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Abstract: This paper investigates the application of a method to find the cost function or the weight
matrices to be used in model predictive control (MPC) such that the MPC has the same performance
as a predesigned linear controller in state-feedback form when constraints are not active. This is
potentially useful when a successful linear controller already exists and it is necessary to incorporate
the constraint-handling capabilities of MPC. This is the case for a wave energy converter (WEC),
where the maximum power transfer law is well-understood. In addition to solutions based on
numerical optimization, a simple analytical solution is also derived for cases with a short prediction
horizon. These methods are applied for the control of an empirically-based WEC model. The results
show that the MPC can be successfully tuned to follow an existing linear control law and to comply
with both input and state constraints, such as actuator force and actuator stroke.

Keywords: model predictive control (MPC); constrained linear systems; controller tuning; wave energy
converter (WEC)

1. Introduction

Control design for wave energy converters (WECs) is a critical component in the broader
WEC design problem. A WEC is generally designed to achieve a desired performance goal,
such as maximization of electrical power transferred to the grid while minimizing levelized cost
of energy and should survive in extreme ocean environments, under various design constraints.
This imposes numerous engineering challenges, comprising environmental characterization, modeling,
failure detection, and fatigue analysis. Active control strategies are usually developed to achieve
the desired goals, but they are significantly related to the WEC design process in that they alter the
overall WEC dynamics in terms of system performance and development costs. Additionally, various
types of constraints resulting from WEC design or environmental conditions must be considered when
developing control systems.

A number of control design approaches and frameworks have been applied to WECs in the past.
In regular waves, maximum energy is captured when the natural frequency of the WEC device is close
to the dominant frequency of the incoming wave [1]. At resonance, the velocity of the WEC oscillator is
in phase with the excitation force induced by the wave. Complex conjugate (CC) control or impedance
matching described in the frequency domain enables this resonance and leads to the theoretically
optimal device velocity guaranteeing maximum energy extraction [2]. In realizing this CC control
strategy in practice, the main challenge to be overcome is that its general solution is noncausal and thus
requires a good prediction for the upcoming wave force. Since the requirement under real irregular sea
conditions is that the device should behave as if resonant over the wide range of frequencies, Budal
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and Falnes [3] proposed the so-called latching control in which the motion of the device is stalled at
the extremes of its movement and released when its phase is in good agreement with the wave force.
In Korde [4] an efficiency improvement using latching control was demonstrated by conducting an
experimental study. In order to expand the efficiency range on either side of the resonant frequency,
reactive control [5] was suggested by dynamically adjusting the WEC parameters for maximum
energy absorption. Korde [4] showed that the damping coefficient could be adjusted by velocity
feedback to maximize permissible energy absorption. In Scruggs et al. [6] the optimal controller was
found by solving a nonstandard linear quadratic Guassian optimal control problem. Various other
control algorithms have been also applied, including dynamic programming [7], pseudo-spectral
methods [8], fuzzy logic control [9], shape-based control [10], moment matching [11], and model
predictive control [12].

Among practical control considerations, model predictive control (MPC) possesses a unique
feature, in that it takes into account constraints from the beginning of the controller design process [13].
Conversely, the analysis of the stability, robustness, and sensitivity of MPC is more intricate to handle in
contrast to linear feedback controllers [14]; these factors often act as the main hurdles for implementation
of MPC in real-life applications. Moreover, it is often difficult to find an appropriate cost function for
MPC optimization. The vast experience gained from linear controller design can provide many benefits
for MPC design and tuning the MPC such that it has the same behavior as a well-designed linear
controller when constraints are not active is an attractive approach. Several researchers have attempted
to link MPC to an existing linear control law to improve performance due to the constraint-handling
capabilities of MPC. In Maciejowski [15] a procedure was presented to construct an observer-based
MPC realization of an existing output-feedback controller such that the MPC is equivalent to the given
controller when all constraints are inactive. This methodology was extended in Foo and Weyer [16]
using a reduced-order observer and state augmentation. Cairano and Bemporad [17] presented
approximate solutions for the weight matrices of MPC that behaves as a given linear controller in
state-feedback or linear quadratic regulator form in case constraints are inactive by recasting the
problem as a convex optimization problem with linear matrix inequality constraints. The global
stability of the closed-loop system in the presence of constraints is also guaranteed. Kong et al. [18]
further generalized this kind of inverse matching by regarding MPC as a desirable upgrade of an
existing control law for performance improvement. Introducing a confidence parameter A € [0,1],
Kong et al. [18] sought how to move smoothly from the existing controller (A = 0) to the full MPC
strategy (A =1).

