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Abstract: This paper proposes an optimal energy management approach for a grid-connected
microgrid (MG) by considering the demand response (DR). The multi-objective optimization
framework involves minimizing the operating cost and maximizing the utility benefit. The proposed
approach combines confidence-based velocity-controlled particle swarm optimization (CVCPSO) (i.e.,
PSO with an added confidence term and modified inertia weight and acceleration parameters), with
a fuzzy-clustering technique to find the best compromise operating solution for the MG operator.
Furthermore, a confidence-based incentive DR (CBIDR) strategy was adopted, which pays different
incentives in different periods to attract more DR participants during the peak period and thus
ensure the reliability of the MG under the peak load. In addition, the peak load shaving factor (PLSF)
was employed to show that the reliability of the peak load had improved. The applicability and
effectiveness of the proposed approach were verified by conducting simulations at two different
scales of MG test systems. The results confirm that the proposed approach not only enhances the
MG system peak load reliability, but also facilitates economical operation with better performance in
terms of solution quality and diversity.

Keywords: energy management system; microgrid; demand response; multi-objective; particle
swarm optimization; fuzzy-clustering

1. Introduction

At present, power systems face major issues such as the intermittent supply of power sources due
to the growing interest in renewable energy sources and energy storage systems as well as concerns
regarding climate change. To this end, additional power plants can be constructed to support the
network on the generation side [1], however, conventional generators involve high installation and
operating costs due to the materials and transmission logistics as well as high pollutant emissions. To
deal with the intermittent nature of renewable energies, researchers have proposed energy storage
systems (ESSs) that can be charged or discharged by the system operator to preserve the power
balance of the network [2]. Due to the high costs related to not only the system operating under
suitable conditions, but also maintenance over a long service life, the integration of an energy storage
system into a network may incur additional costs. Such technical and economic challenges as well as
environmental concerns have inspired studies on a suitable scheme for system operators.

Demand-side management (DSM) [3] is a robust approach that regulates the demand of customers
through various programs such as building upgrades, financial support, incentives, and behavioral
changes via education. DSM can be classified into two types: energy efficiency and demand response
(DR). Energy efficiency is usually considered as a perpetual load curtailment [4] whereas DR focuses on
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load elasticity, which can be considered as a temporary load reduction. In other words, DR encourages
customers to reduce their power demand through certain incentive programs or education. DR can be
further classified into price-based DR (PDR) and incentive-based DR (IDR). In PDR, consumer prices
vary with the hours of operation in accordance with the supply-side cost; for example, prices are high,
medium, and low for peak, off-peak, and low-peak periods, respectively [5]. IDR is a program in which
participating consumers are awarded incentives according to the amount of power curtailed; this can
be classified into four types: direct load control, load curtailment, demand bidding, and emergency
demand reduction [6]. Recent years have witnessed an increase in the use of microgrids (MGs). Many
researchers have employed MGs to test the DR performance in terms of how it can resolve the power
supply uncertainty as well as economic and environmental problems [7–9]. A MG can be defined
as a small-scale distribution network comprised of various renewable energy systems (RES) such as
photovoltaic (PV) systems and wind turbines (WTs) as well as conventional generators such as thermal
generators and diesel engines (DEs), energy storage systems (ESSs), and fuel cells. In general, it can be
connected with the main grid to exchange power, or it can operate in an island mode in emergencies or
remote locations [10].

Considerable effort has been devoted toward the energy management of a MG by adjusting the
DR. In [11–14], significant effects in terms of reducing the operating cost by incorporating DR was fully
analyzed. In [11], a genetic algorithm was adopted to show the effectiveness of the DR in reducing
the operating cost of a MG. In [12], a hierarchical energy management system was proposed to deal
with the uncertainty of renewable sources and loads for the optimal operation of a MG. In [13], a
multi-agent system was used to optimize the operation of a MG including the DR strategy. In [14], the
optimal operation of a multi-MG system incorporating DR was investigated. A dynamic DR program
especially for customers was designed in [15,16] to maximize the benefits. In [15], a smart transactive
energy framework for grid-connected multi-home MGs was proposed on the basis of the artificial bee
colony algorithm. In [16], the optimal management of a hybrid MG was proposed by considering both
PDR and the internal power market via the particle swarm optimization (PSO) algorithm. The DR
strategy was considered to cope with the multi-objective problem by minimizing operating costs while
maximizing the benefits, when optimizing energy management problem [17–20]. The multi-agent
system was also employed in [17] to solve the economic dispatch problem with the DR by using the
distributed constraint optimization scheme. In [18], a game-theory-based multi-objective dynamic
economic dispatch problem was solved using an advanced interactive multi-dimensional modeling
method. The economic dispatch problem was also addressed in [19], which considered the pollutant
emissions, DR, and renewable energy sources by using the model predictive control algorithm. In [20],
a stochastic multi-objective based optimal energy management considering DR was solved on the basis
of the weighted sum technique with the fuzzy satisfying method. The authors in [21,22] demonstrated
the effectiveness of DR in reducing both the operating cost and pollutant emissions. In [21], stochastic
linear programming was used to solve the energy management problem with the presence of real time
DR and a multiple power market. In [22], a multi-objective based energy management problem with
DR was solved by the augmented epsilon constraint method.

The above-mentioned studies involving the DR strategy mainly focus on reducing the operating
costs, pollutant emissions, and increasing the benefits. In this regard, the effectiveness of the DR
scheme has been demonstrated through various methods. Although economic and environmental
issues are significant aspects of MG operation, challenges related to the peak load should also be
considered. By primarily reducing the peak period load, the MG operator can ensure the reliability of
the MG in emergencies. Therefore, there is an evident need to alleviate the risk of the peak period load
while ensuring economical and environmentally-friendly operation when considering the optimal
energy management problem of a MG.

This study emphasized an optimal energy management approach with an advanced CBIDR
strategy that was implemented to enhance the reliability of the MG by mainly decreasing the peak
load. The validity of our proposed strategy was verified by comparing the PLSF value to quantify the
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benefits of our scheme. By incorporating CVCPSO with the fuzzy-clustering technique, the proposed
approach becomes capable of finding the optimal operating solution of the MG.

The major contributions of this paper can be summarized as follows:

• The proposed optimal energy management implementing CBIDR could improve the reliability of
the peak load when compared to the existing IDR strategy and increase the economic benefits
of the MG, since the operating costs, utility benefit, and the stability of the peak load are
effectively considered simultaneously. Therefore, the optimal operating solution for the MG is
more reasonable and feasible.

