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Abstract: This work continues the presentation commenced in Part I of the second-order sensitivity
analysis of nuclear data of a polyethylene-reflected plutonium (PERP) benchmark using the
Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM). This work reports the results
of the computations of the first- and second-order sensitivities of this benchmark’s computed leakage
response with respect to the benchmark’s 21,600 parameters underlying the computed group-averaged
isotopic scattering cross sections. The numerical results obtained for the 21,600 first-order relative
sensitivities indicate that the majority of these were small, the largest having relative values of O (1072).
Furthermore, the vast majority of the (21600) second-order sensitivities with respect to the scattering
cross sections were much smaller than the corresponding first-order ones. Consequently, this work
shows that the effects of variances in the scattering cross sections on the expected value, variance, and
skewness of the response distribution were negligible in comparison to the corresponding effects
stemming from uncertainties in the total cross sections, which were presented in Part I. On the
other hand, it was found that 52 of the 21600 x 180 mixed second-order sensitivities of the leakage
response with respect to the scattering and total microscopic cross sections had values that were
significantly larger than the unmixed second-order sensitivities of the leakage response with respect
to the group-averaged scattering microscopic cross sections. The first- and second-order mixed
sensitivities of the PERP benchmark’s leakage response with respect to the scattering cross sections
and the other benchmark parameters (fission cross sections, average number of neutrons per fission,
fission spectrum, isotopic atomic number densities, and source parameters) have also been computed
and will be reported in subsequent works.

Keywords: polyethylene-reflected plutonium sphere; first- and second-order sensitivities; microscopic
scattering and total cross sections; expected value; variance and skewness of leakage response

1. Introduction

In continuation of the results presented in Part I [1], this work presents the numerical results for
the first- and second-order sensitivities of the leakage response of the polyethylene-reflected plutonium
(PERP) benchmark described in [2] with respect to the benchmark’s group-averaged isotopic scattering
cross sections. This work also presents the results for the mixed second-order sensitivities to both the
scattering and total cross sections. As has been described in Part I [1], the numerical model of the PERP
benchmark includes 180 (Jo: = I X G) imprecisely-known parameters for the group-averaged total
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microscopic cross sections and 21,600 (Jos = (G X G) X I X (ISCT + 1)) imprecisely-known parameters
for group-averaged scattering microscopic cross sections, where I = 6, G = 30 and ISCT = 3 are
the number of isotopes, energy groups and Legendre expansion orders for the PERP benchmark,
respectively. Therefore, there are 21,600 first-order sensitivities, 21600 X 21600 second-order sensitivities
of the PERP benchmark’s leakage response to the group-averaged microscopic scattering cross sections,
and 21600 x 180 mixed second-order sensitivities to the scattering and total microscopic cross sections.
These sensitivities will be computed by specializing the general expressions derived by Cacuci [3] to the
PERP benchmark. Section 2 of this work presents computational results for the first- and second-order
sensitivities of the PERP benchmark’s leakage response with respect to the group-averaged microscopic
scattering cross sections. Section 3 reports the numerical results for the matrix of mixed second-order
leakage sensitivities to the group-averaged total and scattering microscopic cross sections. Section 4
presents the impact of the first- and second-order sensitivities on the uncertainties induced for the
leakage response by the imprecisely-known group-averaged scattering microscopic cross section.
Section 5 concludes this work. The computational results for the sensitivities of the PERP leakage
response to the remaining imprecisely-known model parameters (fission cross sections and number
of neutrons produced per fission, fission spectra, and isotopic number densities) will be reported in
subsequent publications.

2. Computation of First- and Second-Order Sensitivities of the PERP Leakage Response to
Scattering Cross Sections

The physical system considered in this work is the same polyethylene-reflected plutonium
(acronym that will be used in this work: PERP) metal sphere benchmark [2] as described in Part I [1].
As in Part I [1], the neutron flux is computed by solving numerically the neutron transport equation
using the PARTISN [4] multigroup discrete ordinates transport code. For the PERP benchmark under
consideration, PARTISN [4] solves the following multi-group approximation of the neutron transport
equation with a spontaneous fission source provided by the code SOURCES4C [5]:

B¢ (a)pf(r, ) = Q%(r), ¢=1,...,G, 1)
8(rs, Q) =0,7,€S,Q-n<0, g=1,...,G, @)
where

BS (o) 8 (1, Q) £ Vs (r, Q) + Zf (1) 93 (1, )

G G
-8 (» A Q 4 ‘(v VA, - 3)
- E st (7’,0 - Q)gog (r,Q )dQ - x8(r) ,Z‘: f (VZ)f (r) @8 (r,Q )dﬂ ;
¢ =14n §'=l4r
Ny
Q3(r) 2 Y ANgi FyrviFe B /msinh B2, g =1,...,G, )
k=1

and where « denotes the “vector of imprecisely-known model parameters”, as defined in Part I [1].
The PARTISN [4] calculations used MENDF71X 618-group cross sections [6] collapsed to G = 30
energy groups, with group boundaries, ES, as presented in Part I [1]. The MENDF71X library uses
ENDE/B-VIIL.1 Nuclear Data [7]. As has been discussed in [1], the fundamental quantities (i.e., system
responses) of interest for subcritical benchmarks (such as the PERP benchmark) are singles counting
rate, doubles counting rate, the leakage multiplication, and the total leakage. The total leakage is
physically more meaningful than count rates because it does not depend on the detector configuration.
For this reason, many systems are characterized for practical applications by their total leakage rather
than by the count rate that a particular detector would see at a particular distance. For this reason, this
work considers the total leakage from the PERP benchmark to be the paradigm response of interest for
sensitivity analysis; sensitivities analyses of counting rates and other responses can be performed in
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an analogous manner, i.e., by following the general ideas that will be presented in this work (and in
subsequent related works).

Mathematically, the total neutron leakage from the PERP sphere, denoted as L(«), will depend
(indirectly, through the neutron flux) on all of the imprecisely-known model parameters and is defined
as follows:

G
o) £ dsz: d0Q-ngs(r, Q). (5)
5[ 8 10‘1!;0

Figure 1 shows the histogram plot of the leakage for each energy group for the PERP benchmark.
The total leakage computed using Equation (5) for the PERP benchmark is 1.7648 x 10° neutrons/sec.
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Figure 1. Histogram plot of the leakage for each energy group for the PERP benchmark.

The scattering transfer cross section 5 % (r, a - Q) from energy group g/, g =1,...,Ginto

energy group g, § = 1,...,G, is computed in terms of the /-th order Legendre coefficient af;l_.)g , of the
Legendre-expanded microscopic scattering cross section from energy group g’ into energy group g
for isotope i. Since the cross-sections for every material are treated in the PARTISN [4] calculations

as being space-independent within the respective material, the variable r will henceforth no longer

-8
s,Li

and the finite-order Legendre-expansion of Z§ o8 (Q - Q) has the following expression:

appear in the arguments of the various cross sections. The coefficients ¢ are tabulated parameters,

z?ﬁg@i-arﬁ::ig =50 - ),

, , =6 ISCT=3 , , (6)
zgjﬂa ﬁ(ﬁe;ngm y (m+1yﬁf@m@)-0)7n:1g,
i=1 1=0 S

where ISCT = 3 denotes the order of the respective finite expansion in Legendre polynomial.
The total cross section Zf for energy group g, ¢ =1,...,G, and material m is computed for the
PERP benchmark using the following expression:

M=2 G
878 —
Z tm’ Zszth Zsz Gf1+a ;+ Og 1= Oll'/m_llzl )
=1
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where ¢4 . and ¢° . denote, respectively, the tabulated group microscopic fission and neutron capture
fi c,i

cross sections for group g, ¢ = 1,...,G. Other nuclear reactions, including (n,2n) and (n,3n) reactions
are not present in the PERP benchmark. The expressions in Equations (6) and (7) indicate that the
zeroth order (i.e., [ = 0) scattering cross sections must be considered separately from the higher order
(i.e., I = 1) scattering cross sections, since the I = 0 scattering cross sections contribute to the total cross
sections, while the [ > 1 scattering cross sections do not contribute to the total cross sections.