In a wave energy perspective, CC control guarantees maximum power absorption with the
limitation of noncausality such that a prediction for the wave elevation or the excitation force
must be known or sufficiently accurately estimated in advance. In practice, CC control based
on prediction is often accomplished via a velocity tracking MPC-this has the added benefit of
handling constraints. On the other hand, a feedback controller such as a proportional-integral
(PI) controller circumvents this issue and requires only signals/sensors which are readily available,
but with the lack of constraint-handling capabilities. Hence, in this paper, we incorporate the linear
feedback control designs within MPC frameworks to take into account constraints in an optimal
manner by revisiting the inverse matching method in Cairano and Bemporad [17]. A new analytical
solution is also proposed that immediately generates optimal weight matrices in MPC for a short
prediction horizon case. This approach has a number of advantages compared to the current WEC
control strategies. First, predictions of future wave elevation or excitation force are not required
for power maximization. The MPC behaves exactly as the predesigned linear controller when
constraints are inactive, while satisfying the constraints in an optimal manner when they are active.
When constraints are active, MPC acts as a supervisory controller to prevent constraint violations.
For a WEC, these constraints can be torque limits of the generator or displacement limits of a linear
piston or stage. Second, this approach, differently from all the previous approaches for MPC for WECs
(see, e.g., [19]), is in a standard MPC form and thus can be implemented by the software already available
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(e.g., the Model Predictive Control Toolbox from MathWorks). These are significant practical advantages,
as the structure of the controller is simpler and implementing such a solver for real-time control is far
from trivial.

To investigate the potential of this approach, we consider a single body one degree-of-freedom
(IDOF) WEC. The WEC plant model was estimated from real experimental data including power
take-off system dynamics and was described in a linear transfer function form with the control
force as the input and the velocity of the buoy as the output [20]. Based on this model, an MPC
matching problem is solved to yield proper weight matrices. The MPC designed via the proposed
approach behaves exactly as a given PI controller when the control system is unconstrained.
When constraints are applied, the MPC retains the general impedance matching dynamics, but also
avoids constraint violation.

2. Methods

2.1. Controller Matching Problem

In this section, an MPC algorithm is derived that will behave exactly as the predesigned
state-feedback controller when constraints are inactive. In Cairano and Bemporad [17], it was
shown that a linear state-feedback controller can be realized via MPC with specially tuned weight
matrices—this approach is referred to as MPC inverse matching. For example, a PI controller is a
simple example of state feedback control, so we can apply the inverse matching method to obtain an
MPC that exactly behaves as the PI controller when constraints are inactive.

In MPC formulation, the following finite-horizon optimal control problem is solved at each
sampling time [13,17]

V(x(k),u(k)) = ILII1(1kI; x'(N|k)Px(N|k)+

N—1 (1)
¥ (ilk) Qx(ilk) + o' (ilk)Ru(ilk),
i=0

where the notation ' denotes the transpose of a vector, such that

x(i+1lk) = Ax(ilk) + Bu(ilk), i=0,..,N—1, 2)
Xpin < J2(i[K)|| < Xmax, i=0,..,N, 3)

Upin < ||[u(ilk)|| < tpax, i=0,..,N—1, (4)
x(0]k) = x(k), ®)

where Equation (2) is the discrete-time state space equation of the plant model, x € R" is the state vector,
u € R™ is the control input vector, A and B are the state matrix and the input matrix, respectively,
N is the prediction horizon, U(k) = [u/(0[k) ... w'(N — 1]k)] € RN™ is the vector to be optimized,
and V : R" — Ry, is the value function. The matrices P € R"*", Q € R"*", and R € R™*™ are the
weight matrices that should be tuned. Assuming that the current state x(k) is given, the finite horizon
optimal control problem Equation (1) can be recast to the following quadratic program (QP) with
respect to U (k)
1&1(1151 u’ (k)HU (k) + 2x' (k)FU (k) (6)
such that
GU(k) < A+ Ax(k), (7)
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where G € R7*N™" A < R1, and A € R7*" are the problem constraints. Also, the following new
matrices are defined in Equation (6)

H=R+S50S, F=T'0S, (8)

where S is the N-steps state reachability matrix, 7 is the N-steps free evolution matrix

B 0 .0 A
AB B ... 0 A2

S= ) ) . s T=1 .|, )
AN-1B AN-2B . B AN,

and Q € RNnxXNn R c RNmxNm ap0 block-diagonal matrices

0
R 0 ... 0
0Q 0 ... 0 o R o
Q=1: i i R= (10)
0 o o o Do
R
0 0 0o P 0 0

When constraints are not active, the QP Eqaution (6) has the unconstrained optimal solution
U* (k) which is obtained by solving the Karush-Kuhn-Tucker optimality conditions [21]:

u*(0[k)
us(k) = : = —H 'F'x(k), (11)
u*(N —1]k)

where the superscript * denotes the optimal values. The MPC command at step k then picks up only
the first move such that
uvpe (x(k)) = u* (0/k) = —TH 'F'x(k), (12)

where T = [I,, 0 ... 0] with the m by m identity matrix L.
Now, we consider a predesigned linear controller in a state feedback form

uLN(k) = Kx(k), K € R™*", (13)
Then, the objective is to find weight matrices P, Q, and R in Equation (1) such that
—TH'F =K (14)

holds, where K is given.

