
energies

Article

Advancing Hazard Assessment of Energy Accidents
in the Natural Gas Sector with Rough Set Theory and
Decision Rules

Marco Cinelli 1,†,* , Matteo Spada 2 , Miłosz Kadziński 3 , Grzegorz Miebs 3 and
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Abstract: The impacts of energy accidents are of primary interest for risk and resilience analysts,
decision makers, and the general public. They can cause human health and environmental impacts,
economic and societal losses, which justifies the interest in developing models to mitigate these
adverse outcomes. We present a classification model for sorting energy accidents in the natural gas
sector into hazard classes, according to their potential fatalities. The model is built on decision rules,
which are knowledge blocks in the form of “if (condition), then (classification to hazard class x)”.
They were extracted by the rough sets method using natural gas accident data from 1970–2016 of
the Energy-related Severe Accident Database (ENSAD) of the Paul Scherrer Institut (PSI), the most
authoritative information source for accidents in the energy sector. This was the first attempt to
explore the relationships between the descriptors of energy accidents and the consequence (fatalities).
The model was applied to a set of hypothetical accidents to show how the decision-making process
could be supported when there is an interest in knowing which class (i.e., low, medium, high) of
fatalities an energy accident could cause. The successful use of this approach in the natural gas sector
proves that it can be also adapted for other energy chains, such as oil and coal.

Keywords: hazard assessment; energy accidents; decision support; rough sets; classification

1. Introduction

Societies worldwide rely on energy to satisfy many of their needs, among others, cooking,
warming, cooling, transportation, and electricity generation [1]. Nonetheless, maintaining a constant
provision of energy is a technological and political challenge, since there are continuous disruptions
that can affect its reliable and efficient supply. They can be initiated by different causes, such as
man-made (e.g., lack of maintenance), technological (e.g., collapse of an infrastructure), and natural
(e.g., earthquake, flood), resulting in events such as, for example, explosions, fires, and release of toxic
substances. These disruptions cause health, environmental, economic, and social impacts [2], such as
fatalities, injuries, evacuees, ban on consumption of food, release of toxic substances, and economic
losses [3,4].
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One of the major strategies devised to identify the weak points in the energy infrastructure and
study where the highest accident frequencies and consequences (e.g., fatalities) can be expected has
been to gather consistent information on incidents, accidents, and near misses in the energy sector
by storing detailed information, including their location, the type of energy chain, and infrastructure
as well as the type of detrimental impacts, etc. [3–7]. Sovacool et al. [5] proposed a dataset of 1085
energy accidents for 11 energy systems over the period 1874–2014. These authors exclude end use from
their dataset and define an energy accident as “unintentional incident or event at an energy facility
that led to either one death (or more) or at least $50,000 in property damage”. The Energy-related
Severe Accident Database (ENSAD) of the Paul Scherrer Institut (PSI) has been developed since the
1990s, and it covers multiple energy chains and their whole life cycle [8,9]. For the time horizon
1970–2016, ENSAD comprises 23,455 unique accident records for which 32,849 consequence records
are available [10].

These databases are excellent repository sources that store consistent information on the accidents
according to the life cycle stage of each energy chain. So far, they have been analyzed through statistical
methods looking at frequencies of events, ranges of fatalities, releases of hazardous substances, and
cost of accidents [2,4,5,9,11–15]. Such findings can be used by different stakeholders including industry
and authorities among others, to inform the construction of the forthcoming energy policies, strategic
planning, scenario development, or assessment of individual facilities. Up to now, these datasets
have been screened by looking at single descriptors (e.g., country, energy chain) in relation to the
absolute impacts and not correlated to, e.g., ranges of fatalities, injuries, and released amounts of toxic
substances. For example, Sovacool et al. [5] looked at which energy chains performed the worst with
respect to frequency, fatalities, and damage cost of energy accidents. Burgherr et al. [14] conducted a
comparative assessment of oil, coal, and gas energy chains with reference to the number of fatalities
according to several country groups, e.g., Organisation for Economic Co-operation and Development
(OECD), Middle East and North Africa (MENA), Organization of the Petroleum Exporting Countries
(OPEC), and other non-OECD. The latter research team [2] assessed the relative share of accidents and
fatalities in the various stages of fossil energy chains.

The analyses of these datasets have, however, not looked at the integrated and interdependent
influence and relevance of the descriptors of energy accidents on the outcome event, such as fatalities
or release of hazardous materials. In addition, the added value and the relevance of the variables used
to store the information on each accident has been overlooked. More specifically, research challenges
of interest for the future of energy accidents prevention and management include (i) the evaluation of
the ability of datasets to discern the accidents according to the various outcomes, such as fatalities,
injuries, evacuees, or monetary damage; (ii) the identification of the features of the accidents that affect
different ranges of outcome; and (iii) the assignment of a class of concern to future accidents. These are
important knowledge gaps to be tackled as they could provide solutions to pressing issues, including
the harmonization process of data gathering on energy accidents on a global scale and the refinement
of energy policies, plans, and scenarios based on valuable information on past energy accidents [16–18].
Another interesting avenue of research would consist in analyzing the types of uncertainties that
affect the development of databases for energy accidents. Following the newly proposed uncertainty
categorization framework by Pelissari et al. [19], which distinguishes (i) ambiguity, (ii) stochasticity,
and (iii) partial information as main categories, it would be possible to characterize the uncertainty
inherent in each accident information.

