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Abstract: This paper experimentally demonstrates the benefits of combining an up-conversion
(UC) layer containing Yb/Er-doped yttrium oxide-based phosphors with a plasmonic scattering
layer containing indium nanoparticles (In-NPs) in enhancing the photovoltaic performance of
textured silicon solar cells. The optical emissions of the Yb/Er-doped phosphors were characterized
using photoluminescence measurements obtained at room temperature. Optical microscope images
and photo current-voltage curves were used to characterize the UC emissions of Yb/Er-doped
phosphors under illumination from a laser diode with a wavelength of 1550 nm. The plasmonic
effects of In NPs were assessed in terms of absorbance and Raman scattering. The performance of
the textured solar cells was evaluated in terms of optical reflectance, external quantum efficiency,
and photovoltaic performance. The analysis was performed on cells with and without a UC layer
containing Yb/Er-doped yttrium oxide-based phosphors of various concentrations. The analysis was
also performed on cells with a UC layer in conjunction with a plasmonic scattering layer. The absolute
conversion efficiency of the textured silicon solar cell with a combination of up-conversion and
plasmonic-scattering layers (15.43%) exceeded that of the cell with an up-conversion layer only
(14.94%) and that of the reference cell (14.45%).

Keywords: indium nanoparticles; photovoltaic performance; phosphors; plasmonic scattering;
up-conversion; yttrium oxide

1. Introduction

Wafer-based crystalline silicon is currently the dominant photovoltaic technology. Lowering the
price of electricity generated by photovoltaic systems will require improvements in conversion efficiency
and reductions in manufacturing costs. A variety of light trapping techniques have been developed
to reduce the reflectance of silicon solar cells and extend broadband performance. These methods
include the creation of surface structures at the nano- and micro-scale [1–5], and taking advantage
of the plasmonic effects of noble metal nanoparticles (NPs) [6–8]. Metallic nanoparticles exhibit
strong optical extinction, due to the collective oscillation of free electrons, referred to as localized
surface plasmon resonance (LSPR) [9,10]. The resonance wavelength is sensitive to the size and
shape of the NPs as well as the surrounding material [11]. Nanoparticles of gold (Au NPs) [12–14],
silver (Ag NPs) [15–19], and aluminum (Al NPs) [20–22] are widely used to induce light scattering,
with the aim of trapping more of the light energy in order to create solar cells of greater efficiency.
The maximum theoretical efficiency of a single-junction (single bandgap) crystalline silicon solar
cell is approximately 31% under one sun AM 1.5G illumination [23,24]. There are two factors that
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greatly hinder the efficiency of single bandgap solar cells: 1) an inability to absorb photons with
energy below the bandgap (long-wavelength photons), and 2) and the thermalization of photon
energy above the bandgap (short-wavelength photons). Numerous methods have been developed to
enhance conversion efficiency at short wavelengths, including the deposition of a down-conversion
(DC) layer or a luminescence down-shift (LDS) layer on the front side of photovoltaic devices [25–28].
Up-conversion (UC) is another promising approach to recruiting sub-bandgap photons for solar cells
(SCs) [29–35]. The photons emitted by UC phosphors carry more energy than do the photons excited
in UC materials. This allows the conversion of infrared (IR) or near-IR (NIR) excitation into visible
wavelengths. The fact that low energy photons (IR or NIR) are transmitted through silicon solar cells
means that an up-conversion layer could be placed on the back-side of silicon solar cells. However,
there has been relatively little research on the use of up-conversion in conjunction with plasmonic
scattering to enhance the efficiency of silicon solar cells.

In previous studies, we used the broadband plasmonic forward-scattering of indium nanoparticles
on textured silicon solar cells [36–38], or a NIR up-conversion layer on planar silicon solar cells [38],
to enhance cell’s photovoltaic performance. In the current study, we deposited an up-conversion layer on
the rear surface of textured silicon solar cells as well as a plasmonic scattering layer on the front surface.
We found that by reducing reflectance, a layer of indium nanoparticles on the front surface of the solar
cells allowed the penetration of a larger number of long-wavelength incident photons to excite phosphor
particles on the rear surface, thereby enhancing UC efficiency. We first evaluated the UC performance
of the up-conversion layer using photoluminescence (PL) measurements at room temperature.
Optical reflectance, external quantum efficiency (EQE), and photovoltaic current density-voltage
(J-V) characteristics were also used to assess the plasmonic effects of indium nanoparticles (In NPs)
and the NIR up-conversion efficiency of YF3:Yb3+/Er3+ phosphors. Photovoltaic J-V measurements
were then used to evaluate the performance of textured silicon solar cells with an up-conversion layer
of SiO2 containing YF3:Yb3+/Er3+ phosphors of various concentrations (10 wt%, 20 wt%, 30 wt%) in
conjunction with a plasmonic-scattering layer of In NPs (3 nm, 5 nm, 7 nm) in terms of short-circuit
current-density (JSC) and conversion efficiency (η). Our results demonstrate the benefits of using an
up-conversion layer in conjunction with a plasmonic-scattering layer to enhance the photovoltaic
performance of textured silicon solar cells.