In brief, once the weight matrices P, Q, and R are found that satisfy Equation (14) given K, then the
MPC with the cost function Equation (1) behaves as the linear controller of the form Equation (13), when
the constraints are not active. The weight matrices P, Q, and R used in H and F in Equations (8)—(10)
can be calculated using a numerical optimizer such that the error norm of the matrix TH™!F + K
is minimized from Equation (14). Cairano and Bemporad [17] reformulated Equation (14) into the

following convex problem:
, (15)

min [((R+S8'QS)K+8'QT
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where
K

K(A + BK)
K= : . (16)

K(A +BK)N !

with a constraint that the Hessian matrix H = R + S§'QS is positive definite. It is noted that
in Equation (16) the elements of K are arbitrary except for the first one because only the first element is
picked up for the MPC command, which was not explicitly stated in Cairano and Bemporad [17]. In this
paper, the optimization problem Equation (14) is tackled by solving it using a numerical optimizer
YALMIP [22] to obtain optimal weight matrices P, Q, and R. Also, the MPC signal is easily generated
using the standard MPC block available in the Model Predictive Control Toolbox of MathWorks [23],
and hence, there is no need to implement a custom optimizer to solve the MPC problems in real time.
In the MPC Toolbox the KWIK algorithm [24] is used to solve the QP problem and a prediction model
is given by a linear function of the current state and the control/excitation input increments [23]. In the
next section, as a special case when N = 2 we derive an analytical solution for P, Q, and R.

2.2. An Analytical Solution When N = 2

The optimization problem Eqaution (14) is not trivial to solve because of the existence of the
inverse matrix H™! and the non-invertibility of the matrix I'. However, for systems with a one-step
prediction (N = 2) and a single control input (m = 1), it is possible to derive an analytical solution that
immediately generates optimal weight matrices P, Q, and R. A short prediction horizon is sometimes
useful because it requires less computational loads and the control performance is independent of the
prediction horizon in an unconstrained application. Furthermore, in the area of power electronics and
drive, almost all applications use a very short horizon due to the requirement for high speed [25,26].
Since this analytical solution enables immediate calculations for the weight matrices, it is extremely
useful in applications in which the weight matrices need to be updated in real time.

When N = 2, the matrices S, T, Q, and R in Equations (9) and (10) are simplified as
s o 7o [l o2 Y x-

R O

S = 0 R

AB B 0 P ’ 17)

Here, R is a scalar if a single control input (i.e., m = 1) is considered. Accordingly, the matrices H
and F' in Equation (8) become

H— R+ B'QB +B'A'PAB B’A'PB
N B'PAB R+B'PB|’
(18)
B B'QA + B’A’PA2
B'PA?
Then, the inverse of the 2 x 2 matrix H is directly calculated as
H!— l R + B'PB —B’'A’PB (19)
" D | -B'PAB R+B'QB-+BA'PAB|’

where the determinant D is given by

D = (R + B'QB + B'A'PAB)(R + B'PB) — B'A'PBB'PAB. (20)
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When m =1, we have I' = [1 0] in Equation (12) and should find the matrices Q, R, and P for
given A, B, and K that satisfy the following equation:

~TH 'F =K=
1 / / I'ATPA2 A/ IPA2 21)
—6[(R+BPB)(B QA +B'A’PA”) — B'A'PBB'PA”].
For brevity, consider the following 1 x 2 gain matrix K (which can be easily extended to general
1 X n cases):
K = [K; K] (22)

Then, since any matrices Q, R, and P satisfying Equation (21) can be solutions, let us first simplify
Equation (21) by choosing P such that B'P = 0. General solutions to B'P = 0 are given by

P=(I1-(B)"B)E, (23)

where (B')* is the Moore-Penrose generalized inverse of B and E is an arbitrary 2 X 2 matrix. However,
for the use of MPC formulation, P must be positive definite so we select the matrix Z as & = y(I —
(B’)"B’) with a positive constant -y such that

