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Abstract: In this paper, a simplified model predictive current control (MPCC) is proposed for the
primary permanent-magnet linear motor traction system in subway applications, which is fed by one
two-level voltage-source-inverter (VSI). Based on the deadbeat concept, the reference voltage vector
is calculated to eliminate the difference between the measured and reference currents in the next
sampling period. Due to the discrete feature of the VSI, the reference voltage vector usually cannot be
provided. Hence, the distance of a voltage vector is defined, and the voltage vector with the shortest
distance is selected as the optimal one, which is called as the shortest distance principle in this paper.
According to the shortest distance principle, the distribution of the reference voltage vector is divided
into seven sectors, and the optimal voltage vector can be easily determined considering the location
of the reference voltage vector. As a result, the computation cost is significantly reduced. However,
the performances of MPCC are not affected by this simplification. The equivalence between the
proposed and conventional MPCCs is proved in theory. All the theoretical analyses are verified by
experimental results.
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1. Introduction

Recently, the linear motor has attracted more attentions in subway applications due to the
following advantages: (1) the direct production of thrust force; (2) smaller turning radius and less
requirement of cross-sectional area of a tunnel; (3) better climbing ability and faster acceleration; and
(4) less maintenance and lower noise [1–5]. Compared with the linear induction motor, which has
been already employed in some subway projects [6,7], the permanent-magnet linear motor (PMLM) is
always gone in actual subway applications in spite of its high efficiency and high power factor [8–10].
One important reason is the expensive construction cost since the permanent-magnets or armature
windings must be equipped in the stator (rail) of the conventional PMLM. However, this problem can
be solved by the primary PMLM (PPMLM) since both the permanent-magnets and armature windings
can be mounted in the mover of PPMLM [11–15]. Generally, existing topologies of PPMLM can be
divided into three main categories: double-salient type [11], flux-switching type [12–14], and flux
reversal type [15].

Compared with PPMLM itself, the control has received less attention while it is important for the
successful application of PPMLM in subway fields in the future. Due to a fast dynamic response and
the simple structure, the direct thrust force control (DTFC) has attracted more attentions for PMLM [16].
In order to enhance the reliability, a fault-tolerant DTFC is proposed for the flux reversal PMLM with
open-end windings [17]. To cope with current sensor failures, an improved DTFC scheme is proposed
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for PPMLM using only a single direct current (DC)-link current sensor [18]. Comparing with DTFC,
the average switching frequency of model predictive control (MPC) can be significantly reduced while
the MPC also inherits the advantages of the fast dynamic response and simple structure [19]. However,
the MPC of PMLM has not received its deserved attention. That is why the MPC is investigated for
PPMLM in this paper.

Finite control set MPC (FCS-MPC) is the original form of MPC, which takes full advantage of
the discrete feature of voltage source inverter (VSI) [20,21]. Firstly, the values of control variables are
predicted by each candidate voltage vector (VV) according to the discrete-time state-space model.
Secondly, a cost function is designed by involving the errors between the reference and predictive
values of control variables. Finally, the optimal VV is determined by minimizing the value of the
cost function. According to the selected control variables, various FCS-MPCs have been proposed.
In motor drives, model predictive torque/thrust control (MPTC) and model predictive current control
(MPCC) are two main categories. In MPTC, stator flux and electromagnetic torque/thrust force are
selected as the control variables [22]. However, these control variables usually cannot be measured
directly, and they are often observed by mathematical methods. Besides, a weighting factor is usually
required in cost function since the selected control variables have different units. In MPCC, direct- and
quadrature-axis currents are selected as the control variables, which can be measured directly and no
weighting factor is required [23].

As is known, high computation cost is the common challenge of FCS-MPC. For example, seven
current predictions and same cost function calculations are required to determine the optimal VV for
three-phase motor drives [24]. Furthermore, Nn VVs will be evaluated for an N-level n-phase VSI.
Obviously, the computation cost is significantly increased. The heavy computation cost will require
longer calculation time, and then reduces the average switching frequency of the VSI, especially in
multi-phase motor or multi-motor drives. Consequently, some methods have been proposed to reduce
the computation cost of FCS-MPC. In [25], only the VVs with single switch state changed are considered
for a five-leg dual-motor system. Compared with the conventional FCS-MPC, the amount of candidate
VVs is reduced from 31 to 10. In [26], several predefined constraints are designed and the candidate
VVs are reduced from 64 to 16 in the six-phase VSI supplied system. In the induction motor drive with
asymmetrical dual three-phase winding, only 12 largest active VVs and zero VVs are considered [27].
However, the system performances using aforementioned simplified FCS-MPCs are usually affected
since these modified solutions are not equivalent to the original ones. An equivalent simplified MPTC
is proposed for PM motor drives, in which the deadbeat concept is involved and the candidate VVs are
reduced from 7 to 4 [28].