• A peak load shaving factor (PLSF) was adopted to present the effectiveness of our proposed
strategy in peak load curtailment. The proposed factor helps the MG operator to determine
conditions when decision-making, during which DR strategy is more advantageous in peak load
reduction and thus enhances the reliability.

• A confidence-based velocity-controlled PSO (CVCPSO) with the recommended fuzzy-clustering
technique was also formulated in the proposed approach for the MG system. By using
CVCPSO, the solution quality and diversity of the optimal Pareto set was improved with
respect to the conventional PSO and the best compromise solution can be obtained through the
fuzzy-clustering technique.

Therefore, it was noted that the proposed approach presents an optimal energy management
strategy with CBIDR for a grid-connected MG system in order to ensure the economic and reliable
operation; in this regard, the proposed approach provides a more reasonable and flexible solution to
the MG operator to consider the economic aspect and the risk of peak load simultaneously.

The remainder of this paper is organized as follows. Section 2 provides an overview of the
grid-connected MG model. Section 3 introduces the proposed IDR strategy. Section 4 deals with the
formulations of the multi-objective optimization problems. Section 5 describes the formulations of the
CVCPSO algorithm and fuzzy-clustering technique. In addition, it summarizes the overall process
of optimal energy management. Section 6 presents and analyzes the simulation results of the two
different systems. Finally, Section 7 concludes the paper.

2. Overall Scheme of Grid-Connected Microgrid

2.1. Grid-Connected MG Model

The overall structure of the proposed grid-connected MG is shown in Figure 1 and consists of
a photovoltaic (PV) system, wind turbine (WT), diesel engine (DE), and load. Clearly, most of the
power sources considered in the MG are micro-power sources, in other words, the aggregation of small
actual entities that cover various forms of power generation such as renewable energy generation
(PV system and WT) and non-renewable generation (DE). To link the renewable and non-renewable
energy, several power conversion systems could be requested by the MG [23]. Although converters
can be synchronized with the grid to control the grid current and maximum power tracking point, the
efficiency of the converter was not considered in our work because the DC/AC or DC/DC conversion
efficiency is negligible in the MG system [24]. Moreover, in the MG system, various types of customers
are assumed to be linked with an advanced metering infrastructure that provides the information
required from the MG operator.
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Figure 1. Grid-connected microgrid (MG) system.

2.2. Modeling of WT

Wind power, an environment-friendly energy source, is the electric power generated by the
rotation of turbine blades mounted on towers at a considerable height. As wind is probabilistic in
nature, a WT has no control over its power generation. Thus, the power generated by a WT is solely
dependent on the wind speed and tower height. Specifically, depending on the height at which the
blades are mounted, wind speed can be converted from the anemometer height to the desired hub
height in accordance with the following power law equation [25]:

v2

v1
= (

h2

h1
)
α

(1)

where α is the power law exponent defined by certain parameters (i.e., wind speed, terrain roughness,
temperature, hour of day, height above ground, and time of year).

The value of α is generally considered as 0.11 and 0.2 for extreme and normal wind conditions,
respectively [26]. The expected power output generated by the WT is expressed as

PWT =


0 if vcut−o f f ≤ v ≤ vcut−in

Pr ×
v3
−v3

cut−in
v3−v3c

if vcut−in ≤ v ≤ vrated

Pr if vrated ≤ v ≤ vcut−o f f

(2)

which is based on the rated power (Pr), rated speed (v), cut-in speed (vcut-in), and cut-out speed (vcut-out)
of the WT.

2.3. Modeling of PV

Solar power is the electric power generated by PV panels from sunlight. The generated solar
power can be calculated as follows [27]:

Ps = ηs ×A× SI(1 + β(t0 − 25)) (3)
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The generated solar power depends on the efficiency (ηs) and size (A) of the PV panels as well as
the solar irradiation (SI). Furthermore, β is generally denoted as a negative percentage per Kelvin or
degree Celsius. The total output solar power (PST) can be calculated as

PST = NS × PS (4)

where NS represents the number of solar generators.

2.4. Modeling of DE and Load

The DE is an important generator unit in the MG, which can be flexibly regulated by the MG
operator. When the MG cannot satisfy the load through renewable energy generation, the DE operates
as a secondary generation source to fulfill the load reliably. As the DE operates at a low loading
rate with less efficiency, it should be controlled within a safe range to avoid unloaded and slightly
loaded conditions.

Accurate modeling of the load is a prerequisite when solving the MG optimization problem. In
general, the load is simply considered as the sum of individual customer units. However, here, we
considered the load as individual customers who could be classified into different types depending
on their willingness for DR engagement. In general, the customer type ranged from 0 to 1, where 0
denotes the least willing customer and 1 denotes the most willing customer for DR participation. In
the following section, we propose a novel IDR scheme that considers various types of customer units.

3. Proposed Demand Response Strategy

We propose the CBIDR strategy to overcome the limitations of pre-determined IDR, which involves
fixed incentive rates, and thus ensures system reliability under the peak load. To this end, the PLSF is
used to quantify the specific benefits of implementing the CBIDR strategy.

3.1. Confidence-Based IDR

CBIDR primarily aims to encourage customers to reduce their load in the peak period through
certain incentivizing strategies. Specifically, high incentives will be awarded when the load is in the
peak period. In the CBIDR program, the value of the incentives awarded to the customers is considered
as a function of the peak intensity (ρ), and it varies with the period in contrast to conventional IDR,
which involves a fixed value. Accordingly, the incentive payment can be formulated as follows:

• Customer incentive

yt = ρk−1
t xk

t = ρk−1
t [Dk

t −Dk−1
t] (5)

Here, ρk−1 is a function of the peak intensity, where higher incentives will be paid to the customer
for load reduction during the peak period. Figure 2 compares the CBIDR and conventional IDR in
terms of the incentive payment scheme. When the amount of load reduction is the same (Dk to Dk−1,
Dk−n to Dk−(n−1), and D3 to D2) as xt

k−n, the incentives (ρk−1, ρk−n, and ρ2 for peak, off-peak, and valley
period, respectively) paid to the customers vary with the period in which the DR event occurs. As
shown in Figure 2, the incentive payment ρk−1 is higher for the same load reduction when compared
with the off-peak and valley periods. This concept is an advantage of the CBIDR over the general
IDR, where there is no such distinction between the incentive payments over the periods. It must
be improved by considering incentive payments as a function of the peak intensity. This means that
customers participating in the CBIDR program will earn higher incentive payments during the peak
period than during the off-peak or valley periods. Higher incentives for peak reduction can motivate
customers to take part in the DR program in the peak period. To this end, the customers must be more
willing to decrease their load in the peak period with respect to the conventional IDR program.
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• Customer cost function

c(θ j, xk
t ) = K1(xk

t )
2
+ K2xk

t −K2xk
tθ j (6)

Here, the −K2xt
kθj term is included to ensure that different values of θj leads to different values of

customer marginal cost. Equation (6) represents the monetary loss incurred by load reduction xt by a
customer of type θj.