P= (1 (B)"B)? = (1 (B)B). 24)

Although Equation (24) provides an exact solution to B'P = 0, the matrix (I — (B’)"B’) is always
rank deficient and P in Equation (24) is always positive semi-definite, not positive definite. It is for this
reason that one additional term is added to Equation (24):

P =(I-(B")"B) +pl (25)

where p is a small positive number such that B'P is sufficiently close to the zero matrix.
Once the matrix P is obtained by Equation (25), B'P = 0 (approximately) holds and the
determinant D becomes
D = R(R+B'QB + B'A'PAB). (26)

Then, the main Equation (21) to be solved for Q and R is simplified as
RK +B'Q® + ¥ =0, (27)

where ® £ A + BK and ¥ £ B’A’PA(A + BK). For the sake of simplicity, let us assume Q to be
diagonal and decompose each matrix as

Q1 0 A An
Q = , K = K K , A - 7
[0 Q Ky K] Ay Ap
(28)
By P Dy
B = b = Y=Y ¥
[Bz , By Dy’ Y1 Y2,

and R is a scalar because only one control input is considered. Substituting Equation (28) into
Equation (27) yields the following equation:
R
b4
Q| =- [ 1] : (29)

Q2

K1 Bi®11 Ba®y
Ky Bi®P1p By®Pyp
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There are three unknowns (R, Q1, Q2) and two equations, and hence, there exist infinite number
of solutions. For brevity, let us assume Q> = #Q; with some constant 77 and Equation (29) becomes

Ky Bi®u +#By®y| (R _ |1 (30)
Ky B1®1p +1BaP| | Q1 k4
Then, the solution to Equation (30) is easily found as
-1
R _ _|Ki Bi®u+1By®xy b4 (31)
Q1 Ky  B1®1p + 11B2P2 b e

There are two requirements that must be satisfied such that the obtained matrices P, Q, and R
are valid solutions to Equation (14): the invertibility of the coefficient matrix in Equation (30) and the
positive definiteness of the Hessian matrix H = R + S’ QS. First, the invertibility of the coefficient
matrix in Equation (30) is guaranteed when its determinant is nonzero such that

By (K1®12 — Kr®11)
By (Ky®yp1 — K1 P2p)

n# (32)

or
By (A12K; — A1Ky)

By (A1 Ky — ApKy)

n# (33)

with the definition ® = A + BK. Here, it is assumed By (A Ky — A2pK7) # 0. If Bo(An Ko — AnKy) =0,
we assume Q1 = 77Q; instead and follow the same procedure with the assumption By (A;pK; — A11Kp) # 0.
If Bo(A21 Ky — ApKy) = 0and By (A1pKy — A11K3) = 0 are satisfied simultaneously, there is generally
no solution to Equation (30). Next, for the positive definiteness of the Hessian matrix H = R + S8'QS
we simplify the matrix H in Equation (18) with the condition B'P = 0 by

_ |R+B'QB+B'A'PAB 0

H 34
0 R (34)

Hence, we obtain two conditions for the requirement H > 0 as
R>0, R+B'QB =R+ B2Q; + B3Q, > —B/A’PAB. (35)

It is noted that —B’A’PAB is a negative constant since P is positive definite. Then, two free
parameters 77 and 7 can be determined that satisfy the two requirements Equations (33) and (35).
In general, by picking up a large v and making —B’A’PAB negative with a large magnitude, we
can easily find 1. Hence, we have obtained the explicit solutions for P, Q, and R that are given in
Equations (25) and (31), respectively.

3. Results: Application to a WEC

The MPC matching problem handled in the previous sections can be applied to a WEC control
problem, assuming that a successful feedback controller is already in hand. First, we solve the MPC
matching problem and verify the solutions via numerical simulations with the estimated WEC model.
Next, constraints on the actuator force and the output are considered.

A model-scale heaving point absorber designed at Sandia National Laboratories (for details
see [27]) was considered for the case study discussed herein. This device was designed tobe 1/17th a
full-scale equivalent WEC. Figure 1 and Table 1 show a diagram of the WEC device and its relevant
physical parameters.
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PTO
Float
0.2‘0 m
|
0.16 m
v
)
- 0.53m
R=0.35m—>]
R =08m ——>]

Figure 1. Study device diagram.

Table 1. Model-scale wave energy converter (WEC) physical parameters.