2. Materials and Methods

2.1. Preparation and Characterization of Up-Conversion and Plasmonic Scattering Layers

2.1.1. Up-Conversion Layer Comprising Yb/Er-Doped Yttrium Oxide-Based Phosphors

Before depositing an up-conversion layer, the silicon substrates (1 × 1 cm2) were subjected
to ultrasonic cleaning using acetone (ACE) and isopropanol (IPA) and then rinsed in deionized
(DI) water for 10 min and dried using high purity nitrogen gas. Three silicon substrates were
respectively coated with an SOG (SiO2) layer containing Yb/Er-doped phosphors (YF3:Yb3+/Er3+) at
concentrations of 10, 20, or 30 wt%. We fabricated a control sample in which the same substrate was
coated with the same SOG layer but without phosphors. The deposition solution comprised 1.94 g
of silicate solution (Emulsitone Company product, Whippany, NJ, USA) mixed with Yb/Er-doped
yttrium oxide-based phosphors (New Prismatic Enterprise Company product, New Taipei City,
Taiwan) at concentrations of 10, 20, and 30 wt%. The mixture was dropped onto the cleaned silicon
substrates, where it remained for 12 s before undergoing spin-coating at 1500 rpm for 60 s. The coated
samples were subsequently baked at 180 ◦C for 10 min on a hot-plate under an air atmosphere.
Figure 1a presents a test sample with an up-conversion layer. We examined the surface morphology,
chemical composition, and fluorescence emission of samples with an SOG layer containing Yb/Er-doped
phosphors using scanning electron microscopy (SEM, Hitachi S-4700, Hitachi High-Tech Fielding
Corporation, Tokyo, Japan), energy-dispersive X-ray spectroscopy (EDS, Hitachi S-4700, Hitachi
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High-Tech Fielding Corporation, Tokyo, Japan), and photoluminescence spectroscopy (PL, Ramboss
500i Micro-PL Spectroscopy, DONGWOO Optron, Korea).
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Figure 1. Schematic diagram of the test sample with (a) up-conversion (UC) layer and (b) SiO2 layer
with embedded indium nanoparticles (In NPs).

2.1.2. Plasmonic Scattering Layer of SiO2 with Indium Nanoparticles

Quartz substrates were used as a template to characterize the plasmonic effects of indium
nanoparticles in the UV-VIS band, due to their low absorption at those wavelengths. The substrates
were subjected to ultrasonic cleaning in ACE and IPA before being rinsed in DI water for 10 min and
dried under nitrogen flow. Films of indium were deposited at various depths (3 nm, 5 nm, and 7 nm) on
the cleaned substrates using e-beam evaporation. Subsequent annealing in an RTA chamber at 200 ◦C
for 20 min under H2 caused the indium films to transform into nano-sized indium particles. We then
applied a 94 nm-thick SiO2 capping layer over the In NPs layer. Figure 1b presents a completed sample
with a layer of SiO2 with embedded In NPs. The plasmonic effects of the In NPs were examined in
terms of absorbance and Raman scattering measurements. The absorption spectra were corrected
using a spectrometer (USB4000-VIS-NIR, Ocean Optics, Inc., FL, USA) with tungsten light source and
reflective integrating sphere. Raman scattering spectra were corrected using a Raman spectrometer
(UniRAM, UniNanoTech, Giheung-gu, Korea) with a 532 nm laser.