• Customer benefit function

Bc,t = yt − c(θ j, xt) (7)

Equation (7) defines the difference between the incentives and the cost incurred by the customer.
The customer net benefit by load reduction xt must be equal to or exceed zero in order to encourage
DR action.

• Utility benefit function

Bu,t = λtxt − yt (8)

Equation (8) represents the total utility benefit for not supplying power to the customer for time
t. During the peak period, it could be expensive to supply power to the customer. In other words,
paying incentives to the customers in the peak period would be more cost-effective than supplying
power to the customers. In this regard, introducing CBIDR is useful for reducing the peak load while
increasing the grid reliability and reducing the supply cost.

• Load shedding constraints

Dk,min
t ≤ xk

t ≤ Dk
t , k = 1 (9)

0 ≤ xk
t ≤ (Dk

t −Dk−1
t ), k = 2, 3, ..., K (10)

xTotal =
K∑

k=1

xk
t (11)

yk
j,t − c(θ j, xk

t ) ≥ 0, j = 1, 2, ..., J (12)



Energies 2019, 12, 4142 7 of 28

yk
j,t − c(θ j, xk

t ) ≥ yk−1
j,t − c(θ j, xk−1

t ) k = 2, ..., K (13)

Equation (9) implies that for k = 1, the load reduction should be less than Dt
k
−Dt

k,min. Equation (10)
represents a constraint for k = 2, 3, . . . , K, such that the load reduction in step k for time t must be
less than Dt

k
− Dt

k−1 and greater than zero. Equation (11) represents the total reduction for all the
participants for time t. Equation (12) ensures that the customers’ net benefit exceeds zero. Equation (13)
implies that the customers should be appropriately compensated for their load reduction.

3.2. Peak Load Shaving Factor

The main objective of implementing the CBIDR program is peak load shaving by paying higher
incentives to the customers during the peak hours. To demonstrate the effectiveness of the CBIDR
program, we propose the PLSF for the MG operator, which can be defined as

PLSF =
APLFW

APLFWO
(14)

where APLFW and APLFWO denote the average to peak ratio (APLF) with and without DR, respectively.
PLSF is the ratio between APLFW and APLFWO. This index represents the peak load reduction without
DR. APLF can be defined as

APLFW =
1
T

T∑
t=1

d′t
d′peak

and APLFWO =
1
T

T∑
t=1

dt

dpeak
(15)

APLF is defined as the ratio between the average load and the peak load in the same period. It
represents the variability of the load, so that the higher the value of APLF, the greater the peak load
shaving. If DR successfully curtails the load in the peak period, then APLFW will increase and PLSF
will improve accordingly. The higher the value of PLSF, the greater the enhancement of the system
reliability during the peak period.

The PLSF quantifies the benefits of CBIDR unless d’t reaches zero. It represents the effectiveness
in terms of peak load reduction, which can be analyzed as follows:

Condition 1. PLSF > 1.
Condition 2. PLSF < 1.
Condition 3. PLSF = 1.

In condition 1, when APLFW is greater than APLFWO, the value of PLSF will be greater than 1.
This represents the amount of peak demand shaving achieved without DR.

In condition 2, when APLFW is less than APLFW, the value of PLSF is less than 1. This represents
the reduction in APLF without DR.

In condition 3, PLSF = 1 (i.e., the APLF with and without DR are equal). This implies that the
PLSF is constant.

The PLSF represents the quantitative results for various DR strategies, and the highest value
among them is the best APLF with respect to the others. In addition, if all of the DR strategies achieve
the same amount of load reduction, then the DR strategy with the higher PLSF value will be ranked
higher in terms of the relative peak load reduction. Based on these values, the established indices can
enable the MG operator to identify the DR benefits in terms of stability in the peak period.

4. Multi-Objective Optimal Formulation

The main objective of the optimal management of energy sources in the MG is to allocate the load
among the available generation units economically and securely. To determine the optimal power
generation units in the MG, a multi-objective optimization problem was solved by incorporating the
CBIDR. The mathematical formulations of two different objectives subject to the related constraints are
presented in the following subsection.
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4.1. Objective Function

The MG multi-objective formulation consists of two objectives: (i) minimizing the operating
cost function f 1(x), which includes the DE fuel cost, transaction cost, and pollutant treatment cost,
by maximum use of renewable energies, and (ii) maximizing the utility benefit function f 2(x) by
implementing DR.

4.1.1. Minimization of Operating Cost Function: f 1(x)

The objective function for minimizing the operating cost is as follows:

min f1(x) = min

 T∑
t=1

Z∑
z=1

Fz(Pz(t)) +
T∑

t=1

Ctr(Ptr(t)) +
T∑

t=1

Z∑
z=1

Cp(Pz(t))

 (16)

The DE fuel cost can be described as a quadratic model as follows:

Fz(Pz(t)) = azPz(t)
2 + bzPz(t) (17)

The transaction cost for trading transferable power between the main grid and the MG is given by

Ctr(Ptr(t)) =


γt × Ptr(t) Maingrid to MG

0 Disconnect

−γt × Ptr(t) MG to main grid

(18)

If the supply of the grid-connected MG cannot meet the demand, then power must be purchased
from the main grid. In contrast, if the supply exceeds the demand, the power remaining after satisfying
the demand can be sold to the main grid. In our study, locational marginal prices (LMPs) were used to
obtain the power trading coefficient γt between the main grid and the MG [18].

The DE pollutant treatment cost [28] can be defined as

Cp(Pz(t)) =
∑

e
(Ceδz, e) × Pz(t) +

∑
e
(Ceδgrid, e) × Ptr(t) (19)

4.1.2. Maximization of Utility Benefit Function: f 2(x)

In this study, the IDR formulations (Equations (5)–(11)) were extended to more than a single time
interval to incorporate them into the dynamic energy management problem. Equation (8) can be
modified to adapt it to the total optimization problem horizon T instead of one time interval. Such
conversion into a dynamic problem is more economical and practical in terms of solving the dynamic
energy management problem. Finally, we adjusted the maximum power target for the utility benefit
function f 2(x) as follows:

max f2(x) = max

 T∑
t=1

J∑
j=1

K∑
k=1

λ j,txk
j,t − y j,t

 (20)

where the number of customers is j over period T. Therefore, the MG operator makes a profit by not
supplying power to certain customers and deducting incentive payments as shown in Equation (20).