However, to the best of authors’ knowledge, there is no literature to present an equivalent
simplified MPCC for not only rotary permanent-magnet synchronous motor (PMSM) drives but also
PMLM drives. The main contribution of this paper is to propose an equivalent MPCC for the PPMLM
traction systems in subway applications, in which a shortest distance principle is designed and the cost
function is eliminated. As a result, the computation cost can be further reduced comparing with the
modified MPTC in [28] while the performances of PPMLM traction systems are not affected. It should
be emphasized that the proposed MPCC is novel for not only PMLM drives but also rotary PMSM
drives, and the PPMLM traction system is just taken as an example to present the proposed MPCC
in this paper. This paper contains six sections. The studied PPMLM traction system is described
in Section 2. The two MPCCs are introduced in Section 3. Equivalence analysis of two MPCCs is
conducted in Section 4. The theoretical analysis is verified by experiment results in Section 5. Finally,
some conclusions are drawn in Section 6.

2. Studied PPMLM Traction System

The studied PPMLM is composed of a primary mover and secondary stator as illustrated in
Figure 1. Both the permanent-magnets and armature windings are equipped in movers. As is shown
in Figure 1, the middle of stator teeth is defined as the d-axis with the maximum PM flux linkage.
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Meanwhile, the primary position is defined as the q-axis where PM flux linkage is minimum (zero). τs is
the stator pole pitch, and the distance between two axes is τs/4. When the positive permanent-magnet
flux linkage in phase-A winding is maximum, the corresponding primary position θe is defined as zero.

According to the previous definition, the voltage equation of the studied PPMLM in dq coordinate
system is expressed as:  ud = Rsid +

dψd
dt −

2πvm
τs
ψq

uq = Rsiq +
dψq
dt + 2πvm

τs
ψd

, (1)

with {
ψd = ψPM + Lsid
ψq = Lsiq

, (2)

where Rs and Ls are the mover resistance and inductance; ψPM is the permanent-magnet flux linkage;
ud, uq and id, iq are the synchronous voltage and current components, respectively; ψd and ψq are the
synchronous flux linkage components; and vm is the mover speed.
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Figure 1. Structure of the studied primary permanent-magnet linear motor (PPMLM).

The thrust force Fe can be deduced as:

Fe =
3πψPMiq

τs
. (3)

The motion equation is designed as:

Fe − Fl = mt
dvm

dt
+ Bvm, (4)

where Fl is the load force; mt is the weight of PPMLM; B is the friction coefficient.
The studied PPMLM is fed by a two-level VSI, which is illustrated in Figure 2. The VSI consists of

six power switches. The switch state sx of xth leg is defined as:

sx =

{
1 if xth leg upper switch is ON
0 else

(x = a, b, c). (5)
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The VV of the VSI is defined as [sa sb sc]. All candidate VVs of VSI are presented in Table 1.

Table 1. Voltage vectors (VVs) of voltage source inverter (VSI).

VV U0 U1 U2 U3 U4 U5 U6 U7

sa sb sc 000 100 110 010 011 001 101 111

3. Two MPCCs for PPMLM

To clarify the description, the conventional and proposed MPCCs were defined as MPCC-I and
MPCC-II in this paper, respectively. To simplify the analysis, two assumptions were given as follows:
(1) the variation of mover speed vm could be neglected in one sampling period Ts; (2) the phase
inductance Ls, the phase resistance Rs, and the peak value of PM flux linkage ψPM are considered
unchanged during the entire operation.

3.1. MPCC-I

MPCC-I for the PPMLM traction system is shown in Figure 3, which contains two main modules:
current model prediction and cost function calculation. In this paper, the average primary position θ̂e

was used in the model prediction, which is determined by θ̂e= (πvmTs/τs)+θe. The primary position
θe can be detected by the linear encoder.
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(1) Current model prediction:

In MPCC-I, synchronous currents of PPMLM are selected as control variables to calculate their
predictive values. Substituting (2) into (1) gives: ud = Rsid + Ls

did
dt −

2πvm
τs

Lsiq
uq = Rsiq + Ls

diq
dt + 2πvm

τs
Lsid +

2πvm
τs
ψPM

. (6)

According to the discrete time state-space model and Euler’s prediction formula, the current
differential can be simplified as:

di(k)
dt
≈

ip(k+1)−im(k)
Ts

. (7)

In this paper, the superscripts p and m indicate predictive and measured quantities; the symbol k
indicates the kth sampling period.

