional to the width of the dipole
magnet magnetized in the radial direction. Therefore, it is important to determine the appropriate pole
pitch angle. The magnetic flux is concentrated if the width of the magnet magnetized in the radial
direction is smaller than the width of the Halbach magnet. However, the outgoing magnetic flux in the
radial direction decreases and the output characteristic is poor.

Figures 5 and 6 show the output characteristics based on pole pitch angle and command position,
respectively, of the spherical multi-DOF actuator with Halbach magnet array using the model with
improved fill factor rate. As the command angles α and β change, the values of the tilting current and
the rotating current change. The average torque and torque ripple rate exhibit excellent characteristics
in the pole pitch angle ranges of 140–170 ◦E and 140–150 ◦E (◦E is the electrical degree), respectively.
Additionally, Figure 7 shows the torque waveform according to the pole pitch angle when the command
angles are α = 10◦ and β = 30◦. Thus, the model with excellent output characteristics for most command
positions and a pole pitch angle of 150 ◦E are selected for the final model. Table 5 shows the specifications
of the final model.
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pole pitch angle and command position.
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Table 5. Specifications of final model of the dual-airgap slotless-type spherical multi-DOF actuator.

Contents Value Unit

Diameter of the outer rotor 147 mm
Diameter of the inner rotor 113.7 mm
Thickness of the outer rotor 137 mm

Thickness of the inner part’s airgap (min/max) 1.5/5.15 mm
Thickness of the outer part’s airgap 1.5 mm

Thickness of the magnet 5 mm
Pole pitch angle 150 ◦E

Residual magnetic flux density of the magnet 1.25 T
Total mass 4.99 kg

3.3. Stability Characteristics

To position the rotor of the spherical multi-DOF actuator with Halbach magnet array at the
command position, the positioning torque at the command position must be zero. Figure 8 describes a
positioning torque (also termed as magnetic arrangement torque).

Energies 2019, 12, x FOR PEER REVIEW 9 of 14 

 

 

Figure 7. Torque waveform according to the pole pitch angle at α = 10° and β = 30°. 

Table 5. Specifications of final model of the dual-airgap slotless-type spherical multi-DOF actuator. 

Contents Value Unit 

Diameter of the outer rotor 147 mm 

Diameter of the inner rotor 113.7 mm 

Thickness of the outer rotor 137 mm 

Thickness of the inner part’s airgap (min/max) 1.5/5.15 mm 

Thickness of the outer part’s airgap 1.5 mm 

Thickness of the magnet 5 mm 

Pole pitch angle 150 °E 

Residual magnetic flux density of the magnet 1.25 T 

Total mass 4.99 kg 

3.3. Stability Characteristics 

To position the rotor of the spherical multi-DOF actuator with Halbach magnet array at the 

command position, the positioning torque at the command position must be zero. Figure 8 describes 

a positioning torque (also termed as magnetic arrangement torque). 

 

Figure 8. Principle of generating positioning torque. 

The positioning torque is given as follows: 

Figure 8. Principle of generating positioning torque.

The positioning torque is given as follows:

τp = kBR ×Btc (17)



Energies 2019, 12, 4204 10 of 14

where τp is the positioning torque, k is the coefficient based on the radius of the coil, length of the coil,
and permeability, BR is the magnetic flux density of the permanent magnet located in the rotor, and Btc

is the magnetic flux density of the tilting coil located in the stator.
The rotor of the spherical multi-DOF actuator with Halbach magnet array is subjected to a force

such that the magnetic flux directions of the permanent magnet and coil coincide. The positioning
torque is zero and reaches the command position when the two magnetic fluxes coincide. In addition,
the positioning torque is zero when the two magnetic flux vectors coincide with each other in a vector
in the opposite direction. However, the positioning torque deviates from the command position if an
external disturbance is applied.

Figure 9 shows two models to determine the stability of the positioning torque when a coil is
placed at one pole (Figure 9a) and when two coils are placed at a pole (Figure 9b).
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Figure 9. Two models to determine the stability of the positioning torque: (a) One coil located at a pole;
(b) Two coils located at a pole.

The positioning torque characteristics of the selected model are shown in Figure 10 for command
angles α = 0◦, β = 0◦ (Figure 10a) and α = 0◦, β = 30◦ (Figure 10b). At the point where α = 0◦, the
positioning torque exhibits a value of zero and negative slope. Hence, a negative torque is generated
if an external disturbance causes a displacement in the positive direction in the vicinity of α = 0◦.
Additionally, a positive torque is generated if the displacement occurs in the negative direction.
Therefore, the spherical multi-DOF actuator with Halbach magnet array can be stably driven based on
the command.

Energies 2019, 12, x FOR PEER REVIEW 10 of 14 

 

k= 
p R tc
τ B B  (17) 

where τp is the positioning torque, k is the coefficient based on the radius of the coil, length of the 

coil, and permeability, BR is the magnetic flux density of the permanent magnet located in the rotor, 

and Btc is the magnetic flux density of the tilting coil located in the stator. 