Parameter Value

Rigid-body mass (float & slider), M (kg) 858
Displaced volume, V (m?)  0.858
Float radius, r (m)  0.88
Float draft, T (m)  0.53
Water density, p (kg/m3) 1000
Water depth, /1 (m) 6.1
Linear hydrostatic stiffness, S (kN/m)  23.9
Infinite-frequency added mass, me (kg) 782
Max vertical travel, |Zmax| (m) 0.6

The WEC device is modeled in a transfer function form as follows:

Gols) = 0.0002371s> + 0.01783s2 — 0.002049s 36)
OV 4 424753 4 54.5352 + 389.25 + 62.92

which relates the applied actuator control force (input) and the resulting velocity of the WEC device in
vertical motion (output). Note that this model does not include the excitation dynamics, which are
not necessary for the control approach consider here. (The excitation force model is used only in the
simulation of the controller.) To simplify the problem, let us replace the fourth-order model (36) with
the following second-order approximation:

~0.0007293s
T s241.385+16.2°

Gs(s) 37)

The simplified model (37) was obtained by the MATLAB command tfest over the frequency
range of interest f € [0.1 1.0] (Hz) assuming that the energy in ocean waves lies within a relatively
narrow frequency band (periods of 1 < T < 10 s). Note that, as previously stated, the WEC considered
here is a model scale device, which is tested in a wave basin. As such, the frequency range of interest is
higher than that of an open ocean device. From the second-order model (37), the natural frequency and
the damping ratio are found by w,, = v/16.2 = 4.025 (rad /s) = 0.641 (Hz) and { = 1.38/ (2w;,) = 0.171,
respectively. Hence, the resonant frequency is located at wy+/1 — 2% = 3.905 (rad/s) = 0.622 (Hz),
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which is an approximate value because of the existence of the zero in the transfer function. At the
resonant frequency, the output is in phase with the input, and for small input frequencies, 90 degrees
phase lead occurs while 90 degrees phase lag occurs for large input frequencies. Figure 2 shows the
Bode diagram of the original model (36) and the simplified model (37), which shows a good agreement
between the two models. Hence, we proceed to MPC design based on the simplified model (37).

&
12

5
o
T
/
/
|

Magnitude (dB)
&
o
T
|

[}
© ©
oo

Y
(&)}
T
/)

|

Phase (deg)
o
T
|

-45 -|— Original \\ |

— Simplified S~

.90 - j i i i i i L]
107 10°

Frequency (Hz)

Figure 2. Bode diagram of the original (fourth order) and simplified (second order) models.
First, we transform Equation (37) to a state-space equation:
x(t) = Acx(t) + Beu(t), y(t) = Cex(t), (38)

where x(t) = [z(t) v(t)]’ is the state vector, z(t) and v(t) are the vertical position and velocity of the
WEC device, respectively. The coefficient matrices of this system are

» Ce= [0 1]‘ (39)

0 1 0
Ac= l—16.2 —1.38]’ B. = lo.0007293

The state Equation (38) is described in continuous time but it must be converted to a discrete-time
equation for MPC formulation:

x(k+1) = Ax(k) + Bu(k), y(k) = Cx(k), (40)

where - (k) is a quantity at the time step k and x(k) = [z(k) v(k)]’, and

_ - , C=[01]. (41)

l 0.9968 0.01971]

1.444 x 107
—0.3193  0.9696

1.437 x 107>

where the sampling interval Ts = 0.02 s is assumed.
Let us assume that the incoming wave is of JONSWAP type spectrum with a peak period of
3.5 5, a significant wave height of 0.254 m, and a peak enhancement factor of 1. Then, with the plant
model Equation (37) or Equation (40), the optimal PI controller that maximizes the energy extraction
from the wave is given by
2(k) ] @)

upi (k) = Kx(k) = [K1 K] o(k),

where the gain matrix is calculated as

K = [K; K] = [2389 —3213], (43)
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which extracts maximum energy from the incoming wave. The tuning of the PI controller is suboptimal
but very close to optimum [27].

3.1. Numerical Simulations

To examine the performance of this controller, we design an MPC that behaves exactly as the PI
controller Equation (42) for three different scenarios (see Table 2 for a summary of the scenarios) and
evaluate that controller in numerical simulations.

1. The system has no constraints.
2. The system has a nearly hard constraint on its position.
3. The system has a hard constraint on its control input and a soft constraint on its position.

Table 2. Constraints and prediction horizons (N) of three scenarios.