Substituting (7) into (6) gives the predictive currents:{
ipdn(k + 1) =K1imd (k)+K2imq (k) + Gudn(k)
ipqn(k + 1) = −K2imd (k)+K1imq (k) + Guqn(k)−IPM

n= 0 . . . 7, (8)

with  K1 = 1− RsTs
Ls

, K2 = 2πvm
τs

Ts

G =Ts
Ls

, IPM = 2πvmTs
τsLs

ψPM
, (9)

[
udn(k) uqn(k)

]T
= T3s/2rudc[san sbn san]

T, (10)

where ipdn(k+1) and ipqn(k+1) are the predictive synchronous currents by using the VV Un, respectively.
T3s/2r is the transformation matrix from abc coordinate system to d-q coordinate system; udc is the dc
bus voltage; udn and uqn are the synchronous components of the VV Un, respectively. The measured
synchronous currents imd (k) and imq (k) can be calculated from the measured phase currents (ima ,imb ,imc )
and the primary position θe(k).

(2) Cost function calculation:

According to (8), the cost function of MPCC-I is designed as:

Jn =
[
i∗d
(
k+1) − ipdn(k+1)]

2
+

[
i∗q
(
k+1) − ipqn(k+1)]

2
, n =0 . . . 7 , (11)

where i∗q(k+1) is the reference q-axis current. According to the difference between the reference speed
v∗m(k) and the actual value vm(k), i∗q(k+1) can be obtained from the automatic speed regulator (ASR).
i∗d(k+1) is the reference d-axis current, which is set as 0. The optimal VV Uop is selected to minimize Jn:

Jop = min
0≤n≤7

Jn. (12)

3.2. MPCC-II

MPCC-II for the PPMLM traction system is shown in Figure 4, which contains two main modules:
deadbeat prediction and sector determination.
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(1) Deadbeat prediction:

It is assumed in this module that the reference currents i∗d(k+1) and i∗q(k+1) can be achieved
in next sampling period. In other words, the predictive synchronous currents ipd(k+1) and ipq(k+1)
should be equal to i∗d(k+1) and i∗q(k+1) , respectively. Substituting these equivalent relationships into
(8) gives the reference synchronous voltages u∗d(k+1) and u∗q(k+1) :[

u∗d(k)
u∗q(k)

]
= M−1(

[
i∗d(k + 1)
i∗q(k + 1)

]
−P

[
imd (k)
imq (k)

]
+ Q), (13)

with

P =

[
K1 K2

−K2 K1

]
M =

[
G 0
0 G

]
Q =

[
0

IPM

]
. (14)

However, the reference synchronous voltages u∗d(k + 1) and u∗q(k+1) usually cannot be achieved
since the candidate VVs of VSI are discrete as listed in Table 1.

(2) Sector determination:

To simplify the analysis, the distance of the VV Un is defined as Ln:

Ln =
√
(u∗d − udn)

2 + (u∗q − uqn)
2, n = 0, 1 . . . 7. (15)

According to (13) and (15), the selection of the optimal VV Uop becomes to find the VV with
the shortest distance, which was defined as the shortest distance principle in this paper. According
to (10), seven Park transformations from abc coordinate system to dq coordinate system (udn, uqn)
must be implemented to determine the optimal VV. To reduce the computation burden of coordinate
transformation, dq components are expressed by αβ components:[

u∗d
u∗q

]
=

[
cos θ̂e sin θ̂e

− sinθ̂e cos θ̂e

] u∗α
u∗β

, (16)

[
udn
uqn

]
=

[
cos θ̂e sin θ̂e

− sinθ̂e cos θ̂e

][
uαn

uβn

]
, n = 0, 1 . . . 7. (17)

Substituting (16) and (17) into (15) gives:

Ln =
√
(u∗α − uαn)

2 + (u∗β − uβn)
2, n = 0, 1 . . . 7, (18)
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where uαn and uβn are the α- and β-axis components of the VV Un, respectively. The values of uαn and
uβn are discrete, and they are listed in Table 2. According to (18), only one inverse Park transformation
is implemented from dq coordinate system (u∗d, u∗q) to αβ coordinate system (u∗α, u∗β): u∗α

u∗β

 = [
cos θ̂e − sin θ̂e

sin θ̂e cos θ̂e

][
u∗d
u∗q

]
. (19)

Comparing (18) with (15), the computation burden of (18) is significantly reduced. Comparing
with the MPTC [28], the prediction amount has reduced from 4 to 1 by using MPCC-II, and the
computation burden can be further reduced.