2.2. Fabrication and Characterization of Textured Silicon Solar Cells with Back Matrix Grooves

Czochralski (CZ)-grown, (100)-oriented, boron-doped single-crystalline silicon wafers (150-µm
thick) with a resistivity of 10Ω·cm were cleaned using standard RCA cleaning. The surface of the silicon
wafer was then etched using an anisotropic solution of H2O/KOH/IPA at 80 ◦C for 20 min to produce
a surface texture comprising a random arrangement of pyramidal structures. Figure 2a presents a
top-view SEM image showing the etched pyramidal surface. Using Image-J software, the minimum
and maximum heights of the pyramids were estimated at 3 µm and 6 µm, respectively. The minimum
and maximum distances between the pyramids were 3 µm and 6 µm, respectively. A 0.2-µm-thick
n+-Si emitter layer with sheet resistance of approximately 80 Ω/sq (surface concentration of roughly
1.2 × 1020 cm–3) was applied to the textured silicon wafer using a POCl3 diffusion process at 810 ◦C
over a period of 8 min. After diffusion, the phosphorous silicate glass remaining on the surface was
removed using a buffered oxide etchant (BOE). A 70 nm-thick silicon nitride antireflective film was
deposited on the front surface of the wafer using plasma-enhanced chemical vapor deposition. For n-
and p-metallization, silver (Ag) film was deposited on the front side and aluminum (Al) film was
deposited on the rear side using a screen printing process followed by drying at 200 ◦C. The wafer then
underwent sintering (and firing) via a two-step process (ranging from 600 to 850 ◦C) to form finger/bus
electrodes on the front side and a full Al-layer electrode on the rear side. Finally, the wafer was cut
into squares (1 × 1 cm2) for use as a control substrate (hereafter referred to as bare solar cells) for
further processing. After organic surface cleaning, the back surface of the bare solar cells was subjected
to photolithographic etching to remove the Al film followed by a 2 wt% tetramethyl-ammonium
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hydroxide (TMAH) solution at 100 ◦C to remove residual silicon. As shown in the top-view SEM image
in Figure 2b, etching resulted in matrix grooves (depth: 15 µm, width: 220 µm, length: 220 µm) with a
spacing of 180 µm. Figure 2c,d respectively present grooves without any coating and with a UC layer
(30 wt%). As shown in Figure 3a, the matrix-grooves covered approximately 31% of the back surface of
the bare solar cells (hereafter referred to as reference cells). These samples were then characterized
in terms of dark current-voltage (I-V) characteristics, optical reflectance, external quantum efficiency
(EQE), and photovoltaic J-V characteristic under AM 1.5G solar simulation at room temperature.
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Figure 2. Top-view SEM images of (a) etched pyramidal surface, (b) etched matrix-grooves, (c) grooves
without coating, and (d) grooves coated with the UC layer.

2.3. Fabrication and Characterization of Cells Coated with Up-Conversion and Plasmonic Scattering Layers

2.3.1. Cells Coated with an Up-Conversion Layer

As shown in Figure 3b, up-conversion performance was evaluated by applying an SOG layer of
SiO2 with Yb/Er-doped phosphors (YF3:Yb3+/Er3+) embedded at concentrations of 10, 20, and 30 wt%
between the matrix grooves (hereafter referred to as UC cells). The methods used for UC film
deposition were the same as those described in Section 2.1.1. To compensate for the isotropic emission
of UC photons, we also deposited a 1-µm-thick silver film beneath the up-conversion layer as a
reflector (hereafter referred to as UC/Ag cell), as shown in Figure 3c. This resulted in the reflection
of down-forward UC photons back into the silicon solar cell, resulting in increased photocurrent.
As a control, we also coated a silicon reference cell with the same SOG layer but without phosphors.
Dark I-V, optical reflectance, EQE, and photovoltaic J-V measurements were compared with those from
the reference cells to determine the contribution of the up-conversion layer.

2.3.2. Up-Conversion Combined with Plasmonic Scattering

Three up-conversion solar cells (UC/Ag cells) were coated with films of indium to depths of
3 nm, 5 nm, and 7 nm using e-beam evaporation followed by annealing in an RTA chamber under
H2 at 200 ◦C for 20 min. This annealing process caused the transformation of the indium films into
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nano-sized indium particles (In NPs), over which was applied a 94 nm-thick SiO2 capping layer.
As shown in Figure 3d, we characterized the UC cell with In NPs embedded in SiO2 on the front side
(hereafter referred to as plasmonic UC/Ag cells) in terms of optical reflectance, EQE, and photovoltaic
J-V measurements. Comparisons were made with values obtained from the UC cell in order to quantify
the plasmonic effects of the In NPs. Finally, we quantified the contribution of up-conversion and
plasmonic effects in enhancing the short-circuit current density and conversion efficiency of cells with
In NPs (plasmonic scattering) as well as Yb/Er-doped phosphors (up-conversion).
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Figure 3. Schematic diagram showing (a) reference cell, (b) up-conversion (UC) cell, (c) UC cell with
silver reflector (UC/Ag cell), (d) UC/Ag cell with In NPs embedded in SiO2 (plasmonic UC/Ag cell).