4.2. Constraints

• Power balance constraints

Z∑
z=1

Pz + PWT + PPV + Ptr = D−
J∑

j=1

x j (21)
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The total power generation from the DE, WT, and PV and transferred power from or to the main
grid should match the load.

• Generation limit constraints for DE, WT, and PV

Pmin
z ≤ Pz ≤ Pmax

z (22)

−DRz ≤ Pz,t+1 − Pz,t ≤ URz (23)

0 ≤ PWT ≤ Pr (24)

0 ≤ PPV ≤ PPV
max (25)

Equation (22) represents the DE generation limit, which ensures that the generator is operated
between the minimum and maximum power limits. Equation (23) denotes the increased or decreased
DE power output per unit time t. Equations (24) and (25) represent the constraints of the minimum
and maximum WT and PV generation limits, respectively.

• Transmission power constraints

− Ptr
max
≤ Ptr ≤ Ptr

max (26)

Equation (26) represents the transmission power constraint, which ensures that the transmission
power between the main grid and the MG does not exceed the maximum limit (Ptr

max).

• Demand response constraints

T∑
t=1

(
ρk

j, tx
k
j, t − c(θ, xk

j, t)
)
≥ 0 f or j = 1, ... , J (27)

T∑
t=1

(
ρk

j, tx
k
j, t − c(θ, xk

j, t)
)
≥

T∑
t=1

(
ρk−1

j, t xk−1
j, t − c(θ, xk−1

j, t )
)

f or k = 2, ..., K (28)

T∑
t=1

J∑
j=1

y j,t ≤ UTDB (29)

T∑
t=1

K∑
k=1

xk
j,t ≤ CM j (30)

Equations (27)–(30) represent the constraints of the utility benefit function f 2(x). Equations (27)
and (28) can be substituted for Equations (12) and (13) over a day rather than a single time interval.
Equation (27) ensures that a customer’s daily total incentives are greater than or equal to zero.
Equation (28) implies that the greater the customers’ power consumption reduction, the greater the
remuneration that they receive over the same period T. Equation (29) implies that the daily total
incentives paid to the customer by the utility should be less than UTDB. Equation (30) ensures that the
total daily power reduced by each customer does not exceed CMj.

5. Solution Method

5.1. Confidence-Based Velocity-Controlled PSO

PSO is a population-based stochastic optimization technique inspired by bird flocking theory [29]
and finds optimal solutions by attempting to improve a candidate solution iteratively. In a particle
swarm optimizer, each particle denotes a potential solution to a problem, and it is regulated to search
for the optimal solution by moving at a certain velocity in the search space in response to its own and
its companions’ experience. The particles are treated in an N-dimensional space, and the ith particle,
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velocity, and position are expressed as Xi = (xi1, xi2, · · · , xiN), Vi = (vi1, vi2, · · · , viN), and Pg = (pg1, pg2,
· · · , pgN), respectively. The position and velocity of each particle will change according to the best and
global positions. At each time step, the updated velocity and position of each particle is given by the
following expression:

vi,n(b + 1) = w1 × vi,n(b) + c1 × r1 × (pbest,i,n(b) − xi,n(b)) + c2 × r2 × (gbest,i,n(b) − xi,n(b)) (31)

xi,n(b + 1) = xi,n(b) + vi,n(b + 1) (32)

where c1 and c2 indicate the cognitive and social learning rates ranging from 0 to 1, respectively. In
addition, r1 and r2 are random numbers ranging from 0 to 1, respectively.

The advantage of PSO lies in its simple principle and fast convergence. However, it tends to easily
fall into local optima or converge prematurely. In a conventional PSO, there are three parameters (w1,
c1, c2) that are fixed. However, they should be adjusted several times to obtain the desired value. To
overcome the limitations of a conventional PSO, we proposed the CVCPSO to improve the solution
quality of the algorithm as follows [29,30]:

w1 =
1
2

(
cos

(
(m/M)lπ

)
+ 1

)
(33)

where l is a constant that varies according to the distribution of the population. Specifically, l = 0.5 or 2
when the distribution is too wide or too narrow, respectively; otherwise, l = 1. The inertia weight, w1,
is a critical constant that affects the convergence speed and performance of the algorithm. Therefore,
the inertia weights should be set judiciously by considering a particle’s maximum movement distance
to optimize its local and global exploration capabilities. In general, there is a trade-off between a
particle’s search speed and its accuracy depending on the value of w1. The higher the inertia weight,
the higher the particle’s search speed and the lower its search accuracy. According to the characteristic
of the inertia value, Equation (33) implies that, instead of being fixed, the inertia weight should vary
with time, decreasing linearly or non-linearly, to achieve better performance. Therefore, given the
characteristic of the inertia weight above-mentioned, Equation (33) can simultaneously guarantee high
search accuracy and convergence speed.

In addition, if the particle velocities are not limited, then they may increase to unacceptable levels.
Accordingly, the particle velocities should be regulated by introducing constriction coefficients c1 (m)
and c2(m), given by

c1(b) = (c1, f inal − c1,initial)
b
B
+ c1,initial (34)

c2(b) = (c2, f inal − c2,initial)
b
B
+ c2,initial (35)

Equations (34) and (35) respectively ensure that c1(m) decreases linearly and c2(m) increases
linearly to achieve the global search ability in the early stages of iteration and local optimization ability
in the later stages of iteration. Here, c1,initial, c1,final, c2,initial, and c2,fianal are the initial and final values of
c1(m) and c2(m), which were set to 2.5, 0.5, 0.5, and 2.5, respectively [31].

To avoid local optima and achieve global improvement, we added a confidence term by substituting
the following equation into Equation (31):

vi,n(b + 1) = w1 × vi,n(b) + c1 × r1 × (pbest,i,n(b) − xi,n(b)) + c2 × r2 × (gbest,i,n(b) − xi,n(b)) −w2r3gbest,i,n(b) (36)

Due to the effect of the confidence term, the velocity of the particles can be reduced at a certain
iteration and the particle positions can be retreated in the opposite direction from the beginning
accordingly. A particle’s retreating distance is assumed to be uncertain by employing the inertia weight
w2 and random variable r3. Accordingly, the particle’s trust differs in each generation (i.e., the effect
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of gbest,i,n(b) varies). This improvement can reduce the density of the particles and thus maintain the
particles’ diversity. To minimize the running time of the algorithm, we set w1 = w2.