Nowadays, a large share (i.e., 21%) of the world primary energy consumption is covered by
natural gas [1], and this figure is projected to rise steadily in the coming decades [20]. This justifies the
need for risk and resilience assessment of the current and future natural gas infrastructure in case of
normal operation as well as emergency situations [21–26], which led our team to start addressing the
research challenges mentioned above for this energy chain.

This paper presents an update and expansion of our previous analysis of the ENSAD dataset with
the rough sets approach [27] and it provides three novel contributions. First, the ENSAD dataset for
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the natural gas energy chain was adapted for the analysis with the rough sets approach (a type of
Multiple Criteria Decision Analysis (MCDA) method) by defining a set of descriptors (i.e., attributes),
which describe how each accident happened and also a class of fatality caused by each event. Second,
an initial minimal set of relevant and non-redundant descriptors of the ENSAD accidents that can be
used to distinguish accidents that cause different levels of fatalities for the natural gas energy chain
is proposed. Third, an original sorting model, based on decision rules of multiple typologies, was
proposed for classification of energy accidents in hazard classes. It must be pointed out that this model
can also support the analysts in learning about the problem under consideration and allows them
to justify their choices using a transparent and systematic process. This methodology can guide the
analysts to explore, interpret, and even debate about the subject [28]. The simple syntax of the decision
rules (“if . . . , then . . . ”) can help the analysts discussing the classifications of the accidents with the
decision maker (DM) and start a dialogue that can lead to a more informed perspective on the problem.

A main objective of our research is to contribute to the generation of “lessons learned from the
accidents” to provide an indication of the possible impacts of new accidents in the natural gas sector.
This strategy can start complementing, from an energy management perspective, the long-standing
initiative of the European Commission for the mitigation of potential consequences from incidents,
accidents, and near misses [29].

Another objective of the research is to complement the resilience literature by looking at how
advanced hazard assessment can contribute to natural gas performance evaluation. In fact, the
natural gas energy chain is a complex system, whose performance can decrease according to the
severity of each disruption. This loss of performance and need of recovery of a key service links
clearly to the concept of resilience, which can be interpreted as the capacity of a system to absorb
and recover from adverse events [30–32]. Due to the importance of natural gas in the current society,
several studies started looking at the resilience of natural gas from multiple perspectives [33–35].
A recent framework, based on three main sets of functions, has been proposed for infrastructure
resilience assessment by the Future Resilient Systems (FRS) program at the Singapore-ETH Centre
(http://www.frs.ethz.ch/) [36]. Such functions include the ability of a system to resist, restabilize,
rebuild, and reconfigure its functionality (biophysical functions), the potential to implement emergency
responses (enabling functions), and the capabilities to monitor the state of the system and identify
weak signals to prevent detrimental effects of disruptions (cognitive functions). The research presented
in this paper contributes to one of the latter functions, specifically to the development of the one called
“remember”. The information stored in ENSAD can, in fact, be used to tackle forthcoming accidents
with more awareness of their possible impacts.

The remainder of this paper is organized as follows. Section 2 describes the dataset that was
used in this research and the method that was employed to analyze it. Section 3 is devoted to the
presentation of the results, while Section 4 discusses and concludes the paper.

2. Materials and Methods

This section describes the structure of the dataset based on ENSAD that was created for this
research (Section 2.1) and the MCDA method that was employed to analyze it and develop the
classification model (Section 2.2).

2.1. The Energy-Related Severe Accidents Database (ENSAD)

ENSAD is a long-term and active initiative that started in the early 1990s by PSI and it is currently
one of the most respected databases on energy accidents in the world [9]. Some of the reasons for this
achievement are the verified and traceable natures of each information entry, the coverage of complete
energy chains, and the adoption of consistent severity thresholds on the outcomes [9].

Each accident in ENSAD is characterized by its date, location, energy chain (e.g., natural gas, coal,
oil) and chain stage (e.g., extraction, transportation, storage, commercial use), infrastructure typology
(e.g., mine, refinery, dam, pipeline), and sequence of detrimental events (e.g., explosion, release, fire).

http://www.frs.ethz.ch/
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The complete list of these accident descriptors is presented in Tables S1–S3 in the Supplementary
Information (SI). The outcomes are the resulting fatalities, injuries, evacuees, release of toxic material,
and economic loss. For this research, the natural gas chain was selected, a choice driven by the fact
that this energy chain is a key asset for primary energy production worldwide and it is currently a
major research focus within the ENSAD team [20,34,37]. ENSAD contains natural gas accidents data
from 1970 to 2016, and an update and verification up to 2018 is under way as part of the FRS program
and PSI efforts. Though, the last consolidated and validated database version for natural gas was used,
including accidents from 1970 to 2016, and was employed to develop the classification model based on
the decision rules. It included all the severe accidents (according to the definition adopted in ENSAD, severe
accident causes, for example, at least 5 fatalities, or 10 injuries, or 200 evacuees, etc. [13]. For simplicity, the
adjective “severe” will be omitted throughout the paper) that caused at least 5 fatalities, which were 250 in
total. The format of the accidents stored in ENSAD resembles a standard information table for MCDA,
with the rows as the alternatives and the columns as the features (attributes or criteria) describing
them. There is normally also one column that characterizes the evaluation of each alternative, i.e., an
aggregated measure of the individual features.

In the current case study, the alternatives are the energy accidents from ENSAD, and the attributes
are eight, including country cluster (a1), energy chain stage (a2), infrastructure type (a3), and event
chain sequence from 1 up to 5 (a4−8) (see Table 1 for a sample of the information table and Tables S1–S3
in SI for a full list of attributes). These were considered as main descriptors to discern accidents
according to their entity of consequences, an assumption that was tested in the analysis phase.