According to (18), a new cost function is developed as:

λn =
[
(u∗α − uαn)

2 + (u∗β − uβn)
2], n = 0, 1 . . . 7 . (20)

The optimal VV Uop is selected to minimize λn:

λop = min
0≤n≤7

λn. (21)

Table 2. VVs in α-β coordinate system.

VV sa sb sc [uα, uβ]

U0 0 0 0 0
U1 1 0 0 [2/3udc, 0]
U2 1 1 0 [1/3udc,

√
3udc/3]

U3 0 1 0 [−1/3udc,
√

3udc/3]
U4 0 1 1 [−2/3udc, 0]
U5 0 0 1 [−1/3udc, −

√
3udc/3]

U6 1 0 1 [1/3udc, −
√

3udc/3]
U7 1 1 1 0

Based on the shortest distance principle, the distribution of the reference voltage vector U* was
divided into seven sectors (Sector 0–6), as illustration in Figure 5. Un was chosen as the optimal VV
when the reference voltage vector U* was located in Sector n. Especially, the central hexagon with
radial length udc/3 is Sector 0, and one zero VV was chosen by minimum switching actions principle.
To reduce the computation burden, a fast determination method of the optimal VV was designed
for MPCC-II.

Firstly, the phase angle ϕ and the magnitude U* of the reference voltage vector [u∗α u∗β] are
determined as:  U∗ =

√
(u∗α)

2+(u∗β)
2

ϕ =arctan(u∗α/u∗β), ϕ ∈ [0,2π)
. (22)
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Secondly, the direction code M of the reference voltage vector [u∗α u∗β] is determined according to
the value of ϕ:

M =



1, 0 ≤ ϕ < π/6 and 11π/6 ≤ ϕ < 2π
2, π/6 ≤ ϕ < π/2
3, π/2 ≤ ϕ < 5π/6
4, 5π/6 ≤ ϕ < 7π/6
5, 7π/6 ≤ ϕ < 3π/2
6, 3π/2 ≤ ϕ < 11π/6

. (23)

Thirdly, the relationship between the reference voltage vector [u∗α u∗β] and the central hexagon as
shown in Figure 5 is determined by:

H =

 0, U∗cos(ϕ− M−1
3 π

)
≤

udc
3

1, U∗cos(ϕ− M−1
3 π)>udc

3
. (24)

According to (24), the reference voltage vector [u∗α u∗β] locates in the central hexagon if H = 0;
otherwise, the reference voltage vector [u∗α u∗β] locates outside of the central hexagon.

Finally, the optimal VV Uop is determined as:

Uop =

{
U0, H = 0
UM, H = 1

. (25)

4. Equivalence Analysis

The difference between two MPCCs is how to determine the optimal VV. For MPCC-I, the optimal
VV is determined by the cost function (11), which can minimize the value of (11). As is listed in Table 1,
there are eight VVs. If two zero VVs are considered as same, the number of candidate VVs can be
reduced to 7. Therefore, seven different current groups [ipdn(k+1) , ipqn(k+1) ] can be predicted, and the
cost function (11) will be calculated seven times. In some degree, MPCC-I is similarly like classical
PWM. On the other hand, the reference synchronous voltages u∗d(k+1) and u∗q(k+1) are calculated by
(13), and then the optimal VV can be determined by the location of the reference synchronous voltages
in Figure 5. In fact, MPCC-II has referred to the SVM theory. However, both MPCCs can select the
same optimal VV, and the equivalence of two MPCCs was analyzed in this section.
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(8) is rewritten as: [
udn(k)
uqn(k)

]
= M−1(

[
ipdn(k + 1)
ipqn(k + 1)

]
−P

[
imd (k)
imq (k)

]
+ Q). (26)

Comparing (13) with (26), the voltage error can be calculated by:[
ud
∗
− udn(k)

uq
∗
− uqn(k)