5.2. Fuzzy-Clustering Technique

In general, multi-objective problems involve competing objectives. Non-commensurable and
conflicting objectives that optimize more than two objective functions together cannot be solved by
finding a single optimal solution. In this regard, acceptable solutions, rather than unit solutions,
are attempted to be determined. To determine the superiority of solutions with respect to others, a
concept of dominance is defined. Consider two vectors x1 and x2, where x1 = [x1,1, x1,2 · · · x1,y], x2 =

[x2,1, x2,2· · · x2,y], and y is the number of objective functions. In a maximization problem, a solution x2

dominates x1 if neither of the following two constraints is violated:

∀p ∈
{
1, 2, · · · , y

}
: fp(x1) ≤ fp(x2) (37)

∃ q ∈
{
1, 2, · · · , y

}
: fq(x1) ≤ fq(x2) (38)

If all the above-mentioned constraints are satisfied, x2 dominates x1. A vector x2 is called a
non-dominated local set and the solutions that are non-dominated among the entire search space
are called the non-dominated global set or the Pareto-optimal set. Accordingly, a multi-objective
optimization problem leads to a set of optimal solutions called the Pareto-optimal set. In this study, a
fuzzy-clustering technique [32] was used to extract the best solution that had the maximum value of
the fuzzy membership function and provide it to the decision maker. The optimal-Pareto solution sets
were converted into fuzzy membership functions as follows:

µy(a) =
fy

max
− fy(a)

fymax − fymin
(39)

Finally, µy(a), considering all the objective functions, can be calculated as

µ(a) =

∑S
y=1 wyµy(a)∑U

a=1
∑S

y=1 wyµy(a)
(40)

The higher the value of µ(a), the higher the likelihood of obtaining the best compromise solution.

5.3. Solution Procedure

Optimal energy management procedure of the grid-connected MG implementing CBIDR is
performed in the following sequential manner:

Step 1. Construct the MG model as shown in Figure 1 and initialize the MG input parameters (DE,
WT, PV, and Load).

Step 2. Calculate the value of APLFWO, according to Equation (15).
Step 3. Establish the CBIDR program as shown in Figure 2 and divide the load into three periods.
Step 4. Establish the objective functions and the corresponding constraints given by

Equations (16)–(30). Set the CVCPSO input parameters (w1, w2, c1(1), c2(1), B, NP, S, and U)
required to initialize the algorithm.

Step 5. Calculate the particle fitness according to the objective functions and the corresponding
constraints. Initialize the Pareto-optimal set and store it in the repository.

Step 6. Start a loop iteration.
Step 7. Update the position and velocity of each particle according to Equations (32) and (36).

Update the algorithm parameters w1, w2, c1(m), and c2(m) according to Equations (33)–(35).
Step 8. Calculate the particle fitness and update the non-dominated global set.
Step 9. Obtain the iteration results (i.e., the Pareto-optimal set) stored in the repository.
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Step 10. Take the maximum value of the fuzzy membership function from Equation (39) and take
the maximum value of µ(a) from Equation (40) to obtain the best compromise solution.

Step 11. Output the best compromise solution and calculate the values of APLFW and PLSF.
The overall optimization process of MG energy management is shown in Figure 3.Energies 2019, 11, x FOR PEER REVIEW  12 of 27 
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6. Simulation Results

The validity and feasibility of the proposed approach were demonstrated using two MG test
systems (1 and 2). First, we conducted a comparative analysis of two different IDR strategies: Case 1
(conventional IDR) and Case 2 (proposed CBIDR). The overall multi-objective optimization problems
were solved using the CVCPSO algorithm, whose performance generally varies according to the size of
the particles and the number of iterations. The number of particles and maximum number of iterations
were set to 20,000 and 100, respectively, for both MG test systems 1 and 2. For the sake of computational
convenience in solving the optimization problem, we converted the maximization problem f 2(x),
Equation (20), into the minimization problem by multiplying it with (−1). CVCPSO is used to calculate
the fitness values of the objective functions individually to search for the Pareto-optimal solution set
with the trade-off characteristic. Then, the fuzzy-clustering technique was adopted to obtain the best
result among the Pareto-optimal set. Conventional PSO, velocity-controlled PSO (VCPSO) [24], and
the proposed CVCPSO algorithm were compared to show the superiority of our energy management
approach. The simulations were performed in MATLAB R2017b on a computer with the following
specifications: CPU, 3.4 GHz; RAM, 8 GB; operating system, Windows 10 Pro 64-bit.

6.1. MG Test System 1

The MG test system 1 consisted of one WT, one PV, three Des, and three load customers [18].
Table 1 lists the cost coefficients of the three DEs and three customers as well as the corresponding daily
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interruptibility limits. Table 2 lists the hourly values of power interruptibility for the three customers.
The pollutant discharge coefficients of the DEs were adopted from [28].

Table 1. Cost coefficients of the DE and customer.

z, j DE Customer

az bz Pz,min Pz,max DRz URz K1,j K2,j θj CMj (kWh)

1 0.06 0.5 1 4 3 3 1.079 1.32 0 50
2 0.03 0.25 1 6 5 5 1.078 1.63 0.45 55
3 0.04 0.3 1 9 8 8 1.847 1.64 0.9 60

Table 2. Value of power interruptibility for Case 1.