Table 1. A sample of the information table for energy accidents from Energy-related Severe Accident
Database (ENSAD).

Accident Country
Cluster (a1)

Energy Chain
Stage (a2)

Infrastructure
Type (a3)

Event Chain
1 (a4)

Event
Chain 2

(a5)

Event
Chain 3

(a6)

Event
Chain 4

(a7)

Event
Chain 5

(a8)
Fatalities (Cl)

1 OECD (1) * Storage (6) Storage
facility (24) Release (4) Fire (3) NA (99) NA (99) NA (99) 5–10 fatalities (Cl1)

. . .

92 OECD (1) Transport (5) Pipeline (10) Excavating
(17) Fire (3) Explosion

(2) 99 99 11–20 fatalities (Cl2)

. . .

156 2 4 6 2 3 99 99 99 >20 fatalities (Cl3)

*: The numbers within brackets indicate the code used for the value of each attribute. DOM/COM: Domestic or
commercial premises. NA: Not Available. For the infrastructure type, NA means that it is not known, while for the
event chains, it indicates that the chain has stopped at the previous step, or the accident reports do not provide
enough information, or there is some more information in the accident reports, but it is not clear enough to be used.

The outcome of ENSAD is currently the number of fatalities that each energy accident caused,
which is a primary concern for each risk and resilience analyst, decision maker (DM), and also the
general public. Three classes of the 1970–2016 knowledge base datasets were defined for the ranges
of fatalities with the framing of low, medium, and high impact events. This translates in Cl1 = 5 to
10 fatalities (161 accidents); Cl2 = between 11 and up to 20 fatalities (53 accidents); Cl3 = more than
20 fatalities (36 accidents). The lower boundary for low impact was selected according to the minimum
severity threshold of 5 fatalities in ENSAD [14], while the boundary for high impact was chosen based
on the minimum selection criterion of 20 fatalities for man-made disasters and natural catastrophes
used by SwissRe, a renowned reinsurance company in this area [38]. The medium class with fatalities
between 11 and 20 was defined to examine possible differences of these accidents with respect to those
with higher or lower impacts.

2.2. MCDA Method: Rough Sets

The selection of the MCDA method needs to fit with the structure of the problem [39,40], which in
this case included the following requirements:
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1. Assess the quality of information (i.e., attributes) stored in ENSAD to distinguish accidents in
relation to the range of fatalities caused;

2. Discover the patterns that explain the accidents by accounting for the interrelations and
interdependencies of the attributes used in ENSAD;

3. Provide a class of concern for potential forthcoming accidents not part of the knowledge base
dataset, while transparently justifying the sorting.

According to these constraints, the MCDA literature [40–44] was searched to verify if a relevant
method was available, which was eventually the case. The method that appeared as suitable was
the rough sets approach as it can provide all the contributions required to start filling the research
gaps [45,46]. Firstly, the approach provides information about the classification ability of the selected
attributes and the minimal set indispensable for the consistent classification. Secondly, a classification
model composed of decision rules expressed as “if (condition), then (classification to Clx)” is provided.
The rules are transparent and easily understandable by the DMs. They are also related to specific
alternatives (i.e., energy accidents), which allows tracing and improving the decision process. Thirdly,
the classification model can be used to classify accidents not being part of the knowledge base to assess
the concern inherent in a new and unforeseen accident or a past one. The next sections provide a
detailed description of the rough sets method (Section 2.2.1), the contributions of this method when
applied to ENSAD (Section 2.2.2), and the strategies used to validate the proposed model for sorting
energy accidents in fatality classes (Section 2.2.3).

2.2.1. Description of the Rough Sets Method

This section describes how the rough sets method operates on the ENSAD data. Table 2 shows that
the ENSAD dataset is in MCDA terms a complete information table, with an objective measure (i.e.,
class of fatalities) as a characteristic for every accident. This typology of information tables is suitable
for patterns and trends analysis, whose methods can discover the information/knowledge “hidden” in
(in)complete datasets of attributes (condition attributes) and outcomes (decision attributes) [47,48].

Table 2. Simplified information table for energy accidents from ENSAD.

Accident (U)

Attributes (A) Outcome (D)

Country Cluster Energy Chain Stage Infrastructure Type Fatalities

a1 a2 a3 D

1 OECD Transport Refinery 5–10 fatalities (Cl1)

2 OECD Extraction Refinery 11–20 fatalities (Cl2)

3 OECD Extraction Refinery 5–10 fatalities (Cl1)

4 OECD Upstream Pipeline 11–20 fatalities (Cl2)

5 Non-OECD Extraction Pipeline 11–20 fatalities (Cl2)

6 Non-OECD Transport Pipeline 5–10 fatalities (Cl1)

Table 2 is an example of simplified information table from ENSAD composed of S = (U, A, P),
where U = set of accidents; A = set of attributes (ai); P ⊆ A.

The subsets of accidents that have the same values for the attributes represent alternatives that
are indiscernible (similar) in light of the available information. They actually represent elementary
granules of knowledge and are defined as elementary building blocks (atoms) of our dataset. Unions
of elementary concepts are called crisp, whereas any other sets are called rough (vague, imprecise).
Formally, an indifference class IP(x) of accident x ∈ U with respect to P ⊆ A is defined as a set of
accidents which have exactly the same values as x on all condition attributes in P.