As discussed in PartI[1], the total cross section Z‘f - Zf (t) will depend on the vector of parameter
t, which is defined as follows:

A + A + A +
t:[tl,,th] :[tll"'lt]g[;nll"'ln]n] = [thN] 7 ]t:]dt+]nr (8)
where .
A A +
N= [7’11/~~~,7’l]n] £ [N1,1,N2,1,N31,N41,N52,Ne 2], Ju = 6. )
+ t
A A |1 2 G 8 1 G
o = [t1,...,t]m] = [ot,izlfgt,z‘:l""’Ut,izl""’Ot,i"'"Gt,i:I""’Ot,i:I] , (10)

i=1,.... g=1,...,G, |4 =1xG.

In Equations (8)—(10), the dagger denotes “transposition,” o‘f’ ; denotes the microscopic total cross
section for isotope i and energy group g, N;,, denotes the respective isotopic number density, and J,
denotes the total number of isotopic number densities in the model. Thus, the vector t comprises a
total of J; = Jor + Ju = 30 X 6 + 6 = 186 imprecisely-known “model parameters” as its components.

In view of Equation. (6), the scattering cross section Zfl_)g (Q’ - Q) - Zf’_)g (s; a - Q)
depends on the vector of parameters s, which is defined as follows:

+ t +
A A . A . _
s 2 [sl,...,sls] 2 [51/-~~15]gsr”1/~--/"]n] 2 [0 N, Js = Jos + Jn, (11)
+ mec]  erede el el o1 +
a s gr=1-g=1 gr=2-g=1 gr=Gog=1 gr=1-g¢=2 g/=2-g=2 gr—8 G—G ]
US_[Sl"“'Sfas] = [Us,l:(),i:l 105 1—0i=1 77 951=0,i=1 "9s1=0i=1 ’9si=0,=1 7" Ts1i 7" r951sCT,i=1] * (12)

1=0,...,ISCT; i=1,...,I; g, =1,...,G; Jos = (GXG)XIX (ISCT +1).

As stated above, the zeroth order (i.e., I = 0) scattering cross sections need to be separately
considered from the higher order (i.e., [ > 1) ones. Therefore, in o5, the total number of zeroth order
scattering cross section is denoted as ] ;—o, where J;5;—0 = G X G X I; and the total number of higher
order (i.e., | > 1) scattering cross sections is denoted as [, >1, where J5>1 = G X G XIXISCT, with
Jos =0 + Josj>1 = Jos. The vector s comprises a total of Jos + ] = 30x30x6x (34 1) +6 = 21606
imprecisely-known components (“model parameters”).

Recall from Part I [1] that the components of the vector of first-order sensitivities of the leakage
response with respect to the model parameters are denoted as $(!) («), which is defined as follows:

dL(o) dL(ox) dL(ox) dL(ox) JL(ex) JL(ex) JL(ex) ¥
doy ' dos " doy ' dv ' dp ' dq " ON |’

s () 2
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The symmetric matrix of second-order sensitivities of the leakage response with respect to the
model parameters is denoted as s (a), and is defined as follows:

[ PL(x)
(90'[30‘[
PL(a)  PL(x)
0500 005005
PL(a)  PL(x) PL(x)
80‘f¢90‘t 80‘f80'5 90‘f80'f
(2) A ?L( ) %L( ) PL(x) L)

S (0() = Jdvdoy AL Qvaof ovov

?L( ) *L(x) PL(x) L) *L(x)

dpdo dpdos dpdoy dpdv dpdp

PL(x)  PL(x) PL(a)  PL(x) PL(x) *L(x)

dqdo dqdos dqdoy dqdv dqdp dJqdq

?L( ) %L( ) PL(x) ?L(«) PL(«x) PL(x) *L(x)
| JINdo; dNdos JNdo ¢ JINdv JdNdp dNdq INON

* * * * * *

* * * * *

* * *

The results as well as their impact on the uncertainties induced in the leakage response by the
first- and second-order sensitivities dL(«)/do; and, respectively, d*L(«)/doidot, were reported in
Part I [1]. This work will report the computational results for the first-order sensitivities dL(«)/d o
and the second-order sensitivities 9°L(«) /905005 and 9°L( ) /dosdoy, along with their effects on the
uncertainties induced in the leakage response.

2.1. First-Order Sensitivities dL(«) /o

The equations needed for deriving the expressions of the first-order sensitivities of JL/ds;, j =
1,...,Jos will differ from each other depending on whether the parameters s; correspond to the
zeroth-order (I = 0) or to the higher order (I > 1) scattering cross sections. There are two distinct cases,

as follows:
1) (%)( \ j=1,...,]ss =0, where the quantities s; refer to the parameters underlying
1 J(s=0s=0
the zeroth-order scattering microscopic cross sections; and
2 (aLa(s“) )( ) j=1,...,Jo,,, where the quantities s; refer to the parameters underlying the
I 5=05,1>1 o

I"_order (I > 1) scattering microscopic cross sections.

2.1.1. First-Order Sensitivities (aLa(é‘)) ,
% (S:Us/l:0>

The first-order sensitivities of the leakage response with respect to zeroth-order scattering
microscopic cross sections are computed by particularizing Equations (150) and (151) in [3], where
Equation (151) provides the contributions arising directly from the scattering cross sections, while
Equation (150) provides contributions arising indirectly through the total cross sections. The expression
obtained by particularizing Equation (151) in [3] to the PERP benchmark yields:

j = 1!"'/]05,1:0

(1) G G , o588 (600 — , ,
()" = % favfaoy0sea) ¥ a0 =000 0),
I N(s=05)=0)  g=1 4n &' =l4rn ! (13)

for ] - 1/" '/]US,ZZOI

where the multigroup adjoint fluxes ()8(r,Q), ¢ = 1,...,G are the solutions of the following
first-Level Adjoint Sensitivity System (1st-LASS) presented in Equations (156) and (157) in [3]:

ADE )y M2 (r,Q) = Q-no(r-r4), g=1,...,G, (14)

Y8 (r;, Q) =0,0-n>0, g=1,...,G, (15)
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where 4 is the radius of the PERP sphere, and where the adjoint operator A():€( o) takes on the
following particular form of Equation (149) in [3]:

A(l)'g(“)¢(1)rg(rlﬂ)
G ’ ’ ’ ’
s _Q.W(l),g(r,n) +35 () pDE(r,q) - ¥ [d'ST8 (s;r,0 5 Q) ypDE (r,0) 16)
&'=lyn
_Vz'?(f ’ fdﬂ X8 (p;r )gb(l)/g/<r, Q'), g=1,...,G
§'=l4n

The contributions stemming from the total cross sections are computed using Equation (150) in [3]
L% _ 9L g IS _ T

in conjunction with the relations g7 5> = £= and ——~ 5 = ——— to obtain:
i 95 j i 95 j
IL(x)\? & IX8(t
- ==Y | av | ay®s(,0)es(r,0)— Y =t A7)
0s; _ 0s; ’
] (S_Us,l=0) g:l v 4m ]

Adding Equations (13) and (17) yields the following complete expression:

(1) ()
IL{x) IL(ex) IL()
( az )(SUS,I()) ( 35] )(S OS,IGO)+( asj )(/555,10)
8 28(c.0
= L fpav[ao y0s,o) L [ a0l B0 )
g=1

G 8’ =14n -
~L JydV a0t 8(r, s (r, MY, for j=1,..., Jpsizo-

For the PERP benchmark, when the parameters s; correspond to the zeroth-order scattering
g] g]

Sli= the following relations hold:

microscopic cross sections, i.e., s; = 0

M I ,
/s ’ ’ ’ N; HOE=10)
mf (50 50)  oxf g(sQ—>Q) _ [mzllzl ”"G 0o )]
Js; - 8§’ j—8; - § =g
j j78j j78j
90 sl] 1] 90 sl] :]
M I ISCT N (19)
AL LY Niw(@4+1)05, 8P (0 n)]
_ m=1i=1 1=0 _ , N . ’ .
a 2051 S = g0 Niy (21 + 1)P1(- ),
a[] 1]
1ol ¥ f e et 0r £ o500
N; oS .(f)+0° .(c)+ ° (s
IZF () _ J mZh); Ni ”ZU“( )A _ _=mi=m L T =
9; P P
sI] 01] sl] 01] (20)
M o 1
Zl Zl Z szU ,i(s)
_ m=li=lg = o )
B g J_’gj N 6gljgNli/mj’
do
sl =0,i;

=0
where the subscripts ij, [;, &’ j-8j and m; refer to the isotope, order of Legendre expansion, energy
groups, and material associated with the parameter s;, respectively, and where Og':g and dg;¢ denote
the Kronecker-delta functionals (e.g., 6g/jg =lifg’; =g 6g/],g = 0if g’; # g). Inserting Equations (19)
and (20) into Equation (18), using the addition theorem for spherical harmonics in one-dimensional
geometry, performing the respective angular integrations, and finally setting /; = 0 in the resulting
expression yields the following expression:

7 g 1),9i ’ ’
(F52) L, = N otV O80) =Ny v [ 1y 15, 00 0,

N (21)
forj=1,...,Jos=0,
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’

where the forward and adjoint flux moments (pg '(r) and éél)'gj (r) are defined as follows:

Py (r) = f4 A0 3 (r,Q), (22)
éél),g(r)éﬁ d0¢(1)'g(7,0)~ (23)

IL(x)

2.1.2. First-Order Sensitivities ( ) )
i (s=04151)

,j == 1,. ..,0-5,121
The first-order sensitivities of the leakage response with respect to the *-order (I > 1) microscopic
scattering cross sections are computed by particularizing Equation (151) in [3]:

IL(x) , (0 50) o
( (95] )(S—Gs/lzl) N Z fV dedQ 17[} g r Q Zl;ﬁ[ dQ (95] qog (r’Q )’ (24)

forj= 1,...,05,121.
Inserting Equation (19) into Equation (24), using the addition theorem for spherical harmonics in

one-dimensional geometry and performing the respective angular integrations, yields the following
expression:

JL(x ’ 1),q; .
( a( ] )) = Ni,',mj(ZZj + 1)f dV(P}g](r)‘El( : g](r)/ J=1 . Tesiz1s (25)
7 M s=0y21) v

]

’

where the forward and adjoint flux moments (pf I(r) and & l( ‘1)"?" (r) are defined as follows:
j j

HOE f4 dQ P;(Q) s (r,Q), (26)
TC
V502 [ daryse0), @)
47
The numerical values of the first-order relative sensitivities, 5(1)(05;% l.) =
(3L/&a§;%/l)( fl_)%l/L) =1,...,6;g = 1,...,30, of the leakage response with respect to the

zeroth-order self-scattering microscopic cross sections for the six isotopes contained in the
PERP benchmark will be presented in Section 2.3, in tables that will also include comparisons

with the numerical values of the corresponding second-order unmixed relative sensitivities

8§78 878 ) A (32 88 88 878 878 _ o —
S( )( s,1=0, ’GS,I:O,i)_(a L/aasl 018051 01)(051 0,i sl Ol/L) 1_1""’6’g_1""’30'

2.2. Second-Order Sensitivities d*L(ot) /o590

As has already been mentioned, it is important to note that the equations needed for deriving the
expressions of the second-order sensitivities of d*L/ d5i08my , ] =1,..., Jos;ma = 1,..., Jos will differ
from each other depending on whether the parameters s; and s;;, correspond to the zeroth-order
(I =0) or to the higher order (I > 1) scattering cross sections. There are four distinct cases, which will

be presented in this Section’s four sub-sections, as follows:
2 .
A. (JQ—SL) ;=1 Jesi=0;m2 =1,..., Jss =0, where both parameters s; and sy,
17212 /(s=05,1-0,5=05,1=0)

correspond to the zeroth-order scattering cross sections;
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2’L s . _
B. (as_asm ) B B 7 =1 Jesi=0;m2 = 1,..., J 55151, Where parameters Sj correspond
1722 ) (5=031-0,5=05 1>1)

to the zeroth-order scattering cross sections, and s,;, correspond to the I

cross sections;

-order (I > 1) scattering

2L = ;M =
C. (asasm ) ) B =1, ss1;m = 1,...,]s1—0, where parameters Sj correspond
992 ) (s=04 151,5=05 j—0)

to the I"-order (I > 1) scattering cross sections, and s, correspond to the zeroth-order scattering
cross sections;

2L = My =
b. (95 105 ) - _ =1 Jesiz15m2 =1,..., J55 11, where both parameters s; and sy,
992 ) (s=0¢ 151,5=04 1)

correspond to the ["*-order (I > 1) scattering cross sections.

e 2 )
2.2.1. Second-Order Sensitivities (—35‘?35 ) dJ=1 . Jesi=0sm2 =1,..., J5s1=0
joSmy /(5= =
(S 05,1=0,5=05,]=0 )

For this case, both parameters s; and s, correspond to the zeroth-order scattering cross sections,
g 8 /mz _>gmz

88
and are therefore denoted ass; = 0/ ! andsy, =0 )
S, i S,lmz :Oﬂmz

1i=0,i
A0
and g, refer to the isotope, order of Legendre expansion, and energy groups associated with the
8 i—8j 8 my > 8my
S,lj:(),ij S,lmZ :O/imz
%L
Js ]Hsmz

, respectively. The subscriptsiy,, li,, g’m2

parameter sy, respectively. When both parameters s; = o and sy, =0 correspond to

must include the

the zeroth-order scattering cross sections, the expression of ( )
(5:05,1:0/3105,1:0)

respective contributions stemming from the total cross sections, since the definition of the total cross
sections comprises the zeroth-order scattering cross sections. The contributions from the total cross

section due to the zeroth-order scattering cross section parameters s; and s, are computed using
PL 9t tmy PL_ITS() Iy _ IS

Equation (158) in [3] in conjunction with the relations Kby 35 Tome = sy Ty T = oy
QZng(t) at} Btmz _ QZZtg(t) . . .
DTty 5] Fomy — Ty, ¢ WhHICh gives:
1) G 2
PL ) _ v [ a0 w8 I ES(t)
= - E(r, V)pS(r, Q)
(aSjasz (S:(Ts,l:OrSzUs/I:O) gél fV LTL 17[} ( ’ )@ ( 7 )QS]'aSmZ
IT8 (1) (28)

G 2), 2),
_g§1 fdv ], do M,} S, )08 (r, Q) + 95 (1, Q)3 (1, Q) 2,
fOI"j = 1/"'/]05,1:0/ my = 1/"'/]0'5,1:0/
where the second-level adjoint functions gbgz.)’g, j=1..Jssi=0,8§ = 1,...,G, and l,llgz.)'g, j =