Scenario Constraint ECR Values N

1 No constraint N/A 2

2 Nearly hard constraint on position € [—0.10.1]  0V.minECR = 0V.maxECR=2 x 10~% 50

3 Hard constraint on control input € [—1500 1500] MV.minECR = MV.maxECR = 0 50
Soft constraint on position € [—0.10.1] 0V.minECR = OV.maxECR = 0.01

More specifically, in Scenario 2 both 0V.minECR and 0V.maxECR values (0V denotes the output
variable) for the position used in the MPC Toolbox are set as 2 x 10~4, where an equal concern for the
relaxation (ECR) value is zero for a completely hard constraint and a larger ECR value means a softer
constraint. When constraints are imposed, the value function Equation (1) is rewritten as

V(x(k),u(k)) = Ig[l(l](l‘)l x'(N|k)Px(N|k)+

N—1 (44)
Y ¥/(ilk)Qx(ilk) + ' (i]k)Ru(i|k) + pe?,
i=0

where y is the weight for constraints and e (> 0) is another free optimization variable to be determined.
By default,
i =10%max {P;j,Qi; Ry}, (45)

where W; ; (W = P, Q, R) is the (i, /) component of the matrix W [23]. The constraints Equations (3) and
(4) change to

Xmin + €k nﬁin < ||x(l|k)|| < Xmax + eerJr(mxf i= O/ ey N/ (46)
Upin + €V < |lu(ilk)|| < tmax + €xVigar, i=0,..,N—1, (47)
where V., Vi, Vi, and Vi, are the ECR parameters, each of which has the command OV.minECR,

0V.maxECR, MV.minECR, and MV.maxECR, respectively in the MPC Toolbox. It is easy to see that when
an ECR value is zero, the constraint is a hard one that cannot be violated. The larger ECR value is,
the softer the constraint is.

In Scenario 3 both MV.minECR and MV .maxECR values (MV denotes the manipulated variable) are
set as 0 for the control input and 0V.minECR = OV.maxECR = 0.01 are selected for the position. For all
scenarios, the control horizon is equal to the prediction horizon N. It should be mentioned that the
parameters are scaled to improve numerical accuracy.
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3.1.1. Scenario 1: System with No Constraint

First, we consider an unconstrained case and apply the analytical solution with N = 2. Since there
is no constraint in the system, the performance will be independent of the selection of N [23]. The matrix
P is calculated by (25) with ¢ = 10° and p = 10~°:

999,899 —10,050
— 7 4 4
[—10, 050 101 ] (48)
Next, the matrices Q and R are calculated by (31) with 7 = 1:
—49,339 0
= ! R = 22,149. 4
Q [ 0 —49,339|’ 149 (49)
Then, the resulting gain matrix —~TH'F’ is calculated as
—TH'F = [2388.9999 — 3012.9999], (50)

which is very close to the original gain K. Also, it is easily checked that the product of P and the matrix
B in Equation (41) has the norm of the order of 107, which validates the accuracy of the analytical
solution.

Figure 3 compares the time histories of the control forces, positions, power absorptions,
and cumulative average power obtained by the PI controller and the MPC. The power absorption was
defined as the product of the control force and the velocity of the device at each time. Note that the
convention of this paper is to show absorbed power as negative power. Because the obtained gain is
very similar to the original one, there are only minor differences between the two controllers. For the
control forces, positions, and power absorptions (shown in the left-hand pane of Figure 3), only the
time window [125,150] (s) is displayed for a clear view. The average power capture is —42.74 W for
both controllers. The right-hand pane in Figure 3 shows the cumulative average power. Again, we can
see that the two controllers perform quite similarly.
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Figure 3. Comparison of the control forces, positions, power absorptions, and cumulative average
power obtained by the proportional-integral (PI) controller and the model predictive control (MPC)
(scenario 1).

3.1.2. Scenario 2: System with Nearly Hard Constraint on the Position

In this scenario, a nearly hard constraint (OV.minECR = 0V.maxECR =2 X 1074y is imposed on the
position of the WEC device and the prediction horizon N = 50 is assumed to anticipate constraint
violation early enough to allow corrective action. A ‘nearly” hard constraint means that the constraint
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is quite well satisfied on the whole but a small constraint violation is allowed. In practice, a completely
hard constraint should not be imposed on the output because the plant is always subject to disturbance
and QP infeasibility is inevitable. We apply the numerical solver “YALMIP”’ to yield the following

weight matrices:
b [0.44 —28]’

—28 1788
(51)
0- —10,160,795 0 R=167.
0 3,338,885
Then, the resulting gain matrix —TH'F’ is calculated as
—~TH 'F = [2389.05 —3212.99), (52)

which is very close to the original gain K. More explicitly, the norm of the matrix difference TH 'F' + K
is calculated as 0.052.