Every set X has two types of crisp sets, called the lower and upper approximation of X. The
lower approximation of X (P(X)) is composed of all the elements (accidents) that surely belong to X,
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whereas the upper approximation of X
(
P(X)

)
is the set of elements (accidents) that possibly belong to

X. Formally, these approximations are defined as follows:

P(X) =

{
x ∈ U,

card(IP(x) ∩ X)

card(IP(x))
≥ 1

}
and P(X) =

{
x ∈ U, card(IP(x)∩X) > 0

}
.

The above definitions admit that X is either a single class or a class union. Both these options are
accounted for in the main paper.

The difference between lower and upper approximation is called the boundary region and a set
is rough when it has a non-empty boundary region. The main characteristic of the boundary region
is that its elements cannot be classified precisely using the available information. All the accidents
in Table 2 have different values for all condition attributes (a1−3) and outcome D. Consequently, all
the accidents are discernible according to the information from the attributes. However, considering
only condition attributes a1, a2, and a3, accidents 2 and 3 are indiscernible. Subsets of attributes enable
the partition of the dataset into clusters of accidents having the same score on such attributes. As an
example, attributes a1, a2, and a3 provide this clustering of accidents {1}, {2, 3}, {4}, {5}, {6}.

An important issue for the management of energy accidents is to understand which are the
conditions that lead to accidents that are less severe (class Cl1 corresponding to accidents with 5 to
10 fatalities) and which are more severe (class Cl2 corresponding to accidents with 11 to 20 fatalities).
In other words, the objective is to characterize accidents in classes Cl1 and Cl2 in view of the
attributes a1−3.

One first feature to note is that accidents 2 and 3 are characterized by the same values for a1−3

but accident 2 causes 11 to 20 fatalities, whereas accident 3 causes 5 to 10 fatalities. This implies that
the current information allows to state that accidents 1 and 6 cause 5 to 10 fatalities, accidents 4 and 5
cause 11 to 20 fatalities, and for accident 2 and 3 it is not possible to know whether they cause 5 to
10 fatalities or 11 to 20 fatalities.

According to attributes a1−3, it is possible to state that accidents 1 and 6 surely cause 5 to 10
fatalities, i.e., surely belong to class Cl1, while accidents 1, 2, 3, and 6 possibly cause 5 to 10 fatalities,

i.e., possibly belong to class Cl1. The set {1, 6} represents the lower approximation
(
P(Cl1)

)
, whereas

the set {1, 2, 3, 6} constitutes the upper approximation
(
P(Cl1)

)
of class Cl1. The difference between

upper and lower approximations is the set {2, 3}, which constitutes the boundary/rough set region
(BnP(Cl1)) of class Cl1.

2.2.2. The Contributions of Rough Sets Analysis When Applied to ENSAD

The first useful measure that was obtained with rough sets analysis applied to the dataset
from ENSAD is the quality of classification γP(Cl), i.e., the ratio between the accidents that
surely belong to a class (i.e., in the lower approximations) with respect to all the accidents in

the dataset γP(Cl) =

∑
card

(
P(X)

)
card (U)

. γP(Cl) expresses the ratio between the accidents P-correctly
classified (P(X)) with respect to all the accidents in the dataset. In the previous example from

Table 2, γP(Cl) =
∑

card
(
P(X)

)
card (U)

= 2+2
6 = 0.67, i.e., 67% of the accidents can be correctly/surely identified

according to the available information as causing 5 to 10 fatalities or 11 to 20 fatalities. It indicates how
well the selected attributes allow discerning the accidents in relation to the class of fatalities.

The second contribution of rough sets analysis is the evaluation of possible superfluous information
in the dataset, with respect to the selected attributes. It is possible to state that an outcome D (e.g.,
fatality) totally depends on the set of attributes A if all the values of the outcome are uniquely
determined by the values of the attributes. In case where there is a subset of A, named A′, such
that γ(A, D) = γ(A′, D). A′ represents a reduct of A as it allows obtaining the same quality of
classification of A. In other words, the reduct represents the minimal subset of attributes that is
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sufficient to guarantee that the highest degree of dependency between A and D is maintained, with the
least amount of information (i.e., attributes) from the dataset. In the example from Table 2, {a1 , a2}

and {a2 , a3} are the two reducts with respect to D, meaning that either country (a1) and energy chain
stage (a2) or energy chain stage (a2) and infrastructure type (a3) can be used to distinguish the range
of fatalities caused and obtain the same quality of classification (i.e., 67%) as the whole set of attributes
A.

The dependencies that exist between attributes and outcome, expressed as A⇒ rD, can be defined
in the form of “if . . . , then . . . ” decision rules (denoted by ρi), which is the third contribution of
the rough sets method. They are logical formulas describing conditions and outcomes in the dataset.
They are built up from elementary characteristics of the accidents (attribute, value) connected by means
of the preposition “and”.

Some examples of certain rules from Table 2 are:

• “If the energy stage (a2) is transport, then the fatalities caused by the accident are 5 to 10 (from
accidents 1 and 6);

• “If the country (a1) is non-OECD and the energy stage (a2) is extraction, then the fatalities caused
by the accident are 11 to 20” (from accident 5);

• “If the energy stage (a2) is upstream, then the fatalities caused by the accident are 11 to 20” (from
accident 4).

The rules induction algorithm used in this case study is the LEM2, as it is a good option for
searching set of rules by selecting the minimum elementary conditions of the attributes [49]. In this
paper, we add to the standard single class-based rules the rules for ordinal classification (i.e., union of
classes-based rules), which look at the combined conditions of the accidents that lead to a union of
classes and not a single one. A simple example of such a rule from Table 1 is “If the country (a1) is
OECD and event chain 1 (a4) is fire, then the fatalities caused by the accident are either between 5 and
10 or 11 and 20”. This implies either Cl1 or Cl2, which means that the union of classes can be expressed
as ≤ Cl2. In this case study, the rules of interest for ordinal classification are for at least Cl2, indicated as
≥ Cl2 or for at most Cl2, indicated as ≤ Cl2 (note that the rules with the decision part corresponding to
the class unions “at least Cl3” and “at most Cl1” are equivalent to the standard rules with conclusions
“Cl3” and “Cl1”, respectively).