3. Results and Discussion

3.1. Up-Conversion Layer: Characterization

Figure 4 presents the EDS spectrum obtained from the silicon substrate with a SiO2 coating
containing Yb/Er-doped yttrium oxide-based phosphors (YF3:Yb3+/Er3+) at a concentration of 30 wt%.
Each element within the test sample possessed a unique atomic structure, which produced a unique
set of peaks in its electromagnetic emissions. EDS results revealed that the test sample comprised Y, F,
O, Yb, Si, and C with small quantities of Er, Mg, and Na. Figure 5 presents the PL emission spectra
obtained from a SiO2 layer containing Yb/Er-doped phosphors (YF3:Yb3+/Er3+) at concentrations of 10,
20, and 30 wt%. The excitation source was a laser diode with optical power of 500 mW and wavelength
of 405 nm. The main PL emission peaks (at 670 nm, 970 nm, and 1030 nm) are indicative of the
absorption peaks of silicon. PL emission intensity was shown to increase with phosphor concentration.

The up-conversion performance of the silicon solar cell coated with a layer of Yb/Er-doped
phosphors was estimated in terms of up-conversion emissions and photocurrent generation.
As illustrated in Figure 6a, this was achieved using optical microscope images and I-V curves
obtained under illumination from a laser diode with a wavelength of 1550 nm. Figure 6b presents an
optical microscope image with a red spot, which was obtained from the cell with a SiO2 layer containing
Yb/Er-doped phosphors (30 wt%) under illumination from a laser diode with a wavelength of 1550 nm
and optical power of 5 mW through a single-mode lensed fiber. The red emissions revealed that
applying a layer of Yb/Er-doped phosphors enabled NIR up-conversion from 1550 nm to 635-690 nm,
corresponding to the PL emission peaks at 670 nm (Figure 5). As shown in Figure 6c, the UC effects were
confirmed by measuring the I-V characteristics of a silicon solar cell coated with a layer of Yb/Er-doped
phosphors under dark and illumination conditions using a 1550 nm light source of variable power (4,
6.5, and 10 mW). Note that the dark current and photocurrent were clearly observed in the experiment,
and photocurrent increased with the incident optical power. These results illustrate the contribution of
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an up-conversion layer when subjected to sub-bandgap illumination (i.e., light source wavelength of
1550 nm).
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(b) Optical microscope image showing red spot from Yb/Er-doped phosphors illuminated by laser 
diode with wavelength of 1550 nm and optical power of 5 mW, (c) I-V characteristics of proposed 
silicon solar cell coated with an Yb/Er-doped phosphors layer under dark illumination conditions 
using 1550 nm light source of variable power. 
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One of the more interesting characteristics of noble metal nanoparticles is localized surface 
plasmon resonance (LSPR), which occurs when photons of a particular frequency induce the 
collective oscillation of conduction electrons on the surface of the nanoparticles. This oscillation 
causes the selective absorption of photons as well as efficient scattering and an increase in the strength 
of the electromagnetic field around the nanoparticles. Figure 7a presents the absorbance spectra 
(wavelength range of 200-1100 nm) of the quartz substrate, the layer of SiO2 (94 nm thick) on the 
quartz substrate, and the SiO2 layer (94 nm thick) with embedded In NPs (from 7 nm-thick indium 
film) on the quartz substrate. The absorption of the sample with In NPs embedded in the SiO2 layer 
was superior to that of the quartz substrate between 200 and 325 nm, with peak absorption at 
approximately 261 nm. The resulting absorbance spectrum revealed the LSPR absorption band and 
intensity of the LSPR induced by the In NPs. Figure 7b presents the Raman spectra of the quartz 
substrate coated using a SiO2 layer with embedded In NPs of various sizes (3 nm, 5 nm, and 7 nm). 
The samples with In NPs presented shifts in Raman peaks at 875 and 1500 cm-1, compared to the 
quartz substrate. Note that peaks in the Raman signal from noble metal nanoparticles are generally 
an indication of LSPR under a light source of specific wavelength [39]. Measurements were also 
obtained from the sample without In NPs to confirm the plasmonic effects of the In NPs embedded 
in the SiO2 layer. Note also that we observed an increase in the intensity of the Raman signals with 
an increase in the size of the In NPs. Plasmonic effects were particularly evident in the sample with 
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Figure 6. (a) Schematic diagram showing measurement set up to estimate up-conversion performance,
(b) Optical microscope image showing red spot from Yb/Er-doped phosphors illuminated by laser
diode with wavelength of 1550 nm and optical power of 5 mW, (c) I-V characteristics of proposed
silicon solar cell coated with an Yb/Er-doped phosphors layer under dark illumination conditions using
1550 nm light source of variable power.