]
= M−1

[
id∗(k + 1) − ipdn(k + 1)
iq∗(k + 1) − ipqn(k + 1)

]
. (27)

Consequently, the initial form (11) can be simplified as:

Jn = G2
{[u∗d − udn(k)]

2 + [u∗q − uqn(k)]
2
}, n =0, 1 . . . 7. (28)

According to (15) and (18), (28) can be rewritten as:

Jn = G2
{[u∗α − uαn(k)]

2 + [u∗β − uβn(k)]
2
}, n =0, 1 . . . 7. (29)

According to (20) and (29), two cost function formulas can be expressed as:

Jn = G2λn, n = 0, 1 . . . 7. (30)

According to (30), MPCC-I and MPCC-II will select the same optimal VV. Hence, both MPCCs
are equivalent.

5. Experimental Validation

To verify the effectiveness of the proposed MPCC, the hardware should be able to measure the dc
bus voltage, two phase currents and the primary position. There was no special requirement for the
software. According to the hardware/software requirements, a test bench was designed as illustrated in
Figure 6, and the parameters of the studied PPMLM are listed in Table 3. A dSPACE DS1103 controller
was adopted to execute the control algorithm. DC bus voltage was measured by a voltage sensor
(LEM LV25-P, LEM, Geneva, Switzerland). Phase currents are sensed by two current sensors (LEM
LA55-P/SP50, LEM, Geneva, Switzerland). The primary position was detected by the linear encoder.
The VSI was manufactured by Infineon, and its switch states were determined by the dSPACE DS1103
controller. The sampling frequency was 20 kHz. To compare the two MPCCs, several experiments
were carried out.

Table 3. Parameters of PPMLM.

Parameter Value

Mover width, wm (mm) 160
Mover pole pitch, τm (mm) 26
Stator pole pitch, τs (mm) 24

Mover tooth width, wmt (mm) τm/4
Mover slot mouth width wmsm (mm) τm/4

Mover slot width wms (mm) τm/4
Slot width (Under PM), wms (mm) τm/4

Mover height, hm (mm) 35
Mover yoke height, hmy (mm) 10

Magnet height, hpm (mm) 0.9 × hm
Magnet width, wpm (mm) 5

Air gap length, g (mm) 2
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Table 3. Cont.

Parameter Value

Stator tooth width, wst (mm) 1.6 × τm/4
Stator teeth yoke width, wsty (mm) 2 × τm/4

Stator tooth height, hst (mm) 10
Stator yoke height, hsy (mm) 13

Stator height, hs (mm) 23
Coil spacing, λ1 (mm) (2 + 1/2) × τs

Phase spacing, λ2 (mm) (5 + 1/3) × τs
Number of turns per coil, Ncoil 114

Phase resistance (Ω), Rs 3
Stack factor 0.95

Rate current Irms (A) 3
Rated speed (m/s) 1.2

Maximum load (N) 150
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5.1. Steady-State Experiment

In this experiment, the steady-state performances of two MPCCs were compared. The reference
speed was respectively set as 0.3 m/s and 0.6 m/s, and experimental results are respectively illustrated
in Figures 7 and 8. According to the experimental results, speed, synchronous currents, and phase
currents were compared in Table 4. It can be found in Table 4 that MPCC-I and MPCC-II had nearly
the same performance regarding speed, synchronous currents, and phase currents.

In the steady-state operation, the implement times of MPCC-I and MPCC-II in one sampling
period were 12 µs and 9 µs, respectively. Hence, the computation burden could be reduced by 25% if
MPCC-II was employed.
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Table 4. Comparison of steady-state performances.

Operation Condition Standard Deviation
THD of Phase Currents

Ref. Speed MPCC Speed (m/s) id (A) iq (A)

0.3 m/s MPCC-I 0.00367 0.0219 0.0789 4.09%
MPCC-II 0.00369 0.0223 0.0783 4.07%

0.6 m/s MPCC-I 0.00528 0.0225 0.106 4.22%
MPCC-II 0.00534 0.0229 0.108 4.24%

5.2. Speed Response Experiment

In this experiment, the speed response performances of two MPCCs were compared. The reference
speed was changed between 0.3 m/s and 0.6 m/s. The experimental results are shown in Figures 9 and 10.
The integral time absolute error (ITAE) was introduced in this paper to evaluate the transient
performances. The rising time of MPCC-I and MPCC-II were respectively 0.1649 s (ITAE value:
0.00743 m·s) and 0.1650 s (ITAE value: 0.00746 m·s), while the falling time were respectively 0.1388 s
(ITAE value: 0.00402 m·s) and 0.1391 s (ITAE value: 0.00400 m·s). The dynamic performances of
synchronous currents and phase currents were also the same in two MPCCs. Hence, both MPCCs
nearly demonstrated the same speed response performance.