Having rules of two typologies brings the added value of providing an additional layer of
information extracted from ENSAD as well as further support in the analysis of new accidents. In fact,
the decision rules can be employed to classify new accidents according to the values of their attributes in
order to understand their concern level from a potential fatalities perspective. Two strategies have been
employed in this research, the first called standard classification and the second referring to advanced
classification (see details in Błaszczyński et al. [50]). The standard classification scheme assigns the class
according to what rules cover the accident. The standard scheme is very transparent in the sense that
its sorting can be visualized by means of the rules that match the new accidents and shown accordingly
in a figure (for an example see Cinelli et al. [27]). However, there can be cases where rules for different
classes (e.g., Cl1 and Cl2, Cl1 and ≥ Cl2) match the accident and consequently a contradiction in terms
of suggested classification takes place. A univocal allotment can still be reached by means of an
advanced classification scheme that considers the set of decision rules covering a given accident m
(referred to as set R) and provides a measure expressed as Scorenet

R (Clt, m), which is the result of the
difference between two other scores [50]. The first one is Score+R (Clt, m) that accounts for all the rules
that support the assignment to class of interest, Clt. The other is Score−R(Clt, m), which conveys the
rules suggesting a class other than Clt. Scorenet

R (Clt, m) results from Score+R (Clt, m) − Score−R(Clt, m)

and it provides an overall measure of strength for the assignment to a certain class. The class with the
highest net score is then recommended by the advanced scheme.

Both classification schemes discussed above assume that for each accident there are one or more
rules that match its values of the attributes. However, it might be the case that there is no single rule
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that exactly aligns with the description of a specific accident. Hence, the recommended class must
be extrapolated from the rules that are “nearest” to this accident. The strategy adopted in this case
is the valued closeness relation proposed in [51], which is based on the assumption that providing
the DM with an indication of the classified accidents that do not excessively differ from the one
under analysis can be the best compromise, instead of offering nothing. For example, an accident
with the following description (country (a1) = OECD, energy stage (a2) = extraction, infrastructure
type (a3) = compression station, . . . ) matches 2 out of 3 conditions of the following rule, hence being
relatively close to it: “If the country (a1) is OECD and the energy stage (a2) is extraction and the
infrastructure type (a3) is platform, then the fatalities caused by the accident are more than 20”.

2.2.3. Validation of the Sorting Model

Two validations of the model were performed, one predictive based on cross-validation and
one experimental using realistic future accidents [52,53]. The predictive validation did not provide
satisfactory results (its detailed results are available in Section S.3 of the Electronic Supplementary
Information (ESI)), while the experimental one confirmed the usefulness of the rough sets model and it
is discussed in Sections 3.2 and 4. Similarly to the experimental validation proposed by Augeri et al. [54],
a realistic set of alternatives (in this case, energy accidents) was selected to test the applicability of the
rules of the rough sets model and the capacity to better analyze the problem. In fact, the sorting of the
accidents is driven by one or more rules that match fully or partially the conditions of the accidents
and can lead the sorting challenge using objective energy accidents information stored in ENSAD.

3. Results

The results are presented in two sections, distinguishing relevance of attributes (Section 3.1),
and the classification model based on the decision rules, including the classification of new energy
accidents to hazard classes (Section 3.2).

The quality of the employed ENSAD for natural gas accidents is just under 60%, hence close to
two thirds of the 250 accidents can be described by the selected attributes and assigned to the class of
fatalities without ambiguity. The remaining accidents are part of the upper approximations, meaning
that they have the same values for the attributes but caused different ranges of fatalities.

3.1. Relevance of Attributes in ENSAD for Natural Gas

There is only one reduct from this ENSAD dataset, which includes all the attributes except event
chain 5 (a8). This means that attributes a1−7 represent the minimal set of relevant attributes from
the original dataset that are sufficient to characterize the decision table with the same quality of
classification as all the eight attributes. The presence of one reduct only covering all expect attribute
a8 can be interpreted as the confirmation of the relevancy of the data gathering strategy adopted by
the ENSAD developers since the early 1990s. In fact, the categorization of the accidents according to
country cluster, energy chain stage, infrastructure type, and types of event chains are confirmed as
being necessary for distinguishing between events of different fatality entities.

The influence of the attributes on the quality of classification was studied to identify the attributes
that mostly affect the classification. This was conducted through a trial-and-error procedure by
eliminating one attribute at a time. The quality of classification is presented in Figure 1 by accounting
for the effect of the reduction of one attribute at a time on the rough sets analysis.
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It is evident from Figure 1 that the attribute event chain 1 (a4) has a key role in the quality of
classification, meaning that if deleted, a large number of inconsistent accidents emerge, i.e., the same
values of the attributes for the accidents, but different class assignments. Lower but still notable
relevance of infrastructure type (a3), country cluster (a1), as well as event chain 2 and 3 (a5 and a6,
respectively). Energy chain stage (a2) and event chain 4 (a7) have limited discernibility capacity, while
event chain 5 (a8) does not add any relevant type of information to the dataset.