3.2. Plasmonic Effects of Indium Nanoparticles Imbedded in SiO2 Layer

One of the more interesting characteristics of noble metal nanoparticles is localized surface
plasmon resonance (LSPR), which occurs when photons of a particular frequency induce the collective
oscillation of conduction electrons on the surface of the nanoparticles. This oscillation causes the
selective absorption of photons as well as efficient scattering and an increase in the strength of the
electromagnetic field around the nanoparticles. Figure 7a presents the absorbance spectra (wavelength
range of 200-1100 nm) of the quartz substrate, the layer of SiO2 (94 nm thick) on the quartz substrate,
and the SiO2 layer (94 nm thick) with embedded In NPs (from 7 nm-thick indium film) on the quartz
substrate. The absorption of the sample with In NPs embedded in the SiO2 layer was superior to
that of the quartz substrate between 200 and 325 nm, with peak absorption at approximately 261 nm.
The resulting absorbance spectrum revealed the LSPR absorption band and intensity of the LSPR
induced by the In NPs. Figure 7b presents the Raman spectra of the quartz substrate coated using a
SiO2 layer with embedded In NPs of various sizes (3 nm, 5 nm, and 7 nm). The samples with In NPs
presented shifts in Raman peaks at 875 and 1500 cm-1, compared to the quartz substrate. Note that
peaks in the Raman signal from noble metal nanoparticles are generally an indication of LSPR under a
light source of specific wavelength [39]. Measurements were also obtained from the sample without
In NPs to confirm the plasmonic effects of the In NPs embedded in the SiO2 layer. Note also that we
observed an increase in the intensity of the Raman signals with an increase in the size of the In NPs.
Plasmonic effects were particularly evident in the sample with larger In NPs (7 nm).

3.3. Reference Textured Silicon Solar Cell and Up-Conversion Solar Cells

Figure 8 presents the dark I-V curves obtained from the reference textured silicon solar cell, UC
cell, and UC/Ag cell. The reverse saturation current-density (J0) and ideality factor (n) values were
extracted from the dark I-V curves to evaluate the surface states and passivation performance of the
proposed solar cell. The reverse saturation (J0) and n values were as follows: reference textured silicon
solar cell (8.62 × 10−7 A/cm2 and 2.38), UC cell (4.23 × 10−7 A/cm2, 2.30), and UC/Ag cell (6.76 ×
10–7 A/cm2, 2.36). The reductions in J0 and n indicate the contribution of the SiO2 and/or passivation
effects from Yb/Er-doped phosphors on the back-side surface of the cells. These results can be attributed
to the suppression of surface carrier recombination on the matrix-grooved surface by the SiO2 layer
containing Yb/Er-doped phosphors. Figure 9 presents the measured optical reflectance of the reference
cell, UC cell, and UC/Ag cell. The average weighted reflectance (RW) values (3.73 %) were calculated
over a wavelength range of 350 to 1000 nm. The optical reflectance values of the UC cell and UC/Ag
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cell were the same as those of the reference cell. This can be attributed to the absence of photons
reflected from the UC layer and Ag-reflector, thereby indicating the absorption of all incident photons
(350–1000 nm wavelengths) in the 150-µm-thick silicon layer.
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Figure 7. (a) Absorbance spectra of bare quartz substrate and quartz substrate coated with SiO2 layer
containing In NPs of various sizes (3 nm, 5 nm, and 7 nm), (b) Raman scattering spectrum of bare
quartz substrate and quartz substrate coated with SiO2 layer containing In NPs of various sizes (3 nm,
5 nm, and 7 nm).
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In this study, EQE data were obtained by adjusting the incident light from long wavelengths
(1000 nm) to short wavelengths (350 nm). Figure 10 presents the EQE response of the reference cell,
UC cell, and UC/Ag cell with phosphor concentrations of (a) 10 wt%, (b) 20 wt%, and (c) 30 wt%.
The inset in Figure 10 illustrates the enhanced up-conversion performance at wavelengths between
960 and 1000 nm, in samples with various phosphor concentrations. The best EQE performance was
obtained from the samples with a phosphor concentration of 30 wt%. Table 1 lists the average external
quantum efficiency (EQEW) calculated at wavelengths between 350 and 1000 nm. For the sake of clarity,
we calculated the EQEW of the cells as follows:

EQEW =

∫ 1000 nm
350 nm EQE(λ)∅ph(λ)dλ∫ 1000 nm

350 nm ∅ph(λ)dλ
× 100% (1)

where EQE(λ) indicates the external quantum efficiency at a given wavelength (λ) and ϕph (λ) is the
photon flux of AM 1.5G at the same wavelength (λ). The EQEW of the reference cell was 87.27%.
We obtained higher EQEW values from the UC cell (87.41–87.63%), due to the up-conversion of photons
by Yb/Er-doped phosphors, and the UC/Ag cell (87.46–87.86%) due to the generation of additional
photocurrent from UC photons reflected by the Ag. The highest EQEW values were obtained from
the UC cell and UC/Ag cell with a phosphor concentration of 30 wt%. These EQEW results were
subsequently used as a baseline to evaluate the performance of cells with an up-conversion layer or a
combination of up-conversion and plasmonic scattering layers.
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Table 1. Ideality factor (n), reverse saturation current density (J0), average weighted reflectance (RW),
and average external quantum efficiency (EQEW).