Time (h) λ1,t ($) λ2,t ($) λ3,t ($)

1 1.70 3.70 2.70
2 1.40 2.70 1.90
3 2.20 3.20 1.80
4 3.70 2.60 1.90
5 4.50 3.80 2.30
6 4.70 1.70 0.70
7 5.10 2.30 1.40
8 5.30 1.50 0.50
9 6.70 4.30 2.90

10 6.60 4.60 1.60
11 6.80 3.50 4.30
12 6.20 4.20 4.80
13 7.30 4.30 5.10
14 7.80 6.30 5.40
15 0.50 3.50 5.50
16 5.20 5.30 6.10
17 6.80 5.30 5.60
18 5.70 6.10 6.30
19 4.80 2.60 4.50
20 3.90 3.60 4.20
21 3.80 4.20 3.90
22 3.10 3.80 3.20
23 2.50 2.30 2.80
24 1.90 3.80 4.20

Figure 4 shows the hourly forecast curves of WT, PV, and load for MG test system 1. Figure 4a
shows the hourly forecast curve of WT and PV, where the maximum WT and PV power values were
11 kW and 15 kW, respectively [18]. The WT and PV data were estimated from the region of Harare,
Zimbabwe, where the average solar irradiation model was estimated stochastically using the simplified
inclined model in latitude 17.80◦ S, and the average wind speed was calculated at 1480 m above sea level
and 10 m of anemometer height. Figure 4b shows the hourly load divided into three periods: valley,
off-peak, and peak. The transferred power cost between the main grid and the MG was symmetric ($5),
and the maximum power transferred between the MG and the main grid was 5 kW. We assumed that
the MG operator’s UDTB was $500.
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The amounts of DR for the two different cases of the grid-connected MG test system 1 are compared
in Figure 5. Case 1 aimed to decrease the load for the entire period, whereas Case 2 mainly aimed to
reduce the load in the peak period. The total amounts of DR for Cases 1 and 2 were 104.61 kWh and
107.26 kWh, respectively, which may not seem significantly different. However, a comparison of the
values of the valley, off-peak, and peak periods revealed the advantage of the proposed CBIDR. The
amounts of DR for each period were 37.77 kWh, 34.19 kWh, and 32.65 kWh for Case 1 and 29.35 kWh,
28.97 kWh, and 48.94 kWh for Case 2. The peak load restriction in Case 2 (48.94 kWh) was clearly
higher than that in Case 1 (32.65 kWh). These results show that Case 2 achieved a superior peak load
reduction and can thus lower the DE operating cost when the generating cost is high while ensuring
the reliability of the peak load.
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Figure 6 shows the hourly load variations of MG test system 1 before and after implementing the
IDR. The peak load decreased to 37.67 kW for Case 2 compared to 39.38 kW for Case 1. In addition,
the load variation in Case 2 was smooth when compared with the initial load and the load in Case
1. As the customers’ remuneration differed with the period, the peak load reduction in Case 2 was
considerably higher; thus, the peak load stability was also improved in the grid-connected MG.
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Table 3 compares two different cases of MG test system 1 in terms of the PLSF. In Case 1, the value
of APLFW decreased with respect to the APLFWO. This indicates a smaller contribution to the peak
load curtailment when implementing the DR event, and the value of PLSF must be less than one. In
contrast, the value of APLFW in Case 2 increased up to 22.97, which represents better performance in
terms of peak restriction. Here, the value of PLSF must be greater than one. As shown in Figure 6,
the amount of peak restriction was greater in Case 2, and the value of APLFW was higher accordingly.
These quantitative results showed that the proposed IDR strategy provides more reliable operational
conditions by reducing the load in the peak period.
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Table 3. Comparative results of PLSF for MG test system 1.

Case 1 Case 2

PLSF 0.94 1.12
APLFWO 20.55 20.55
APLFW 19.31 22.97

Figure 7 shows the optimal generation scheduling of the DE and the transactional power (Ptr)
between the main grid and the MG for MG test system 1. Here, we assumed that the renewable energies
generated the maximum power output. In general, before the renewable energies are introduced,
power is usually generated from the DEs or purchased from the main grid in both cases. However,
when the renewable sources generate the maximum output power, the MG starts decreasing the DE
output power or purchases less power from the main grid. Note that the power generated from the DE
varied with the amount of DR for each case. In Figure 7a, DE 1 and 2 generated nearly the maximum
power through the entire period, while the power generation by DE 3 varied with the amount of
DR. As shown in Figure 7b, in the range of 8–18 h, the amount of power generated from the DEs
was reduced when compared to Case 1. By reducing the load in the peak period and operating with
minimal DE generation, the MG operator can alleviate the risk of the peak load and thus protect the
MG from instability, system collapse, and other precarious situations such as loss of DE, renewable
energies, or the main grid.
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Figure 7. Optimal operation scheduling of DE and transactional power for MG test system 1.

Figure 8 shows the Pareto-optimal set and the best compromise solution obtained by the CVCPSO
algorithm with the fuzzy-clustering technique for MG test system 1. The best compromise results in
terms of the operating cost and utility benefit were $479 and $135, respectively. The best operating
point was obtained by the CVCPSO algorithm together with the fuzzy-clustering technique. The
Pareto-optimal set is composed of a maximum of 20 points, and these points are the candidates for the
best operating solution. Then, the proposed approach successfully finds the best solution as the 7th
Pareto-optimal set. It is clear that the proposed algorithm is superior to the conventional PSO and
VCPSO in terms of quality and diversity.
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Table 4 summarizes the optimal operation conditions obtained from the three different PSO
algorithms for each case of MG test system 1. CVCPSO in Case 2 had the lowest operating cost of
$479. Furthermore, the highest utility benefit was obtained by CVCPSO with Case 1. As the proposed
CBIDR pays higher incentives to reduce the peak load, both the operating cost and the utility benefit
were reduced when compared to Case 1. However, from the MG operator’s perspective, it is more
reasonable to adopt CVCPSO in Case 2 because of the significant decrease in the operating cost with
respect to the decrease in the utility benefit. From the comparative results, we can conclude that the
proposed energy management scheme presents an optimal operating point to assist the MG operator
in decision-making whenever there is a trade-off between operating cost and utility benefit. The total
run time of the proposed approach has been considerably decreased with respect to the others, due
to the adjustment of the acceleration parameters as well as the inertia weight and addition of the
confidence term. These results reveal that the proposed approach is appropriate for the requirements
of fast convergence and higher solution quality.

Table 4. Comparative energy management solutions for MG test system 1.

Algorithm IDR Operating Cost ($) Utility Benefit ($) Run Time (s)

PSO
Case 1 640 125 890
Case 2 543 109 888

VCPSO
Case 1 621 131 693
Case 2 525 111 692

CVCPSO
Case 1 568 147 452
Case 2 479 135 446

6.2. MG Test System 2

MG test system 2 was designed to validate the applicability of the proposed energy
management approach to a larger MG system comprising 10 WTs, 10 PVs, seven DEs, and five
load customers [18,19,28]. Tables 5 and 6 list the cost coefficients of the seven DEs and five customers,
respectively. Table 7 lists the hourly values of power interruptibility of the five customers.