Attributes energy chain stage (a2) and event chain 4 (a7) have thus limited discernibility capacity as
they have limited potentials of distinguishing accidents assigned to different classes. Regarding energy
chain stage (a2), this is due to the fact that most of the accidents with different fatalities classes
have the same values. Specifically, the most common energy chains are transport and domestic or
commercial premises (DOM/COM), which represent 45.6% and 38.4% of the values for this attribute in
this dataset, respectively.

This can be an indication of whether their coding (i.e., values) should be re-framed (possibly for
a2) or the attribute not considered at all and thus dropped from the analysis (possibly for a7). It must
be noted that the higher the number of attributes (including their values) the higher the time required
to gather the information for ENSAD (and dataset generation in general). Therefore, a trade-off is
in place between the search of information on accidents and the added value this research brings to
the analysis of such data. Rough sets analysis can thus be seen as a useful approach to assess the
worthiness of investing in data gathering strategies for datasets generation, in this particular case for
energy related accidents.

3.2. Classification Model and Sorting of New Energy Accidents to Hazard Classes

The classification model developed in this research is built upon two types of decision rules that
were conveyed by rough sets analysis, single class and union of classes (rules for ≤ Cl1 and ≥ Cl3 are the
same as those for = Cl1 and = Cl3). Table 3 provides a summary of these rules. The complete model
composed on all the rules is available in SI S.3 and S.4.

As far as fully certain rules are concerned, 61 for Cl1, 26 for Cl2, 16 for Cl3, 66 for ≤ Cl1, 60 for
≤ Cl2, 42 for ≥ Cl2, and 22 for ≥ Cl3 were discovered (Table 3). This means 103 and 190 overall rules for
the single class-based and union of classes-based variants, respectively.

The rules represent pieces of objective knowledge contained in ENSAD that are characteristics
of the energy accidents that caused certain classes of fatalities. Standard rules contain the attributes’
values (i.e., conditions) of the energy accidents that result in a certain outcome (i.e., decision), be it
having caused between 5 and 10 fatalities (Cl1), between 11 and 20 (Cl2), and above 20 (Cl3). In this
manner, it is possible to perform a mapping of the patterns that characterize the accidents that surely
represent each of the classes. It is important to note that the rules are an objective and succinct
representation of the information “hidden” in the dataset and not an elaboration from the experts
and/or analysts. In fact, they are supported by one (or more) accidents that uniquely showed certain
characteristics for the attributes and resulted in a certain range of fatalities.
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Table 3. Summary of decision rules obtained from the rough sets analysis of ENSAD dataset.

Rule Type Single Class/Union of Classes # Rules # Accidents

1: Single class
= Cl1 61 161

= Cl2 26 53

= Cl3 16 36

Total single class-based rules 103

2: Union of classes

≤ Cl1 66 161

≤ Cl2 60 214

≥ Cl2 42 89

≥ Cl3 22 36

Total union of classes-based rules 190

Some illustrative single class rules include:

• “If (country cluster, a1 = non-OECD) and (infrastructure type, a3 = pipeline) and (event chain 1, a4

= release), then the class of fatalities is Cl1”. Rule triggered by accidents n. 99 in ENSAD dataset.
• “If (country cluster, a1 = OECD) and (infrastructure type, a3 = pipeline) and (event chain 1, a4 =

explosion) and (event chain 2, a5 = fire), then the class of fatalities is Cl1 or Cl2”. Cl1 is triggered
by accidents n. 46, 50, and 63, while Cl2 is activated by accident 135 in ENSAD dataset.

• “If (country cluster, a1 = OECD) and (infrastructure type, a3 = compression station) and (event
chain 1, a4 = explosion), then the class of fatalities is Cl1”. Rule triggered by accidents n. 220 in
ENSAD dataset.

An additional contribution of this research is the extraction of rules for the union of classes, which
in this case are represented by the accidents assigned to at most or at least to Cl2. In the first case
(i.e., rules for ≤ Cl2), they refer to the accidents that contain characteristic values for the accidents
classified to either Cl1 or Cl2. In the other case (i.e., rules for ≥ Cl2), they include accidents belonging
to either class Cl2 or Cl3. This can enrich the decision support potentials of the knowledge base as
explained below.

Two examples of union of classes rules are:

• “If (country cluster, a1 = OECD) and (energy chain stage, a2 = transport) and (infrastructure type,
a3 = pipeline) and (event chain 2, a5 = not available), then the class of fatalities is ≤ Cl2”. Rule
triggered by accidents 1, 14, 28, 29, 64, 68, 74, 84, 100, 107, 214 belonging to Cl1, and accident 134
belonging to Cl2, in ENSAD dataset.

• “If (country cluster, a1 = OECD) and (event chain 2, a5 = collapse), then the class of fatalities is
≥ Cl2”. Rule triggered by accidents 146 belonging to Cl1, and accident 134 belonging to Cl2, in
ENSAD dataset.

From a risk and resilience management perspective, knowing the potential impact range of an
accident is of pivotal importance to plan appropriate response strategies. Decision rules extracted from
this ENSAD set can be used to estimate this potential impact in the natural gas sector. They can provide
warning signs based on the country cluster, energy chain, infrastructure type, and event chain of a real
or hypothetical energy accident that the expert/DM can use to make the most out of the information
consistently reported in ENSAD. The decision rules can be of use to different experts and DMs who
might be interested in (i) developing hazard and resilience assessments for energy technologies and
scenarios by exploiting the capacity of dealing with accidents with more awareness of their possible
impacts (directly linked with “remember” function in FRS resilience framework [36]), (ii) supporting the
development of insurance packages according to the riskiness of the energy technology investment (e.g.,
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insurance companies), and those (iii) looking for recommendations about energy policy development
(e.g., policy makers).