1,...,Jss1=0; & = 1,...,G, are the solutions of the following particular form of the second-level
adjoint sensitivity system (2nd-LASS) presented in Equations (164)—(166) of [3]:

B9/, 0) = —S (0, n)az(;fj“), =1 o g =1en G, 9)
ngi?'g(rd,Q) =0, n<0j=1,...Jp—0;8=1,...,G, (30)
A(l),g(O‘O)wgi?fg(r,Q) = _¢(1),8(r,0)828t—:0, =1 Jesi=0;§=1,...,G, (31)
Hb;zj)'g(rdzﬂ) =0,0n>0j=1,...,Jps=0) §=1,...,G. (32)

The expressions of the various derivatives appearing in Equations (28), (29), and (31) are obtained

as follows: X )
0°%48(t 0728 (t
AU ,q,tU,H =0, (33)
asjasmz 9051 781 g fm’ 7 8my

S,Zj,ij S/l‘m2 ,imz
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M
i A E Enweso] 4L £ £ Mot

t m=1i=1 m=1i=1g¢'=1
IS, P 8wy —8my 3 & iy = 8my 8 iy 8" Ny My 7 (34)
5,lm2 :Olimz 0911m2 :Orimz

inserting Equations (33), (34) and (20) into Equations (28)—(31) yields the following simplified expression:

(1) m m 4
(QngsLmz )(57 o) = lrnz mmszdVLn dQ [¢1 & 2(r, Q) 1.8 iy (r,Q) _’_% )8 2(r, Q)(pg m (r,Q)|, (35)
=05,1=0,5=05,1=0
where the second level adjoint functions ¢1 ] = Jesp=0, 8§ = 1,...,G, and 1,b2 ;] =
o Jos=0; § = ., G, are the solutions of the followmg 51mp11f1ed second- level adjoint sen51t1v1ty

system (2nd—LASS).

Bg<0(0)l]l)§,2].)'g (r,0) = =0 Nim @5 (r,Q), j=1,..., Josj=0; §=1,...,G, (36)
A<1>r8(a°)¢§]?'g (1, Q) = =0g Niwp V2 (1, Q), j=1,..., Josi—0: § = 1,...,G, (37)

subject to the boundary conditions shown in Equations (30) and (32), respectively.
Additional contributions stem from Equation (159) in [3], in conjunction with the relation
2L at 2L

T Ty T = Ty , which takes on the following particular form:
(2) G G a—g '
2L - (2).g r),8 7\ 0% ¢ (s;00-Q))
e = av |, dQ .= (r,Q aQ S\, QY ) —————
(QSjasmz )(S—Gs,z—orS—Us,z—o) ggl fV Ln 17[}1,] (T )g/Z:1 Ln i (7’ ) smy

S G 928 (6.0
(2), "o n\ 958 78 (5,0 -Q) (38)
+g§1 [, dv],_do ¥y 8(r, Q)ng: 1 Ji,, 49 98 (1, 2 )—asi,z ,

f01’ j: 1/"'/]05,1:0; my = 1/~--r]os,l:0-

Noting that

T (s50-50) 2T (5505 0)

my &O- 2

s/l ny /imz

(50 - 0) 9= (s Q) ,
asz = aag/mz -y = 6gm2g6g'm2g’Nim2,mmz (Zlﬂ’l2 + 1)Plrr}2 <Q : Q)I (40)

S/ln12 rimz

inserting the results obtained in Equations (39) and (40) into Equation (38), using the addition
theorem for spherical harmonics in one-dimensional geometry and performing the respective angular
integrations, yields the following simplified expression for Equation (38):

@ (1),gm gm &m -
(asf;sLmz) = Nipp sy 2y +1) f, dV[51 8y ) (D)) (1) 2]1322( 2" (41)

(s=051=0,5=05=0)

where the flux moments 5 gmz ( ) and 52 P Igmz (r) are defined as follows:
2), A 2),
3 ]?,lg (r) = f A0 P(Q)y! ].) $(r,0Q), (42)
s o ,

éf]-);;g (r) £ f4 0 Pl(n)lpf]?'g (r,Q). (43)
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dt
Further contributions stem from Equation (167) in [3] in conjunction with the relations as‘?;f % Z =
JeEmy my
PL IZE() _ %S (t) Imy _ IS (1) :
75,95y and Tys = Oy Fomy — ) , as follows:
(25, = £ fav ], aa[0 (000, 0) + 020, 0ps(r, 0| 2L,
9i95m2 ) (s=0,1—0.5=041=0) g7 T L ey (44)

fm’ j:1/~"/]05,l:0; m2:1/~-~/]as,l:0/

Where the second-level adjoint functions, 9( ]) € i=1...Jes;8§=1,...,Gand 9( ]) =1 005 § =
., G, in Equation (44) are the solutrons of the followmg second level ad]omt sen51t1v1ty system
(an LASS):

G g’—>g . ’

g 0\ (2):8 . , 925 (S,Q — Q) o N o .
B3(a®)e, 5 (r, ) = ng a0 % o (nQ),j =1, Jo §=1,...,G;  (45)
efj)'g(rd,n) =0,0n<0j=1,...,Jes g=1,...,G, (46)

G o
AVS()0L) 5, 0) = % [ g8 (r,0) EHO0) o1 g =16 (47)
5 g/:l S
eg,z]?'g(rd,ﬂ) =0,Qn>0j=1....Js;g=1,...,G. )
Noting that
= (505 0Q) = (505 0) ,

95; - 955178 = Oy 05 Niym (21 + 1)P1 (0 - 0), (49)

S l],1]

and inserting the results obtained in Equations (49), (19), and (34), into Equations (45), (47), and (44)
reduces the latter equation to the following expression:

) p@En / @) g
(5%) = Ny V[ 400,772 (1,009 20, 0) 0, (1,005 (00|, (50)

9s;05m; (s=04,1=0,5=05=0)

where the second-level adjoint functions, 0! ]),g i=1...Jos & .,Gand 9( )8 gJ=1.]0s; § =
., G are the solutions of the following snnphfled form of the second level ad]omt sens1t1v1ty system
(an LASS) shown in Equations (45)—(48):

Bg(ao)efl?'g(r,o) = 0g;gNim; (21 + 1)P,/(o)¢f (), i=1,....Jss; g§=1,...,G; 1 =0,...,ISCT, (51)

ADF(a0)03(r,0) = b9 oNi (2 + 1)P;’.(Q)£l(jl)’g/(r),j =1,...Js;¢=1,...,G; 1=0,...,ISCT.  (52)

Finally, contributions to the expression of ( %, ;5[“ )( : also arise from Equation (168)
"2 §=05,1=0,5=05,1=0
of [3], namely:
(4) G G 258 =8 (6.0)/
2 Yy "\ PL Q' -0
(83&5 ) =L fV dVLn aQ 1/1(1)’g(r,ﬂ) by Ln e of (1’, 0 ) . ds E?ss )
TP ) (s=05—0,5=0s)=0)  g=1 gr=1 77om

G G g=8 (. ’

()8 " (1),¢ " 95878 (5;,0-0)

+ X fdv [ d00l¥ ) ¥ [, do'pie(r,0) B enanl
g=1 g=1 2 (53)

Bsmz

3 v, 00050 ¥ [, da'es (r,0) E 00,
g=1 , =

fO?’ ] = 1, .. wIas,l:O; myp = 1, .. '/]US,ZZO'
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Noting that
P50 5 0) PR T (s0 5 0) 0 54)
9505, 3651781 558 m 8m ’
sljjij S,y iy

inserting the above result together with the results obtained in Equations (39) and (40) into Equation
(53), using the addition theorem for spherical harmonics in one-dimensional geometry, and performing
the respective angular integrations, yields the following expression:

<4) ( ) m (2)/ /W[ /Wl &M
(#35) s =N G 0 V] 005 0 g e 0], 69)
where
2), A 2),
@;]{lg (r) = f4 a0 Pl(m@ij) $(r,00), (56)
g 2),
@é}ﬁ() LdQP( )e“g(, Q). (57)
TU

Collecting the partial contributions obtained in Equations (35), (41), (50) and (55), and setting
In, = 0 yields the following result:

(5)

),
9505my (s=051=05=05)=0) i (s=051=0,5=05,=0)
(2):8 m, @) g'mz

1 1S M 7 7 g m 2 &M 2 m
= Ny {8V, [sl () + 0, ]+ Jrdveg ™| 0 + 035 )|
)8 m P & m
-1, dvﬁmdn[% 2( ,Q)¢(1)grnz(r,o)+¢2] 2 (r, Q) ® ’”z(r,Q)]
v dn[ ()g”’z(m)w V&m (1, 00) + 0 )g"’z(r,ﬂ)(pg""Z(rr“)]}'

forj=1,...,Jos1=0 M2 =1,..., J5s)=0,

= HM»

(58)

where the zeroth-order moments of the forward and adjoint fluxes moments

8 mym 1).8 (2.8 mym (2).8 (2),8' yuym 2),g .
(le;nioz() 5, mz( ), 51,]‘;17,,:’:202(7)’ éz,j;lmjzzo(r)' ®1,j;z,”2m:202(") and @2/].;1752:0(1’) are the special

cases when I = 0 of the general definitions for (pf (r), él(l)’g (r), Egzj).}g (r), égzj)lg (r), @52].)‘257 (r), and

®§2])lg (r) presented in Equations (26), (27), (42), (43), (56) and (57), respectively.

2.2.2. Second-Order Sensitivities ( PL gJ=1 0 Jesi=0sm2 = 1,0, Jos 151

595, )(s—o’sllo,s_o's,l>1)
g 8
1]70 ij

. ey ars 2L
For computing the second-order sensitivities ( 3505my

) , the parameters s; = o
(SZUS,Z:OrSZUs,bl )
8y —8m

2 "2 correspond
Srlmzrlmz
to the Ith-order (I > 1) scattering cross sections. Since the Ith-order (I > 1) scattering cross sections do

L

Js jasmz

correspond to the zeroth-order scattering cross sections, and the parameters s;;, = o

not contribute to the total cross sections, the final expression of ( is obtained by

)(S_US,IO,S_US,Z>1)

particularizing Equations (159) and (168) in [3] to the PERP benchmark, and by performing the same
sequence of operations as that leading to the expression shown in Equation (58). The final expression
thus obtained is:

2L (1) Sm g m ) g m
(W)(S g 1—0/5=05 [>1) = Niny, mm2(21m2+1){fvdV§ r )[ L jilmy o )+®1JlmZ (r )]

£ 2).gm n
+fyavey 2 0)|eie () + O ]} =1, e = 1, Jogpail = 1. ISCT.

(59)
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2.2.3. Second-Order Sensitivities ( oL gJ=1 . Jesis1m2 = 1,0, Js1=0

%; ast )(S_Gs,l>1rs_as,10)

. [P 2L
For computing the second-order sensitivities ( 75, 95mg

) , the parameters s; =
]
(Szgs,lzlrszgs,l=0)

/. .
O_g ji—8&j
sy
8 my my _)gmz
Sllmz :()riﬂl2

of ( 3 s?;sL,, - )(S s is obtained by particularizing Equations (167) and (168) in [3] to the PERP

benchmark. Performing the same sequence of operations as the sequence that produced the expression
shown in Equation (58) yields the following result:

correspond to the I"-order (I >1) scattering cross sections and the parameters s,;, =

correspond to the zeroth-order scattering cross sections. Thus, the final expression

2L (1),8m (2).8 8 m (2),8m
(85-85,,,2)(S 01 1215=0s10) Nimz,mmz{ fv dV[E 2o, ],;lmzio(r) +(p,m21 O(r)®2,].;lm22: O(r)]
[dv [, _dQ 9( )8y r, )V m (1, 0 +9( S o (r, )|\
in Y P

fO?’ ]— 1/-“'](75,121/7’”2 = 1/~--/]Js,l:0-

(60)

In view of the symmetry of the mixed second-order sensitivities, the sensitivities

(%) computed using Equation (59) must be equal to the sensitivities
T2 ) (5=041-0,5=05>1)

L computed using Equation (60). The second-level adjoint functions used in
8S]¢9$m2 (s Og,1>1,5 Us,lfo)

Equation (59) correspond to the zeroth-order scattering cross sections indexed by j = 1,..., J55 =0,

whereas the second-level adjoint functions used in Equation (60) correspond to the "*-order (I > 1)

scattering cross sections indexed by j = 1,..., J55>1-

2.2.4. Second-Order Sensitivities( 2L J=1 0 Jesisime =1, Jos 151

dsids )
77 (Szgs,lzlrszgs,lzl)

. e 2 8 =8

For computing the second-order sensitivities | --%L— , both parameters s; = 0°, ./

0505 7 o ] s,liii

2 (5705’121,5705,121) 177

g,mz _)gmz
S,lmz/imz

; %L

expression for ( 35 oy

and sy, = 0 correspond to the I/"-order (I > 1) scattering cross sections. Thus, the final

)( : is obtained by particularizing Equation (168) in [3] only to the
5=05,>1,5=05,>1

PERP benchmark. Performing the same sequence of operations as the sequence that produced the
expression shown in Equation (58) yields the following result:

2,8
(9 a;L ) = Nim it (ZZmz + 1)f dV[E( )/gmz (7’)@; ?.lg 2 (y
S17%m ) (s=03 151,5=04 1) 2 )ity 61)

& @)8m 1]
+p, " (r )@2,].;li22(1’)], j=1 e Joszima =1, Jusgs1;1 = 1,..., ISCT.

2.3. Numerical Results for 82L/¢95j(95m2,j =1,....Jsmy=1,...,]s

The dimensions of the sensitivity matrix 9%L/9s j85m2, j=1,...,Jsmy =1,...,]s, of the leakage
response with respect to the scattering cross sections of all isotopes for the PERP benchmark, are
Jos X Jos (= 21600 x 21600), where Jos = (G x G) X I X (ISCT + 1). The elements of 9°L/dsids,, j =

.,21600;my = 1,...,21600 were computed using Equations (58), (59), (60) and (61). The remainder
of this section will present the numerical results for the relative second-order sensitivities, denoted as

s )( f lﬁg , ol; l,_;(h) which correspond to the generic elements %L/ ds j&smz, and which are defined as
follows:
S(z)( §'—g Gh’—»h) (azL/aag _’gaoh’—)h)(gg —g h’—>h/L)

slz s, I’ k s, I’k s,li sl’

forl,l' =0,...,3;i,k=1,...,6;¢,¢" bW =1,...,30.