Silicon Solar Cell Ideality Factor (n) Reverse Saturation Current
Density (J0, A/cm2)

RW (%)
@ 350–1000 nm

EQEW (%)
@ 350–1000 nm

Reference Cell (Ref. Cell) 2.38 8.62 × 10–7 3.73 87.27
UC (10 wt%) Cell 2.31 5.51 × 10–7 3.73 87.41
UC (20 wt%) Cell 2.32 5.47 × 10–7 3.73 87.50
UC (30 wt%) Cell 2.30 4.23 × 10–7 3.73 87.63

UC (10 wt%)/Ag Cell 2.37 7.08 × 10–7 3.73 87.46
UC (20 wt%)/Ag Cell 2.37 8.04 × 10–7 3.73 87.71
UC (30 wt%)/Ag Cell 2.36 6.76 × 10–7 3.73 87.86

Plasmonic (7 nm) UC/Ag Cell 2.26 5.36 × 10–7 3.62 88.94

Figure 11 presents the EQE enhancement (∆EQE) of (a) the reference cell with an Ag reflector
relative to that of the reference cell (violet line) and (b) the UC/Ag cell at phosphor concentrations
of 30 wt% relative to that of the reference cell (orange line). We observed that an increase in the
∆EQE values of the reference cell with an Ag reflector at wavelengths of 800–1000 nm, due to the
absorption of photons of long wavelength (> 800 nm). Note that these photons were transmitted to
the rear surface of the silicon cell (a distance of 150-µm) and then reflected back into the silicon by
the Ag reflector. The re-absorption of the reflected photons by the silicon also led to the generation of
additional photocurrent. The UC cell with an Ag reflector also presented an increase in EQE intensity
with two peaks in the ∆EQE spectrum (920, 980 nm). Overall, these results can be attributed to the
back-scattering of photons by Yb/Er-doped phosphor particles and the effects of up-conversion from
near-infrared to the visible spectrum by Yb/Er-doped phosphors under excitation from transmitted
photons with a wavelength of approximately 980 nm. The EQE enhancement in the current study
was small. However, our results demonstrate the possibility of using Yb/Er-doped phosphors as an
up-conversion vehicle to enhance the efficiency of thin silicon solar cells (150-µm).
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Figure 12 presents photovoltaic J-V curves obtained from the reference cell, UC cell, and UC/Ag cell
with Yb/Er-doped phosphors at a concentration of 30 wt% in the UC layer. Table 2 lists the photovoltaic
performance of the reference cell, UC cell, and UC/Ag cell. Under AM 1.5G solar simulation at room
temperature, the photovoltaic performance of the reference cell was as follows: open-circuit voltage
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(Voc) of 604.7 mV, short-circuit current-density (JSC) of 39.43 mA/cm2, and conversion efficiency (η) of
14.45%. The layer of Yb/Er-doped phosphors increased the JSC and η of the UC cell to 40.08 mA/cm2

and 14.82%, respectively. Using a layer of Yb/Er-doped phosphors in conjunction with an Ag reflector
resulted in the highest JSC (40.29 mA/c m2) and η (14.94%). Note that the UC/Ag cell outperformed the
UC cell in this regard. These results indicate that the up-conversion provided Yb/Er-doped phosphors
in the SiO2 layer enhanced the photovoltaic performance of the solar cells. For the sake of clarity,
we calculated the JSC value of UC cell and UC/Ag cell as follows:

JSC = JSC−Re f + ∆JSC−UC + ∆JSC−UC/Ag (2)

where JSC-Ref is the JSC value of the reference cell, ∆JSC-UC is the increase in JSC due to the up-conversion of
photons by Yb/Er-doped phosphors, and ∆JSC-UC/Ag is the increase in JSC value due to the up-conversion
of photons by Yb/Er-doped phosphors as well as the reflection of photons by the Ag reflector. The results
obtained from the UC (30 wt%)/Ag (1 µm) solar cell were subsequently used as a baseline in evaluating
the performance of cells with a combination of up-conversion and plasmonic scattering layers.

Table 2. Photovoltaic performances of all evaluated solar cells.