Now, we impose a nearly hard output constraint such that the position should not exceed 0.1 m in
both directions. Figure 4 compares the time histories of the control forces, positions, power absorptions,
and cumulative average power obtained by the unconstrained PI controller and the MPC with the
output (position) constraint. When the constraint becomes active, the control force has a sudden rise
to satisfy the constraint and is released immediately after the constraint turns to inactive. As with
almost any system, such behavior is undesirable in a WEC, as it may excite high frequency structural
responses and create unnecessary loading. This sudden rise can be relaxed by allowing soft constraints
or introducing a longer prediction horizon as will be shown in the next subsection. It is shown that the
constraint on the position is satisfied quite accurately. Also, as expected, a constrained system extracts
less energy due to the limited motion. However, the reduction in power to satisfy the constraint is
quite small: the unconstrained PI controller captures the power of —42.74 W on average for one period
of the incoming wave while the constrained MPC captures the power of —39.51 W.
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Figure 4. Comparison of the control forces, positions, power absorptions, and cumulative average
power obtained by the PI controller and the MPC (scenario 2).

3.1.3. Scenario 3: System with Hard Constraint on the Control Force and Soft Constraint on
the Position

As the final scenario, we apply a hard constraint (MV.minECR = MV.maxECR = 0) on the control
force and a soft constraint (OV.minECR = 0V.maxECR = 0.01) on the position. In general, control force
and position constraints cannot always be simultaneously satisfied, and so the position constraint
is usually softened for QP feasibility [23]. Bacelli and Ringwood [28] extended the discussion of the



Energies 2019, 12, 4158 13 of 18

force and position constraints for WECs and proposed sufficient conditions for the satisfaction of both
constraints for a given hydrodynamic model and set of sea conditions.

Figure 5 compares the time histories of the control forces, positions, power absorptions,
and cumulative average power obtained by the unconstrained PI controller and the MPC with the
hard and soft constraints. Three different MPCs with these constraints are shown; these controllers are
summarized in Table 3. In addition to the basic MPC (“MPC (N = 50)”), there are two additional MPCs
that attempt to reduce the large spikes observed in the control force. The first of these (“MPC (N = 50,
[MV| < 50)”) limits the slew rate, that is the rate change of the control force. We can see from Figure 5
that this controller partially reduces the peaks in controller force, but has a rather large effect on power
absorption. A third MPC (“MPC (N = 200)”) uses 200 prediction steps instead of 50. This controller
avoids the large spikes in control force with only a small effect on power. In fact, the “MPC (N = 200)”
controller has better power absorption than “MPC (N = 50).”
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Figure 5. Comparison of the control forces, positions, power absorptions, and cumulative average
power obtained by the PI controller and the MPC (scenario 3).

Table 3. Comparison of results for Scenario 3.

Prediction .. Power
Name Steps Slew Rate Limit Absorbed [W]
PI N/A N/A —42.7
MPC (N = 50) 50 (None) —37.6
MPC (N = 50, [MV| < 50) 50 IMV| < 50 -22.8
MPC (N = 200) 200 (None) —41.2

3.2. Experimental Tests

The obtained MPC algorithms are now applied to real experiments. The experiments were
conducted in the US Navy’s Maneuvering and Sea Keeping (MASK) basin, operated by the Naval
Surface Warfare Center, Carderock Division (NSWCCD) in Bethesda, Maryland. The data collected are
publicly available at https:/ /mhkdr.openei.org. For the details about the test device, hardware setup,
and the wave basin, refer to Coe et al. [27]. As before, two controllers are considered: PI controller
and MPC that approximates the PI controller. The WEC system is disturbed by the same JONSWAP
type wave used for the numerical simulations. Two identical wave trains were run: one in which the
PI controller was used and one in which the MPC was used. A sampling interval Ts = 0.001s and a
prediction horizon N = 2 are used for the controllers and the commanded gains for the PI controller
are selected as

K = [K; Kp] = [2400 —3200]. (53)
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In order to check the control performance a metric Kpjr was calculated by estimating the K; and
Kp gains back from the data and comparing them with the actual gains of the PI controller used for the
test. This metric is defined by

. PR 2
K;—K Kp—K
Keir = 1—\/( IKI I) +(PKp P) x 100, (54)

where K; and Kp are the integral and proportional gains, respectively, estimated from the data and

Ky and Kp are the commanded gains shown in Equation (53). The gains were estimated by dividing
the measured control force by the measured position and velocity and then picking up the constant
optimal values that minimize the fitting error. The estimated gains are

K = [K; Kp] = [2388 —3213]. (55)

The error norm between Equations (55) and (53) is calculated as ||[K — K|| / || K|| = 0.0044. Also,
the metric (54) is calculated as 99.36%, which shows good agreement between the two controllers.