(62)
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8’8 h—h
sli 7 7s Ik
five significant digits, that the numerical values obtained using Equation (59) are the same as
the corresponding numerical values obtained using Equation (60). The numerical values of the
second-order relative sensitivities of the leakage response with respect to the scattering cross
sections are small by comparison to the corresponding leakage sensitivities to the total cross
sections presented in Part I [1], the largest of them being of the order of 1072. The results for
the second-order sensitivities of the leakage response with respect to the Oth-order scattering

While computing the sensitivities S(Z)(G ), it has been verified, within the first

cross sections of isotope 1 (**Pu) and to the second-order scattering cross sections of all of

; ; @) .88 Woh \ — (92 =8 W —h e N
the other isotopes, ie., S O 1—0i—1 s pox) = d L/aas’l:ai 18051, ok 9% 1—0,i—1 sl’ /L for

k=1,..,65¢,hh =1,..,30, are summarized in Table 1. The dimensions of each of the
submatrices presented in Table 1 are 900 X 900. As shown in the table, these second-order relative
sensitivities are all much smaller than 1.0.

Table 1. Overview of second-order relative sensitivities of the leakage response with respect to the
zeroth-order (I = 0) scattering cross sections of isotope 1 (**’Pu) and to the zeroth-order (I’ = 0)

; ; : 2)(;8 8 ' —h —
scattering cross sections of all isotopes, s( )(as,l:(),izl’as o0 k) k=1,...,6; g, ¢’ b, =1,...,30.

k=1 k=2 k=3 k=4 k=5 k=6

(*Pu) (**0Pu) (Ga) (" Ga) (C) ("H)

S8 S8 88 S8 S8 88
) s ~1 0i=1" s O 1=0,i=1" s gs,!:O,i:l’ s <1 0,i=1" s 05 1=0,i=1’ s 05 1=0,i=1’
i1 ol hok 1 U”P’Bk 2 ol ks ol hOk 4 ‘7}11_)}6/( 5 Uhl_ﬂi)k 6
239 s, s,I’=0k= s’ ,1=0,k=. sl s,I'=0k= 5,1’ =0k=
(*7Pu) Max. value = Max. value = Max. value = Max. value = Max. value = Max. value =

3.58 x 1072 2.56 x 1073 1.39x 1074 1.03x 1074 1.75x 1072 3.45x 1072

The largest of all of the sensitivities summarized in Table 1 are included among the elements

o
51=0,i=1""s]=0k=1)’
relative sensitivities in submatrix of the leakage response with respect to the zeroth-order scattering

cross sections of isotope 1 (**Pu). Moreover, the largest 10 relative sensitivities comprised in

s )(ag o8 gl —h ), g, 8, hh =1,...,30, are listed in Table 2. All of these sensitivities are with
s,1=0,i=1" ~5,1=0,k=1

respect to the zeroth-order self-scattering cross sections, rather than the in-scattering or out-scattering

12512 13513 | _
51=0,i— 1'05,1:0,k:1) = 3.579 %

1072, which corresponds to the second-order sensitivity of the leakage response with respect to the

3 ; ; 12512 13513
self-scattering cross section parameters of o7~ | and o777 ;.

of the submatrix S(Z)( g8 W —h ) 8, 8 b =1,...,30, which comprises the second-order

cross sections. In particular, the largest second-order sensitivity is S(Z)<

. cpe ege . . (2) g —g h%h ’ ,
Table 2. Largest ten relative sensitivities comprised in S (Gs,l:O,izl’ S I—0k= 1) 88 =1,..30

(second-order sensitivities of the leakage with respect to the zeroth-order scattering cross sections

of 29Pu).
Rank Relative Sensitivity Rank Relative Sensitivity
2)( 12512 13513 ) _ 2 2)(512512  g12-12 ) -
1 s >(as,I:O,i:1’Usl 0= 1) 3.579 x10 6 SE ;(Gsz 0,=1"951—=0k= 1) 2.602x10
2)(7-7  12-12 ) 2)(;8-8  Sl2-12 ) -
2 SE >(Us,z:o,i:1' s1=0k= 1)_3'131X10 7 S (Gsz 0,i=1" 751=0k= 1) 2.487x1072
2)(;7-7 13513 ) 2)(510-10 12512 )
3 S( ;(Gz 0,i=17 9510 k— 1)‘2712)(10 8 SE z(asl 0,i=17 %5 =0 k= 1)_2476X10
2)( 12512 1414 ) _ ) 2)(,13-13  liold ) _ -
4 S ( s1=0,i=17 75 =0 k= 1)‘2653)(10 9 S( )(Gsl 0,i=17 %5, 1=0 k= 1)*2323”(10
2)(9-9 gla-la ) ) 2)(;9-9 3-13 ) 2
5 S >(Us,7:0,i:1’ sl=0= 1) 2.604x10 10 5 ("sl 0,i=1"951=0k= 1) 2257 %10~

Tables 3-5 present an overview of the second-order relative sensitivities of the leakage
response with respect to the zeroth-order scattering cross sections of isotope 1 (**Pu) and

to the I"-order scattering cross sections of all isotopes, defined as 5(2)( gl_)gl v Z'l,_;(h) =

2 '8 Woh)(s8' 8 i'—h _ . _ _
(/908 75 00 508 il /L) = 16 g8 = 1,30, for 1= 1,23,
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respectively. The results presented in these tables indicate that the higher the order of scattering cross
sections, the smaller the mixed second-order sensitivities.

Table 3. Overview of the second-order mixed relative sensitivities of the leakage response with respect
to the zeroth-order (I = 0) scattering cross sections of 2>’Pu and to the first-order (I’ = 1) scattering

cross sections of all other isotopes: S(Z)(O-f,lz((;g,izl’og,,l’—!ll,k); k=1,...,6; g, ¢ bW =1,...,30.

k=1 k=2 k=3 k=4 k=5 k=6
(*Pu) (**0Pu) (¥Ga) ("' Ga) (C) ("H)

8’8 88 88 8’8 §'-g §'-g
. s@| s=0i=1 | g@| sj=0i=1" | g@| Isi=0i=1" | g@| Tsi=0i=1 | g@| %si=0i=1" | g@)| Tsj=0=1"

i=1 W —h o.h’—m W —h Gh’ —h 0.}1’—»}1 O_h’ —h
239P s,I'=1k=1 sI’=1k=2 sI’=1k=3 s,I'=1k=4 sI’=1k=5 s,I’=1k=6
( i) Min. value = Min. value = Min. value = Min. value = Min. value = Min. value =
—2.70x 1072 -1.62x1073 -5.45x107° -3.31x107° —6.60x 1073 —2.64x1072

Table 4. Overview of second-order mixed relative sensitivities of the leakage response with respect to
the zeroth-order (I = 0) scattering cross sections of 2?Pu and to the second-order (I’ = 2) scattering
cross sections of all other isotopes: S(2>(ag —E gh—h k); k=1,...,6; g,8',h, W =1,...,30.

s,1=0,i=1""s,I'=2,
k=1 k=2 k=3 k=4 k=5 k=6
(PPu) (20Pu) (9Ga) ("1Ga) (@) ("H)
§—8 8- §'-8 §—8 8- 8-
@) Ys1=0,i=1 @] 9s1=0,i=1" @] %s1=0,i=1" @) Ys1=0,i=1" @] Y9s1=0,i=1" @] %si=0,i=1"
j — S WSl s I S S W h S WSl S I S S W Sh
1= ol —=h ol —=h o' = ol —=h ol —=h o' =
239p s 1P =2k=1 s/ =2k=2 1 =2k=3 s 11 =2k=4 51/ =2k=5 51/ =2k=6
( i) Min. value = Min. value = Min. value = Min. value = Min. value = Min. value =
-2.32x1072 ~1.42x 107 —4.25x107° —2.64 %107 2.13x1073 6.71 %1072

Table 5. Overview of second-order mixed relative sensitivities of the leakage response with respect
to the zeroth-order (I = 0) scattering cross sections of 22?Pu and to the third-order (I’ = 3) scattering

cross sections of all other isotopes: S(Z)(Gf,lzgizl'og,,l/—;hs,k)" k=1,...,6; g, ¢ bW =1,...,30.