Table 5. Cost coefficients of the seven DEs.

z az bz Pz, Min Pz, Max DRz URz

1 0.0007 23.9 30 150 80 80
2 0.00079 21.62 33 143 60 60
3 0.0048 23.23 27 120 60 60
5 0.10908 19.58 20 80 40 40
4 0.00056 17.87 37 60 40 40
6 0.00951 22.54 25 55 25 25
7 0.00211 16.51 20 30 10 10

Table 6. Cost coefficients of customer and interruptibility limits.

j K1,j K2,j θj CMj (MWh)

1 1.847 11.64 0 180
2 1.378 11.63 0.1734 230
3 1.079 11.32 0.4828 310
4 0.9124 11.5 0.7208 390
5 1.378 11.63 0.84 440
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Table 7. Value of power interruptibility for the five customers.

Time (h) λ1,t ($) λ2,t ($) λ3,t ($) λ4,t ($) λ5,t ($)

1 27.61 28.30 28.79 26.93 27.60
2 29.41 30.07 30.53 28.79 29.44
3 28.24 28.87 29.28 27.66 28.33
4 26.69 28.76 29.28 27.66 28.32
5 29.01 32.24 32.64 31.20 31.66
6 33.96 36.67 37.15 35.38 35.99
7 83.97 89.46 90.65 85.71 87.70
8 81.10 82.88 83.79 79.06 81.06
9 110.60 112.93 114.11 107.72 110.44

10 74.12 75.43 76.09 72.40 73.95
11 78.95 80.19 80.65 77.29 78.93
12 66.85 67.55 67.76 65.75 66.67
13 47.98 48.58 48.63 47.10 47.93
14 66.82 67.74 68.07 65.55 66.74
15 48.50 49.35 49.69 47.41 48.47
16 49.21 50.28 50.87 49.94 49.19
17 66.65 69.36 70.29 66.05 67.71
18 61.49 66.57 67.19 59.69 66.24
19 56.19 57.67 58.25 54.48 56.53
20 57.92 59.38 59.98 55.58 57.98
21 49.16 49.86 50.36 48.31 48.96
22 54.00 54.38 54.84 53.46 53.63
23 34.37 34.67 34.96 33.98 34.21
24 30.30 30.71 31.00 29.89 30.20

Figure 9 shows the forecast curve of the renewable sources and the load for MG test system 2. The
hourly power produced by WT and PV are shown in Figure 9a, where the maximum output power
values were 220 MW and 210 MW, respectively. The forecast power for WT and PV were obtained
from an anemometer, which was installed at a 8 m height based on wind speed, at the same time, the
stochastic and dispersed global irradiance were calculated hourly by using the simplified tilted flat
model located at 20◦8′3.63′′ N, 98◦23′4.57′′ altitude, 2181 m above sea level. The variation of the initial
load for MG test system 2 is shown in Figure 9b [19]. The cost and transactional power between the
main grid and the MG are symmetric (i.e., $7.1 and 60 MW, respectively). The pollutant discharge
coefficient parameters were unified as in MG test system 1, and the MG operators’ UDTB was set to
$150,000.

Figure 10 compares the amount of DR for two different cases of MG test system 2. Case 1 reduced
the overall load while Case 2 mainly reduced the load in the peak period. The amount of DR for each
period (valley, off-peak, and peak) was obtained as 276 MWh, 115 MWh, and 174 MWh, respectively,
for Case 1 and 69 MWh, 180 MWh, and 331 MWh, respectively, for Case 2. As shown in Figure 10, the
amount of DR in Case 2 in the valley and off-peak periods was lower than that in Case 1, while that in
the peak period was higher. It can be concluded that Case 2 achieved better performance in terms of
peak load reduction when compared to Case 1, which ensures greater improvement in terms of peak
load stability.
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Figure 11 shows the hourly load curve of MG test system 2 for each case. The peak load was
reduced from 617 MW to 564 MW and 554 MW in Cases 1 and 2, respectively. Moreover, as shown in
Figure 10, the peak period reduction was 174 MWh and 331 MWh, respectively. These results show
that the proposed IDR strategy can effectively improve the reliability of the MG system.
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Table 8 compares each case of MG test system 2 in terms of the PLSF obtained. The value of the
PLSF in each case was greater than one, which shows that both Cases 1 and 2 achieved improved peak
period reliability. However, Case 2 was superior to Case 1 in terms of the PLSF, and thus achieved a
greater peak load reduction. As the amount of peak period reduction was higher in Case 2, its APLFW
value was greater than that of Case 1. Finally, this advanced IDR strategy led to an improvement in the
peak period stability of the large-scale MG.

Table 8. Comparative results of PLSF for MG test system 2.

Case 1 Case 2

PLSF 1.03 1.05
APLFWO 16.93 16.93
APLFW 17.51 17.87

The main operating solutions of the DEs and the transactional power between the main grid
and the MG for MG test system 2 are shown in Figure 12. The general scheme of optimal generation
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scheduling was similar to that of MG test system 1. As shown in Figure 12a, all the DEs, except for DE
3, operated at the minimum output power. As the DR reduced the overall load, the power generation
of DE 3 varied over the entire period. However, as shown in Figure 12b, the output power of DE 3 was
drastically reduced in the peak period because of the effect of the proposed CBIDR. In both cases, all the
DEs operated at the minimum power output, except for DE 3, which was the most expensive generator
among all units. Therefore, the proposed CBIDR strategy facilitates the operation of large-scale MGs
with minimal DE operation and reduced the power purchased from the main grid in the peak period,
thereby ensuring reliability of the MG system in emergencies.Energies 2019, 11, x FOR PEER REVIEW  22 of 27 
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The comparative results of the Pareto-optimal set obtained from the PSO, VCPSO, and proposed
CVCPSO algorithm for MG test system 2 are shown in Figure 13. The best compromise solutions were
$164,001 and $3420, respectively. The CVCPSO with the fuzzy-clustering technique was adopted to
find the best operating point. From Figure 13, the proposed approach can find the best solution as
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the 10th Pareto-optimal set. Thus, the performance of the proposed CVCPSO algorithm was better in
terms of finding the Pareto-optimal set of multi-objective problems. This result shows the feasibility of
the proposed approach for large-scale MGs and confirms that it provides an optimal operation scheme
to assist the MG operator in decision-making whenever there is a trade-off between operating cost and
utility benefit.Energies 2019, 11, x FOR PEER REVIEW  23 of 27 
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The optimal operating solution for MG test system 2 is summarized in Table 9 and was similar
to that for MG test system 1. Due to the high incentive payments to reduce the load in the peak
period, we can confirm that both the operating cost and the utility benefit in Case 2 were lower with
respect to Case 1. However, the variation in the operating cost was greater with respect to the utility
benefit in both cases. This indicates that the proposed energy management approach provides the best
optimized solution for the MG operator with consideration of the operating cost, utility benefit, and
peak reliability of the MG system. It can be seen in Table 9 that the proposed approach significantly
reduced the total run time than other methods, particularly in the large MG test system because of
the effect of the added confidence term and modified inertia weight and acceleration parameters.
Therefore, the proposed approach can readily meet the demands of a realistic MG system operation.