Let us consider ten realistic accidents (denoted by n1–n10) as shown in Table 4, including OECD
and non-OECD country clusters, energy chain stages, infrastructure types, and event chains. For these
accidents, the classification results are presented in the last two columns (for details see Section S.5
in SI). The classification provided by the single class-based rules indicates that there is correspondence
between the standard and advanced schemes for seven out of ten accidents, while it shows ambiguity
for n6 and n7, and no solution for n9. The latter ones are thus the accidents that can be seen as more
problematic from an assessment perspective, and specifically justify the use of the advanced scheme,
which can assign a unique class to each of them. The added value of the advanced scheme is also
emphasized in the union of classes-based rules, as most of the accidents have union of more than
one type of at most classes, or at least classes or a combination of both (n4, n8), which renders the
classification quite ambiguous.

In the case of accident 3 (n3), there is only a single-class rule that leads the sorting, which
states that “If country cluster = OECD, infrastructure type = building commercial, and event chain
3 = not available, then the class of fatalities is Cl1” (supporting accidents n. 3, 25, 56, 67, 81).

The union of classes-based rules adds to this sorting the information from two rules. The
first one states that “If country cluster = OECD, energy chain stage = DOM/COM, and event chain
3 = not available, then the class of fatalities is ≤ Cl2” (supporting accidents n. 3, 11, 22, 25, 37, 38, 39, 42,
52, 54, 55, 56, 61, 67, 73, 79, 80, 81, 83, 93, 103, 106, 111, 114, 117, 189, 198 belonging to Cl1, and accidents
124, 126, 132, 146, 151, 194 belonging to Cl2). The second rule states that “If country cluster = OECD,
event chain 1 = release, event chain 2 = fire, and event chain 3 = not available, then the class of fatalities
is ≥ Cl2” (supporting accidents n. 122 and 130 belonging to Cl2).

Another accident of particular interest is n8, whose single class rule includes only event chain
information, stating that “If event chain 2 = rupture and event chain 3 = fire, then the class of fatalities is
Cl1” (supporting accidents n. 44 and 75). From a complementary perspective, the union of classes-based
rules enriches the sorting with the rule stating that “If country cluster = non-OECD, event chain
1 = human error, and event chain 3 = fire, then the class of fatalities is ≥ Cl2” (supporting accidents n.
137 and 142 for Cl2 and 225 for Cl3). The reason for the sorting disagreement between the two types of
rules is apparent, with the single class-based rules using only event chains as conditions, while the
union of classes ones include the country cluster too in the syntax of the rule.

These examples confirm how the information provided by the rules-based model can support
a refined understanding of which accidents caused certain impacts and how closely they can be
compared to the ones currently under scrutiny.
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Table 4. Set of energy accidents sorted in hazard classes with the single class-based and union of classes-based classification model.

New
Accident

Country
(a1)

Energy Chain
Stage (a2)

Infrastructure
Type (a3)

Event Chain
1 (a4)

Event Chain
2 (a5)

Event
Chain 3

(a6)

Event
Chain 4

(a7)

Event
Chain 5

(a8)

Single Class-Based Rules Union of Classes-Based Rules

Standard
Scheme

Advanced
Scheme

Standard
Scheme

Advanced
Scheme

n1 OECD Extraction Offshore
Platform

Mechanical
failure Rupture Fire NA NA 1 1 ≤ Cl1, ≤ Cl2,

≥ Cl2, ≥ Cl3
1

n2 Non-OECD Extraction Onshore well Human error Mechanical
failure Release Fire NA 3 3 ≥ Cl2, ≥ Cl3 3

n3 OECD DOM/COM Building
commercial Release Fire NA NA NA 1 1 ≤ Cl1, ≤ Cl2,

≥ Cl2
1

n4 Non-OECD DOM/COM Building
public Rupture Explosion Fire NA NA 2 2 ≤ Cl2, ≥ Cl2 2

n5 OECD Processing/Production Processing
plant Loss of power Overpressure Explosion Fire NA 1 1 ≤ Cl1, ≤ Cl2 1

n6
Non-

OECD Transport Ship marine Human error Fire Explosion NA NA 1, 2 2 ≤ Cl1, ≤ Cl2 1

n7 OECD Storage Storage
facility Explosion Fire NA NA NA 2, 3 3 ≤ Cl2, ≥ Cl3 3

n8 Non-OECD Storage Storage
facility Human error Rupture Fire NA NA 1 1 ≤ Cl1, ≤ Cl2,

≥ Cl2
2

n9 OECD Transport Pipeline Overpressure Explosion NA NA NA No rule 1 * No rule 1 *