For UC Comparison Voc
(mV)

JSC
(mA/cm2)

F.F.
(%)

η
(%)

∆JSC
(%) ∆η (%)

Reference Cell (Ref. Cell) 604.7 39.43 60.6 14.45 – –
UC (30 wt%) Cell 608.6 40.08 60.7 14.82 1.65 2.56

UC (30 wt%)/Ag Cell 608.0 40.29 61.0 14.94 2.18 3.39

Comparison of plasmonic effects – – – – – –

UC (30 wt%)/Ag Cell 608.0 40.29 61.0 14.94 – –

Plasmonic (3 nm) UC/Ag Cell 608.2 40.82 61.2 15.19 1.32 1.67
Plasmonic (5 nm) UC/Ag Cell 608.1 41.11 61.3 15.32 2.04 2.54
Plasmonic (7 nm) UC/Ag Cell 608.3 41.46 61.2 15.43 2.90 3.28

Comparison of UC and Plasmonic Effects – – – – – –

Reference Cell (Ref. Cell) 604.7 39.43 60.6 14.45 – –
UC (30 wt%) Cell 608.6 40.08 60.7 14.82 1.65 2.56

UC (30 wt%)/Ag Cell 608.0 40.29 61.0 14.94 2.18 3.39

Plasmonic (3 nm) UC/Ag Cell 608.2 40.82 61.2 15.19 3.53 5.12
Plasmonic (5 nm) UC/Ag Cell 608.1 41.11 61.3 15.32 4.26 6.02
Plasmonic (7 nm) UC/Ag Cell 608.3 41.46 61.2 15.43 5.15 6.78

3.4. Textured Silicon Solar Cells with Up-Conversion and Plasmonic Scattering Layers

Figure 13 presents the optical reflectance of the reference cell, UC (30 wt%)/Ag cell, and plasmonic
UC (30 wt%)/Ag cell with In NPs (3 nm, 5 nm, and 7 nm). The reflectance of the plasmonic UC
(30 wt%)/Ag cell was lower that of the reference cell and UC (30 wt%)/Ag cell at the wavelength ranges
of 350-450 nm and 650-1000 nm. This can be attributed to plasmonic forward scattering induced by
the In NPs. The lowest reflectance was observed in the plasmonic UC/Ag cell with In NPs (7 nm).
The reflectance of the plasmonic UC/Ag cell was also slightly higher than that of the reference cell and
UC/Ag cell (without a SiO2 layer on the front side) at wavelengths between 450 and 550 nm. This can
be attributed to the fact that the SiO2/SiNx layer was not of optimal thickness, such that reflectance and
destructive interference could not be minimized in this wavelength band. The RW values of the cells
are listed in Table 1.

Figure 14a presents the EQE of the reference cell, UC (30 wt%)/Ag cell and plasmonic UC
(30 wt%)/Ag cell with In NPs (3 nm, 5 nm, and 7 nm). The EQE response values are in good agreement
with the optical reflectance values. The EQE value of the plasmonic UC cells increased with an increase
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in the size of the In-NPs. For the sake of clarity, we calculated the EQETotal value of the plasmonic UC
cell as follows:

EQETotal = EQERe f + ∆EQEUC + ∆EQEScat InNPs (3)

where EQERef is the EQE value of the reference cell, ∆EQEUC is the EQE enhancement attributable to
the up-conversion layer, and ∆EQEUC+Scat is the EQE enhancement attributable to the up-conversion
layer plus the plasmonic scattering layer. Table 1 lists the EQEW values of all cells evaluated in this
experiment. The highest EQEW value (88.94%) was obtained from the plasmonic UC cell with In NPs
of larger diameter (7 nm). Figure 14b presents the internal quantum efficiency (IQE) response of the
reference cell, UC (30 wt%)/Ag cell, and plasmonic UC (30 wt%)/Ag cell with In NPs (3 nm, 5 nm,
and 7 nm), illustrating the influence of plasmonic particles on cell parameters.Energies 2019, 12, x FOR PEER REVIEW 12 of 17 
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Figure 14. (a) EQE response and (b) internal quantum efficiency (IQE) response of reference cell, UC
(30 wt%)/Ag cell, and plasmonic UC (30 wt%)/Ag cell with In NPs (3 nm, 5 nm, 7 nm).

Figure 15 presents EQE enhancement (∆EQE) spectra of the UC (30 wt%)/Ag cell and plasmonic UC
(30 wt%)/Ag cell with In NPs (3 nm, 5 nm, 7 nm), versus the values obtained from the reference cell. The EQE
response of the plasmonic UC (30 wt%)/Ag cell with In NPs exceeded that of the UC/Ag cell across a wide
range of wavelengths, due to plasmonic scattering induced by In NPs and up-conversion by Yb/Er-doped
phosphors. Note also that we observed a considerable increase in EQE due to the backscattering of photons
by Yb/Er-doped phosphors in the plasmonic UC (30 wt%)/Ag cell with 7 nm In NPs.