5.3. Thrust Force Response Experiment

In this experiment, the thrust force response performances of both MPCCs were compared.
The reference thrust force was increased from −100 N to 100 N, and then returned to −100 N. Figure 11
shows the experimental results. It can be found in Figure 11 that both MPCC-I and MPCC-II had
fast thrust force response. The rising and falling time of MPCC-I were respectively 4.43 m·s (ITAE
value: 0.00538 N·s2) and 3.30 m·s (ITAE value: 0.00339 N·s2) while those of MPCC-II were respectively
4.39 m·s (ITAE value: 0.00542 N·s2) and 3.31 m·s (ITAE value: 0.00341 N·s2). Hence, MPCC-I and
MPCC-II had nearly the same thrust force response.
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5.4. Comparison of VV Selection

Both MPCCs run at the same time in this experiment but only the command signals of MPCC-II
were implemented by the VSI. In other words, the command signals of MPCC-I were generated only
for comparison instead of implementation. The reference speed was changed between 0.3 m/s and
0.6 m/s. Experimental results are illustrated in Figure 12, in which the numbers 0–7 respectively
represent U0–U7. It can be found in Figure 12 that both MPCCs always selected the same VV no matter
in transient- or steady-state operations. Therefore, the equivalence of both MPCC was well verified.
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5.5. Motor Parameter Variation

It is well known that MPCC is sensitive to the accuracy of the motor modeling, unmatched
parameters, uncertainties, and disturbances. Therefore, compensation actions are usually necessary
if high-performances are required. However, the purpose of this paper was to provide a simple but
equivalent MPCC. Hence, there were no compensation actions taken in this paper. Some details about
parameter compensation of MPCC can be found in [23]. In this subsection, the simplification and
equivalence of MPCC-II were evaluated considering the motor parameter variation. As an example,
150% of the rated mover inductance and 50% of the rated mover resistance were considered in
this experiment, and the experimental results are illustrated in Figures 13 and 14. According to the
experimental results, the performances of both MPCCs are compared in Tables 5 and 6. It can be found
in the two previous tables that MPCC-I and MPCC-II still had nearly the same performances.
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Energies 2019, 12, x FOR PEER REVIEW 15 of 17 

 

  

  
(a) (b) 

Figure 13. Steady-state performances with inaccurate mover inductance: (a) MPCC-I and (b) MPCC-
II. 

Table 5. Performance comparison with inaccurate mover inductance. 

Operation Condition Standard Deviation 
THD of Phase Currents 

Ref. Speed MPCC Speed (m/s) id (A) iq (A) 

0.6 m/s 
MPCC-I 0.00553 0.0240 0.110 4.47% 
MPCC-II 0.00549 0.0241 0.111 4.45% 

Table 6. Performance comparison with inaccurate mover resistance. 

Operation Condition Standard Deviation 
THD of Phase Currents 

Ref. Speed MPCC Speed (m/s) id (A) iq (A) 

0.6 m/s 
MPCC-I 0.00581 0.0228 0.121 4.35% 
MPCC-II 0.00577 0.0224 0.118 4.36% 

 

  

  

  

  
(a) (b) 

Figure 14. Steady-state performances with inaccurate mover resistance: (a) MPCC-I and (b) MPCC-II.



Energies 2019, 12, 4144 16 of 17

6. Conclusions

For the reduction of the computation burden, a simple but equivalent solution was proposed
for the MPCC of PPMLM traction systems. In the proposed MPCC, a continuous reference VV was
predicted, and the optimal VV was determined according to the shortest distance principle instead
of the cost function. Though the performances of the proposed MPCC were not enhanced in terms
of precision, robustness, and dynamics, the computation cost could be significantly reduced, which
achieved the target of this paper. The simplification and the equivalence of the proposed MPCC were
verified by experimental results. Although the proposed MPCC was designed for PPMLM originally,
it is also novel for the rotary PMSM. From the viewpoint of the implementation, there is no difference
between the PMLM and the rotary PMSM.
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