Table 9. Comparative results of the PSO algorithm for MG test system 2.

Algorithm IDR Operating Cost ($) Utility Benefit ($) Run Time (s)

PSO
Case 1 167,662 3246 1275
Case 2 165,571 2901 1276

VCPSO
Case 1 166,971 3379 877
Case 2 165,454 2998 873

CVCPSO
Case 1 166,287 3758 652
Case 2 164,001 3420 650
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7. Conclusions

This paper proposed a multi-objective framework for the optimal energy management of a
grid-connected MG by considering advanced IDR. The problem was formulated as minimizing the
operating costs while maximizing the utility benefit. The multi-objective optimization problem was
solved using the CVCPSO algorithm, which yielded the Pareto-optimal set for each objective. In
addition, the fuzzy-clustering technique was adopted to find the best compromise solution. The
proposed CBIDR was constructed on the basis of IDR. The incentive payments were considered as a
function of the peak intensity rather than as fixed values to overcome the limitations of conventional IDR
and achieve peak load stability. Furthermore, the PLSF values were compared and analyzed to confirm
the superiority of the proposed strategy. Specifically, the performance of the proposed strategy was
evaluated by introducing MG test systems 1 and 2. The comparative results obtained by the proposed
approach showed that it achieved better peak reduction results for the overall MG. Accordingly, the
PLSF value, which was higher when compared to the existing IDR, demonstrated that the proposed
CBIDR strategy provided more stable operational conditions by mainly reducing use in the peak
period. The efficiency of the proposed CVCPSO algorithm in solving the multi-objective optimization
problem and finding the Pareto-optimal solution set was demonstrated, in that a reasonable trade-off

was established between the operating cost and the utility benefit. The simulation results indicated
that the proposed approach outperformed other methods in terms of diversity and quality. Therefore,
it can assist the MG operator in decision-making and achieving MG reliability by decreasing the peak
load, as one of the main purposes of the MG operator is to reduce the stress of the MG. In the future,
we plan to consider the uncertainties associated with renewable energies and loads to guarantee MG
reliability, for example, by adopting a multi-scenario tree method.

Author Contributions: H.-J.K. proposed the main idea of this paper and M.-K.K. coordinated the proposed
approach and thoroughly reviewed the manuscript. All authors read and approved the manuscript.

Funding: This research was supported by the Korea Electric Power Corporation (grant numbers: R18XA06-75
and R19XO01-37).

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

Variables
ρk−1

t Incentive payments at time t for k − 1 step
xk−1

t Amount of DR at time t for k − 1step
Dk−1

t Amount of load at time t for k − 1step
yk−1

t Customer incentive at time t for k − 1 step
λt Power interruptibility
Bc,t Customer benefit function
Bu,t Utility benefit function
xTotal Total reduction for all customers
dpeak Peak load without DR
d’peak Peak load with DR
d’t Load at t with DR
dt Load at t without DR
z Number of DE
t time
j Number of customers
k Number of steps
i Number of particles
n Dimension of particle
b Current iteration number
y Number of objective functions
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a Possible compromise solution among Pareto set
γt Power exchange rate at time t
e Pollutant type
Ce Treatment cost for type e
δz,e Pollutant emission coefficient of z DE for e type
δgrid,e Pollutant emission coefficient of main grid for e type
c(θ j, xk

t ) Customer cost function
f 1(x) Operating cost function
f 2(x) Utility benefit function
PWT Output power of WT
PPV Output power of PV
Pz

min Minimum DE power
Pz

max Maximum DE power
Pz(t) DE power output at time t
Ptr(t) Transaction power at time t
FZ(PZ(t)) DE fuel cost function
Ctr(Ptr(t)) Transaction cost function
Cp(PZ(t)) Pollutant treatment cost function
vi,n(b) Current velocity of ith particle of n dimension for b iteration.
xi,n(b) Current position of ith particle of n dimension for b iteration.
c1(m) Acceleration parameter
c2(m) Cognitive parameters
r1, r2, r3 Random number
pbest,i,n(b) Current optimal solution of ith particle of n dimension for b iteration
gbest,i,n(b) Current optimal solution of entire population
w1 Inertia weight of PSO
w2 Inertia weight of confidence term
fmin

y Minimum value of yth single objective function
fmax

y Maximum value of yth single objective function
fy(a) Value of yth single objective function
µy(a) Satisfactory degree at yth single objective
µ(a) Overall satisfying degree
Parameters
α Power law exponent
v1, v2 Wind speed of WT
h1, h2 Reference hub height
Pr Rated power of WT
vcut-in Cut-in speed of WT
vcut-out Cut-out speed of WT
β Temperature coefficients of maximum power of PV
t0 External temperature of PV
ηs Efficiency of PV
A Size of PV
az, bz DE fuel cost coefficient
URz Maximum rates of zth DE ramp up
DRz Maximum rates of zth DE ramp down
PPV

max Maximum PV power
PST Total output power of PV
Ptr

max Maximum transactional power
c1,initial Initial value of c1(m)
c1,final Final value of c1(m)
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c2,initial Initial value of c2(m)
c2,final Final value of c2(m)
D Total demand
J Total number of customers
K Total number of steps
T Total period
U Total number of Pareto-optimal solution sets
S Total number of objective functions
NP Maximum number of particles
B Maximum iteration number
wy Coefficients of the yth objective function
Indices
PLSF Peak load shaving factor
APLFW Average to peak ratio with DR
APLFWO Average to peak ratio without DR
Abbreviations
MG Microgrid
DSM Demand side management
DR Demand response
IDR Incentive-based demand response
CBIDR Confidence-based incentive DR
PSO Particle swarm optimization
CVCPSO Confidence-based PSO
ESS Energy storage system
RES Renewable energy system
PV Photovoltaic
WT Wind turbine
DE Diesel engine
SI Solar irradiation
LMP Locational marginal prices
UDTB Utility’s daily total budget
CMj Customer j’s daily interruptible limit
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