Figure 16 presents the photovoltaic J-V curves of the reference cell, UC (30 wt%)/Ag cell and the
plasmonic UC (30 wt%)/Ag cells with In NPs (3 nm, 5 nm, and 7 nm). Table 2 lists the photovoltaic
performance of all evaluated cells to compare the effects of up-conversion, plasmonic scattering,
and a combination of up-conversion with plasmonic scattering. The JSC and η values were as follows:
plasmonic UC/Ag cell with In NPs (3 nm) (JSC = 40.82 mA/cm2, η =15.19%), plasmonic UC/Ag cell with
In NPs (5 nm) (JSC = 41.11 mA/cm2, η =15.32%) and plasmonic UC/Ag cell with In NPs (7 nm) (JSC =

41.46 mA/cm2, η =15.43%). Significant increases in JSC and η values were obtained when using In NPs
of larger size. For the sake of clarity, we calculated the JSC value of plasmonic UC cell as follows

JSC = JSC−Re f + ∆JSC−UC/Ag + ∆JSC−Scat−InNPs (4)
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where JSC-Ref is the JSC value of the reference cell, ∆JSC-UC/Ag is the JSC enhancement attributable to the
up-conversion layer and Ag reflector, and ∆JSC-Scat-In NPs is the JSC enhancement attributable to the
plasmonic scattering layer.Energies 2019, 12, x FOR PEER REVIEW 14 of 17 
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Figure 16. Photovoltaic J-V curves of reference cell, UC (30 wt%)/Ag cell, and plasmonic UC (30 
wt%)/Ag cells with In NPs (3 nm, 5 nm, 7 nm). 

4. Conclusions 

This study examined the up-conversion characteristics of Yb/Er-doped yttrium oxide-based 
phosphors embedded in a SiO2 layer as well as the plasmonic effects of indium nanoparticles 
embedded (at various concentrations) in a SiO2 layer. We also examined the conversion performance 
of textured silicon solar cells with an up-conversion layer, a plasmonic scattering layer, or a 
combination of up-conversion and plasmonic-scattering layers. Compared to a reference silicon solar 
cell, depositing a layer of SiO2 containing 30 wt% Yb/Er-doped yttrium oxide-based phosphors and 
a silver reflector improved conversion efficiency by 3.39%, whereas applying that same up-
conversion layer and plasmonic-scattering layer of In NPs improved conversion efficiency by 6.78%, 
due to the combination of up-conversion plus plasmonic scattering effects. The absolute conversion 
efficiency of the textured silicon solar cell with a combination of up-conversion and plasmonic-
scattering layers (15.43%) exceeded that of the cell with an up-conversion layer only (14.94%) and 
that of the reference cell (14.45%). 
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Figure 16. Photovoltaic J-V curves of reference cell, UC (30 wt%)/Ag cell, and plasmonic UC (30
wt%)/Ag cells with In NPs (3 nm, 5 nm, 7 nm).

In summary, we obtained impressive improvements in the JSC and η values of the UC/Ag
cell (∆JSC= 2.18%, ∆η = 3.39%, compared to reference cell), due to the up-conversion effects of the
Yb/Er-doped phosphors. Notable improvements were observed in the cell with In NPs (7 nm) (∆JSC=

2.90%, ∆η = 3.28%, compared to reference cell), due to the plasmonic scattering of the In NPs. Further
improvements were observed in the plasmonic UC/Ag cell with the In NPs (7 nm) and UC (30 wt%)
layers (∆JSC = 5.15%, ∆η = 6.78%, compared to the reference cell), due to the combination of plasmonic
scattering and up-conversion effects.
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4. Conclusions

This study examined the up-conversion characteristics of Yb/Er-doped yttrium oxide-based
phosphors embedded in a SiO2 layer as well as the plasmonic effects of indium nanoparticles
embedded (at various concentrations) in a SiO2 layer. We also examined the conversion performance of
textured silicon solar cells with an up-conversion layer, a plasmonic scattering layer, or a combination
of up-conversion and plasmonic-scattering layers. Compared to a reference silicon solar cell, depositing
a layer of SiO2 containing 30 wt% Yb/Er-doped yttrium oxide-based phosphors and a silver reflector
improved conversion efficiency by 3.39%, whereas applying that same up-conversion layer and
plasmonic-scattering layer of In NPs improved conversion efficiency by 6.78%, due to the combination
of up-conversion plus plasmonic scattering effects. The absolute conversion efficiency of the textured
silicon solar cell with a combination of up-conversion and plasmonic-scattering layers (15.43%) exceeded
that of the cell with an up-conversion layer only (14.94%) and that of the reference cell (14.45%).
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