The top-most plot in Figure 6 displays the time history of the control signals generated by the PI
controller and the MPC, which verifies that the MPC behaves as the PI controller on the whole. In order
to ensure that the two controllers (PI and MPC) were influenced by the same external wave, the wave
elevation data collected from the PI controller and MPC experiments are plotted in the frequency
domain and compared in Figure 7. In the inset, the wave elevation data in time domain are plotted for
reference. The wave elevation was measured by a sensor that was located far enough from the buoy
so that any radiation effect from the buoy could be ignored. Figure 7 shows that the two controllers
were indeed under the quite similar wave forces. In the middle plot in Figure 6, the time history of the
velocities of the WEC device obtained by the PI controller and the MPC is depicted. Since the control
signal of the MPC closely emulates the PI control signal and the two controllers were influenced by the
same wave force, the two velocities are also similar. The lower plot in Figure 6 displays the time history
of the power captured by using the PI controller and the MPC. The average power (P) captured by the
PI controller and the MPC is —35.21 W and —34.05 W, respectively, which also shows the performance
difference of the two controllers is small (3%).
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Figure 6. Time history of control forces, velocities, and power captures obtained by PI controller
and MPC.
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Figure 7. Wave elevation in frequency domain and in time domain (inner box) when PI controller and
MPC were tested.

Now, we consider constrained MPCs such that the control signal is saturated with given
upper/lower limits (assuming hard constraints). It will also be shown that the power captured
by the constrained MPC is reduced only by a small amount when compared with the unconstrained
MPC even though a very short prediction horizon N = 2 is used. Let us say that U,y is the maximum
control magnitude that can be reached by the actuator. Since the maximum control magnitude is found
to be about 1200 N from the top-most plot in Figure 6, let us constrain the system by forcing U, to be
900, 600, and 300 N.

As with the previous example, experiments were run with the same wave input; in each of the
four cases, the maximum control input was set to Uy = [1200 900 600 300] (N). The top-most plot
in Figure 8 shows the control forces obtained by these unconstrained and constrained MPCs. It is
clear that the control forces successfully stay within the desired range. In the middle plot in Figure §,
the resulting velocities are plotted for the unconstrained and constrained MPCs. With the constrained
MPCs, the magnitude of the resulting velocity is greater than the unconstrained case because the
saturated control force cannot fully regulate the velocity. The lower plot in Figure 8 displays the
time history of the power captured by using the unconstrained and constrained MPCs. As expected,
when the constraint is active, less power is captured.
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Figure 8. Control forces, velocities, and power obtained by unconstrained and constrained MPCs.



Energies 2019, 12, 4158 16 of 18

However, Table 4 indicates that the power captured by the constrained MPCs is worse only by
a small percentage when compared with the unconstrained MPC. In the Table 4, the average power
capture obtained using the unconstrained and constrained MPCs is listed and the power loss in
percentage is also presented in the parenthesis compared with the unconstrained case. For example,
when the control force is constrained with Uy, = 600 which corresponds to 50% of the maximum
control magnitude obtained when the unconstrained MPC is applied, the power capture is —31.91W,
which is worse only by 6.28% compared with the unconstrained case (—34.05 W) despite the fact that a
very short horizon N = 2 is employed.

Table 4. Power captured (W and % change from unconstrained) by using unconstrained and
constrained MPCs.

Controller Power Capture [W] % Reduction

Unconstrained —34.1 0
Upnax = 900N (75%) —33.8 0.7
Upnax = 600N (50%) —-31.9 6.3
Uyax = 300N (25%) —-23.5 31.0

4. Conclusions

This paper studies the application of MPC tuning methods via inverse matching to a WEC,
such that the MPC behaves exactly like a predesigned linear controller when constraints are inactive.
With the PI controller and device model obtained from real experimental data, the MPC behaved
exactly as the PI controller when constraints are not active. When constraints are active, the MPC can
be designed to follow them to the desired degree. A predesigned causal predictionless controller was
easily realized via MPC technique with specially tuned weight matrices. This controller requires only
signals/sensors that are readily available such as position/velocity. By incorporating it within MPC
frameworks, the ability to incorporate constraints is successfully maintained. In addition to numerical
simulations, experimental results show both accuracy and feasibility of this method. Also, all the
results were readily implemented by the commercial software package (Model Predictive Control
Toolbox of MATLAB).

This approach provides an attractive solution for WEC control, as it exploits the advantages of
both a feedback-based controller for impedance matching and MPC for constraint handling. Practically
speaking, such a controller can be implemented for a WEC within a gain-scheduling regime in order
to deal with nonlinearities (i.e., by designing linear controllers and subsequent MPCs for specific sea
states). Future work should include MPC matching for a multi-input, multi-output (MIMO) system
and application to a MIMO WEC system where multiple devices in an array are coupled electrically
with one another.
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