n10
Non-

OECD Transport Pipeline Overpressure Release Fire NA NA 1 1 ≤ Cl1, ≤ Cl2 1

* = result from valued closeness relation.
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The model can also handle sorting challenges when there is not an exact match between the rules
and the conditions of the accidents to classify, as the ninth accident (n9) shows. In this case, there is
in fact no exact rule that matches the conditions of the accidents and no class can be provided with
the standard scheme. However, the sorting model can still provide a classification with activation
of the valued closed relation classification, meaning that there are rules that in this case match part
of such conditions and are used to trigger the sorting. There is one rule of single class type, which
states that “If country cluster = OECD, energy chain stage = transport, event chain 1 = release, event
chain 2 = explosion, and event chain 3 = not available, then the class of fatalities is Cl1” (supporting
accidents n. 51, 78, 96). In this case, 4 out of the 5 conditions are matched by the accident, since the first
event chain is overpressure and not a release as indicated in the rule. There is also a union of classes
rules that complements the sorting, whose structure is “If country cluster = OECD, infrastructure type
= pipeline, event chain 1 = other, event chain 2 = explosion, and event chain 3 = not available, then the
class of fatalities is ≤ Cl2” (supporting accident n. 201 for Cl1 and 131 for Cl2, respectively). Moreover,
in this case, 80% of the conditions are covered by the rule as the first event chain is overpressure and
not the category “other” as indicated in the rule. This type of accidents should obviously be flagged
clearly to the DM, making him/her aware that the sorting is based on partial correspondence between
the rule in ENSAD and the accident under analysis. The advanced classification scheme offers a unique
sorting based on the highest scorenet, which is a measure of the strength of the support for the most
certain class allotment (for details of score calculation see Błaszczyński et al. [50]). The class assigned
by this scheme is used to discuss the hazard of these four test accidents. In this set of accidents, the
advanced scheme classification provides the same results for 8 out of 10 of the accidents, showing a
high degree of consistency. The use of more than one sorting approach is a main advantage of this
model, as it allows to highlight the accidents that require specific attention, in cases when there is
disagreement between the assigned classes.

4. Discussion

Risk and resilience assessments are inherently dependent on reliable, credible, and consistent data,
as well as on the effective use of such information. This research has demonstrated one possible use of
the records on energy accidents in the natural gas sector, collected by the PSI since the 1990s, combined
with an MCDA method to complement the capabilities of risk and resilience assessments in this area
and beyond. The analysis of the ENSAD dataset with rough sets represents a first-stage confirmation
of the objective integrated relevance of gathering energy accident data following a consistent and
transparent procedure. For this purpose, the data was structured on information about where the event
happened (i.e., country cluster), in which stage of the energy chain, which infrastructure was affected,
the sequence of events (i.e., event chain), and the type of impact in terms of fatalities. Our analysis
demonstrated that each accident attribute has a different capacity to distinguish the number of fatalities,
with primary relevance for the first event chain step, followed by the type of infrastructure and then
country cluster.

The main contribution of this research is the classification model for assigning energy accidents into
preference-ordered classes, according to their concern level in terms of potential fatalities. The model
is built upon decision rules, pieces of information that unveil the hidden objective relationships in
ENSAD within the timeframe 1970–2016 that are unique for energy accidents causing a certain range
of fatalities. These decision rules can be used to classify new accidents to assess their level of concern.
We applied this model to a set of realistic (i.e., not part of the model development) accidents to show
its decision support potentials. The structure of the rules, composed of information blocks in the form
of “if (condition), then (classification to hazard class x)” makes it easy for the user to understand the
reasons why a certain class is assigned, backed up by the objective accidents data consistently stored
in ENSAD. Particular advantages of the proposed models are the combination of rules of different
typologies (i.e., single class and union of classes) as well as classification schemes (i.e., standard and
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advanced). The classifications are supported by multiple facets as they analyze the ENSAD information
with several algorithms, adding further credibility and stability assessment to the sorting.

The validation with the 10 energy accidents highlighted a key contribution of this rough sets model
and the application of MCDA methods in general, which is to aid developing a deeper understanding
of the multiple criteria-based problem, in this case by means of the activated rules for each energy
accident. Rough sets models have already been tested with experimental validation in several other
application areas, showing the benefit of using knowledge and information reported in the learning
dataset and applied to new alternatives or to alternatives that were not part of the set. Some examples
include the location selection of waste incinerator [55], budget allocation [54], location selection for
waste management plants [56], and green synthesis of nanoparticles [57].

Even if the cross-validation does not prove satisfactory for this model, the experimental validation
confirms the value of the model as one of its main strengths and added value is that it provides a
classification of new accidents to hazard classes based on ENSAD accidents that have been consistently
assigned to that fatality class. The classification scheme applied in this model computes scores of
support for different hazard classes, and the one with the greatest support (i.e., number of accidents), is
the one assigned by the model. It is then up to the analyst to evaluate each rule in support of a certain
sorting by looking at the individual accidents that triggered it and see how applicable they are to the
accident under assessment. This is the reason why rough sets is considered a decision support method
that aids the analysis of a complex problem, but does not replace the analyst or the decision maker [48].

Two topics that could receive further exploration are the quality of classification and strength of
the decision rules. Possible solutions include (i) increasing the discrimination potential of attributes by
adding values (e.g., more refined countries grouping and not only OECD and non-OECD as proposed
by [2]) and (ii) introducing additional attributes (e.g., distinction of accidents according to the typology
and topography of the area the accident took place).

The main focus of our rough sets analysis has been on the explanation of the relationships hidden
in the ENSAD dataset by developing a classification model that can be seen as a “glass box” in the spirit
of transparency and intelligibility which are key advantages of MCDA methods [48]. This research has
demonstrated that decision support systems can make efficient and effective use of information of
different typology and provide risk and resilience analysts with transparent and justifiable evaluations
of the alternatives under consideration. In order to advance pragmatic policy-making support, this
type of integrative research is more needed than ever and interdisciplinary teams will be a necessity
rather than simply an advantage in the near future.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/12/21/4178/s1.
S.1: ENSAD attributes for information table. S.2: ENSAD datasets used for rough sets analysis. S.3: Predictive
validation based on cross-validation. S.4: Single class-based rules. S.5: Union of classes-based rules. S.6:
Classification of accidents with single class-based and union of classes-based rules.
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