The rotor of the spherical multi-DOF actuator with Halbach magnet array is subjected to a force 

such that the magnetic flux directions of the permanent magnet and coil coincide. The positioning 

torque is zero and reaches the command position when the two magnetic fluxes coincide. In addition, 

the positioning torque is zero when the two magnetic flux vectors coincide with each other in a vector 

in the opposite direction. However, the positioning torque deviates from the command position if an 

external disturbance is applied. 

Figure 9 shows two models to determine the stability of the positioning torque when a coil is 

placed at one pole (Figure 9a) and when two coils are placed at a pole (Figure 9b). 

  
(a) (b) 

Figure 9. Two models to determine the stability of the positioning torque: (a) One coil located at a 

pole; (b) Two coils located at a pole. 

The positioning torque characteristics of the selected model are shown in Figure 10 for command 

angles α = 0°, β = 0° (Figure 10a) and α = 0°, β = 30° (Figure 10b). At the point where α = 0°, the 

positioning torque exhibits a value of zero and negative slope. Hence, a negative torque is generated 

if an external disturbance causes a displacement in the positive direction in the vicinity of α = 0°. 

Additionally, a positive torque is generated if the displacement occurs in the negative direction. 

Therefore, the spherical multi-DOF actuator with Halbach magnet array can be stably driven based 

on the command. 

  
(a) (b) 

Figure 10. Positioning torque characteristic when pole pitch angle is 150 °E: (a) α = 0°, β = 0°; (b) α = 

0°, β = 30°. 

  

Figure 10. Positioning torque characteristic when pole pitch angle is 150 ◦E: (a) α = 0◦, β = 0◦; (b) α = 0◦,
β = 30◦.



Energies 2019, 12, 4204 11 of 14

3.4. Control Method

Position control of the multiple DOF actuators is achieved via two non-contact image sensors. As
shown in Figure 11a, the two image sensors are arranged with a spatial difference of 90◦. Figure 11b
shows the values when Sensor 1 is sensing the rotating surface. The two image sensors are spatially
90◦ apart; thus, the displacements ∆y1 and ∆y2 are as follows [25]:

∆y1 = ymax(α) sin β (18)

∆y2 = ymax(α) cos β (19)

As shown in Figure 11b, the rotation angle φ is as follows:

φ =

√
(∆x1)

2 + (∆y1)
2

r
=

∆l1
r

(20)

where r is the distance from the center of the rotor to the measurement surface, and ∆l1 is the movement
distance about the rotational trajectory measured by Sensor 1.

For achieving position control of the multi-DOF actuator, α and β should be obtained. First, using
Equations (12) and (13), β is determined as follows:

tan β =
∆y1

∆y2
=

ymax(α) sin β
ymax(α) cos β

(21)

β = arctan2(∆y1, ∆y2) (22)
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Figure 11. Image sensor for position control: (a) Position of image sensor; (b) Measured value of
Sensor 1.

Figure 12 shows a state where β = 90◦. Additionally, α represents the angle between ∆l1 and ∆x1.
Using Figure 12 and Equation (12), α is derived as follows:

ymax(α) =
∆y1,β=90◦

sin β(=90◦)
= ∆y1,β=90◦ (23)
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sin(α) =
∆y1,β=90◦

∆l1,β=90◦
(24)

α = arcsin
(∆y1,β=90◦

∆l1,β=90◦

)
(25)

Therefore, position control is achieved by obtaining φ, α, and β via the image sensor.
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4. Conclusions

In this study, we propose a structure for a dual-airgap slotless-type spherical multi-DOF actuator
and examine its power density improvement over a multi-DOF actuator. To improve the output
power density of the multi-DOF actuator, a dual-airgap and slotless-type spherical structure was
selected to decrease eddy current loss via simultaneous movements of the internal and external rotors.
Additionally, a three-phase structure with an induced voltage with a large fundamental wave size
and a small harmonic size was selected. Furthermore, a Halbach magnet array was added to existing
magnets to increase magnetic flux density of the permanent magnets. We used a detailed design of
the winding and rotor magnet structure to finally select a model with high output power density and
low torque ripple. Additionally, it is necessary for the multi-DOF actuator to move to the position
of the entered command. Therefore, stability analysis is essential to determine whether the actuator
moves to the command position. For the actuator to run stably, the torque at the command position
must be zero and should exhibit a torque curve with negative slope. If the torque at command position
is zero but the torque curve has a positive slope, the actuator deviates from the command position
when a slight disturbance is applied. Therefore, stability analysis was performed to confirm whether
the spherical multi-DOF actuator with Halbach magnet array was positioned based on the command.
Additionally, two image sensors were used for the position control of the multi-DOF actuator. Herein
is designed a spherical multi-DOF actuator that improves power density and is located at the desired
command position.

Author Contributions: S.C. selected number of phases for the multi-DOF actuator and conducted analysis to
improve the power density. H.J.L. has presented the structure of a double air-gap type multi-DOF actuator. J.L.
checked and guided the analysis research.
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