k=1 k=2 k=3 k=4 k=5 k=6
(*Pu) (**0Pu) (¥Ga) ("' Ga) (C) ('H)

8’8 88 88 8’8 §'-g 88

@] s)=0,=1’ @ 9s)=0,=1’ @ 9s1=0,=1" @) %s)=0,i=1’ @ 9s)=0,=1’ @ 9si=0,=1"
. S S S S S S

i=1 W —h 0_11’—>}1 Gh’ —h Gh’ —h Uh’—)h O_h’ —h
29p s1/=3 k=1 s/ =3k=2 s/ =3k=3 s1/=3 k=4 sl/=3k=5 s/ =3k=6
( i) Max. value = Max. value = Max. value = Max. value = Max. value = Max. value =

3.44x 1075 212x 1070 6.02x 1078 3.77x 1078 —5.47x 1074 -1.38x 1073

The first-order sensitivities of the leakage response with respect to the zeroth-order self-scattering
cross sections can be compared directly to the corresponding unmixed second-order sensitivities. These
comparisons are presented in Tables 6-11 for all six of the isotopes contained in the PERP benchmark.
The main conclusions that can be drawn from these comparisons are as follows:

(i) both the first- and second-order unmixed sensitivities of the leakage response with respect to the
zeroth-order self-scattering cross sections are very small; and

(if) the absolute values of the second-order unmixed relative sensitivities are much smaller, by
at least an order of magnitude, than the corresponding first-order sensitivities (except for the
second-order unmixed sensitivity of the leakage with respect to the self-scattering cross section of
isotopes C and 'H in their respective lowest-energy group).
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Table 6. Comparison of first-order relative sensitivities (8L /00578 )(ag—>g / L), g=1,..30

and second-order relative sensitivities [82L / (

88
900 20,-1

s,1=0,i=1 s,1=0,i=1

s,1=0,i=1

)2][(ag—’g )2/L],g =1,...,30 of the leakage

response with respect to the zeroth-order self-scattering cross sections of isotope 1 (®%Pu).

g 1st Order 2nd Order g 1st Order 2nd Order

1 4586 x 107° —-3.230 x 1076 16 4104 x 1072 -5.637 x 1073
2 9.107 x 10~° -6.176 x 1076 17 6.790 x 1073 -2.328 x 1073
3 2.603 x 1074 -1.726 x 10~ 18 -2.449 x 1073 4478 x 1074
4 1.205 x 1073 -7.814 x 107 19 -5.053 x 103 2.048 x 1073
5 6.195 x 1073 -3.836 x 1074 20 —6.677 x 1073 3.413 x 1073
6 1.866 x 1072 -9.125 x 104 21 -7.081 x 1073 3.863 x 1073
7 1.026 x 1071 1.129 x 1072 22 -4.171 x 1073 1.791 x 1073
8 8.174 x 1072 4572 x 1073 23 —2.227 x 1073 5.661 x 1074
9 8.556 x 1072 6.099 x 1073 24 -9.434 x 1074 2.124 x 1074
10 8.143 x 102 5.782 x 1073 25 —-5.436 x 1074 4436 x 107°
11 7.336 x 1072 4378 x 1073 26 -1.421x 1073 2.785 x 10~*
12 1.344 x 107! 2.602 x 1072 27 —4.065x 104 8.741 x 107°
13 1.156 x 1071 1.524 x 1072 28 2.812 x 107° -3.808 x 1077
14 8.538 x 1072 3.317 x 1073 29 -1.201 x 10~ 4.457 x 1078
15 5.069 x 1072 -3.971 x 1073 30 -3.721 x 104 2.490 x 107

Table 7. Comparison of first-order relative sensitivities (8L /00578 )(og—>g / L), g=1,...,30and

second-order relative sensitivities [BZL/ (

§—g
‘9‘75,1:0,1:2

[

5,1=0,i=2)\"5,1=0,i=2

5 2
f,l:%,izz) /L], g =1,...,30 of the leakage

response with respect to the zeroth-order self-scattering cross sections of isotope 2 (*40Pu).

g 1st Order 2nd Order g 1st Order 2nd Order

1 2.663 x 1076 -1.089 x 1078 16 2.861 x 1073 —2.739 x 1075
2 5.126 x 1070 -1.956 x 1078 17 4633 x 1074 -1.084 x 1075
3 1.459 x 1075 -5.419x 1078 18 —1.664 x 1074 2.068 x 107°
4 6.664 x 1075 —2.389 x 1077 19 —3.487 x 1074 9.756 x 107°
5 3.452 x 1074 -1.191 x 107 20 -5.301 x 1074 2.151 x 107°
6 1.064 x 1073 —2.971 x 107 21 -5.338 x 1074 2.196 x 10~°
7 5.996 x 1073 3.859 x 107° 22 -3.748 x 104 1.446 x 1075
8 4910 x 1073 1.650 x 10> 23 -5.268 x 1074 3.168 x 10~°
9 5.255 x 1073 2.300 x 10~° 24 -1.825x 1074 7.949 x 1070
10 5.078 x 1073 2.249 x 107° 25 —2.841 x 1075 1.212 x 1077
11 4.775 x 1073 1.855 x 1072 26 -1.084 x 1074 1.619 x 107°
12 8.897 x 1073 1.141 x 1074 27 -1.745x 1074 1.611 x 107>
13 8.253 x 1073 7.773 x 107 28 9.535 x 10~ —4.379 x 107
14 6.287 x 1073 1.799 x 1075 29 -1.568 x 1078 7.604 x 10714
15 3.561 x 1073 -1.960 x 1075 30 —2.615x 107 1.229 x 10710
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Table 8. Comparison of first-order relative sensitivities (8L /do

il

and second-order relative sensitivities |82L/ (

88
9001 20,3

i;%,i:s)(ag_)g

s,1=0,i=3

s,1=0,i=3

/L)g =1,..

16 of 33

.,30

N 2
38 ) /L], g=1,...,30 of the leakage

response with respect to the zeroth-order self-scattering cross sections of isotope 3 (®Ga).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order
1 1.163 x 107 -2.079 x 10711 16 1.546 x 107* —7.993 x 1078
2 2.625 x 1077 -5.132 x 10711 17 2.689 x 107° —3.652 x 1078
3 8.420 x 1077 -1.806 x 10710 18 -1.069 x 105 8.538 x 1077
4 4462 x 107° -1.071 x 10~ 19 -2932x 1075 6.897 x 1078
5 2.349 x 107° -5.518 x 10~ 20 —4.056 x 1075 1.259 x 1077
6 6.060 x 10~° -9.631 x 10~ 21 -3.308 x 105 8.430 x 1078
7 2.595 x 104 7.230 x 1078 22 -1.335x 1075 1.833 x 1078
8 1.755 x 1074 2.108 x 1078 23 —6.505 x 10~ 4.831 x 1072
9 1.936 x 1074 3.123x 1078 24 —3.084 x 107 2.269 x 1079
10 2.151 x 1074 4035 %1078 25 —2.099 x 1076 6.614 x 10710
11 2.328 x 1074 4409 x 1078 26 -7.099 x 106 6.951 x 1077
12 5.141 x 1074 3.811 x 1077 27 -1.872 x 107 1.854 x 1077
13 4,495 x 1074 2.306 x 1077 28 1.104 x 1077 -5.872%x 10712
14 3.241 x 1074 4779 x 1078 29 -5.239 x 1078 8.486 x 10713
15 1.876 x 1074 —-5.436 x 1078 30 -2.162 x 107 8.410 x 10711

Table 9. Comparison of first-order relative sensitivities (aL /do

[

and second-order relative sensitivities [QZL/ (

g
‘9(75,1:0,1:4

sg,l_:)%,i:4)(0gﬁg

s1=0,i=1/ L)' §=1..

,30

N 2
88 ) /L], g=1,...,30 of the leakage

s5,1=0,i=4

response with respect to the zeroth-order self-scattering cross sections of isotope 4 ("'Ga).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order
1 7.828 x 1078 —9.413 x 10712 16 1.008 x 10~ -3.401 %1078
2 1.789 x 1077 -2.383 x 10711 17 1.741 x 107> -1.531%x 1078
3 5.712 x 1077 -8311 x 10711 18 —6.772 x 107° 3.424 x 107
4 3.004 x 107° —4.855 x 10710 19 -1.725x 1075 2.387 x 1078
5 1.586 x 105 -2514 x 107 20 -2.506 x 10~ 4.806 x 1078
6 4,095 x 107> —4.398 x 10~ 21 —2.106 x 1075 3417 x 1078
7 1.626 x 1074 2.837 x 1078 22 —2414 x 1074 5.999 x 107
8 1.041 x 1074 7.408 x 10~ 23 -6.918 x 107 5.465 x 1077
9 1.177 x 1074 1.153 x 1078 24 -1.236 x 107 3.644 x 10710
10 1.344 x 1074 1.576 x 1078 25 —-8.839 x 1077 1.173 x 10710
11 1.491 x 1074 1.807 x 1078 26 -3.037 x 107 1.272 x 107°
12 3.299 x 104 1.569 x 1077 27 —-8.052 x 1077 3.429 x 10710
13 2943 x 1074 9.885 x 1078 28 4.757 x 1078 —-1.090 x 10712
14 2.191 x 1074 2.184 x 1078 29 —2.259 x 1078 1578 x 10713
15 1272 x 1074 —2.502 x 1078 30 -9.317 x 1077 1.562 x 10711
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Table 10. Comparison of first-order relative sensitivities (

il

and second-order relative sensitivities |82L/ (

88
9001 20,5

dL/dc%78

s,I:O,i:S)(GS,I:O,i:S

2
88
s,l:O,i:S) / L]' 8

17 of 33

$78 _/L),g=1,...,30

=1,...,30 of the leakage

response with respect to the zeroth-order self-scattering cross sections of isotope 5 (C).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 8.999 x 10~° -2.379 x 1077 16 4.322 x 1072 —4.681 x 1073
2 1.603 x 10~ —-3.693 x 1077 17 2.231 x 1072 —-3.523x 1073
3 5.392 x 10~° -1.410 x 107 18 1.355 x 1072 —2419x 1073
4 2362 x 1074 —5.666 x 1076 19 9.436 x 1073 -1.810 x 103
5 1.040 x 1073 -2.240 x 105 20 6.954 x 1073 -1.444 x 1073
6 2.637 x 1073 -4.103 x 1075 21 5.184 x 1073 -1.174 x 1073
7 2401 x 1072 3.824 x 1074 22 3.997 x 1073 -9.374x 1074
8 1.644 x 1072 -2.327 x 107 23 3.105 x 1073 —-7.736 x 1074
9 1.407 x 1072 5.068 x 10~° 24 2.858 x 1073 —6.495 x 1074
10 1.761 x 1072 8.554 x 10~ 25 2.103 x 1073 —-5.637 x 1074
11 1.939 x 1072 4351 x 107> 26 1.859 x 1073 —4.938 x 1074
12 6.645 x 1072 4252 %1073 27 2.093 x 1073 -4318x 1074
13 6.257 x 1072 1.441 x 1073 28 2.042 x 1073 -3.829 x 104
14 4.959 x 1072 -1.655 x 1073 29 9.596 x 10~* —2.858 x 1074
15 3.184 x 1072 -2.609 x 1073 30 2.301 x 1073 -3.293 x 1073

Table 11. Comparison of first-order relative sensitivities (é?L /do
88

s,izo,ize)z][("

and second-order relative sensitivities |o72L / (070

f,l_;%,izé)(a

828\
s,l:O,i:6) /L]' g

88 _
S ie/L) g =1,...,30

=1,...,30 of the leakage

response with respect to the zeroth-order self-scattering cross sections of isotope 6 (1H).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 8.168 x 1077 -1.961 x 10~ 16 1.012 x 107! —2.564 x 1072
2 1.627 x 1076 -3.805 x 10~ 17 6.699 x 1072 -3.177 x 1072
3 8.710 x 107 -3.681 x 1078 18 4.644 x 1072 —2.843 x 1072
4 6.054 x 10™° -3.722 x 1077 19 3.433 x 1072 —2.396 x 1072
5 3.873 x 1074 —-3.106 x 107© 20 2.584 x 1072 -1.993 x 1072
6 1.272 x 1073 -9.542 x 107 21 1.945 x 1072 —-1.653 x 1072
7 1.362 x 1072 1.230 x 104 22 1.504 x 1072 -1.327 x 1072
8 8.486 x 1073 —-6.197 x 1076 23 1.170 x 1072 -1.099 x 1072
9 1.197 x 1072 3.672 x 107° 24 1.077 x 1072 -9.225 x 1073
10 1.535 x 1072 6.502 x 107> 25 7.931 x 1073 -8.013 x 1073
11 1.721 x 1072 3.427 x 107° 26 7.022 x 103 -7.049 x 1073
12 6.573 x 1072 4.160 x 1073 27 7.917 x 1073 -6.180 x 1073
13 6.483 x 1072 1.547 x 1073 28 7.829 x 1073 -5.629 x 103
14 5.767 x 1072 -2.238 x 1073 29 3.773 x 1073 -4418 x 1073
15 4284 x 1072 —4.722 x 1073 30 2.720 x 1072 —4.602 x 1071

The results presented in Tables 6-11 indicate that the largest values for both the first- and
second-order relative sensitivities for the isotopes 29py, 20py, 9Ga, and 71Ga, are for the energy
group 12. For the isotope C, the largest values for the first- and second-order relative sensitivities are
for the 12th energy group and the 16th energy group, respectively. For the isotope 'H, the largest
values for the first- and second-order relative sensitivities are for the 12th energy group and the 30th
energy group, respectively. It is noteworthy that all of the first-order relative sensitivities of the leakage
response with respect to the zeroth-order scattering cross sections of isotopes C and 'H are positive,
signifying that an increase in the corresponding microscopic cross sections will cause an increase in the

value of the response L (i.e., more neutrons will leak out of the sphere). These sensitivities indicate that

an increase in low energy scattering moderates and reflects slow neutrons into the plutonium, which
increases the induced fission rate in 23?Pu, thus increasing the neutron flux, which in turn increases the

neutron leakage.
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3. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with respect to the
Parameters Underlying the Benchmark’s Scattering and Total Cross Sections

This section presents the computation and analysis of the numerical results for the second-order
mixed sensitivities of the leakage response with respect to the group-averaged scattering and total
microscopic cross sections of all isotopes of the PERP benchmark. Ashas been shown by Cacuci [3], these
mixed sensitivities can be computed using two distinct expressions, involving distinct second-level
adjoint systems and the corresponding adjoint functions, by considering either the computation of
82L/8sjo7tm2 JJ=1,...Jsssmy =1,...,]5 or the computation of 82L/8tj85m2,j =1,...,Jot; my =
1,...,Jss. These two distinct paths for computing the 2nd-order sensitivities with respect to the
group-averaged scattering and total microscopic cross sections will be presented in Sections 3.1 and 3.2,
respectively. Of course, the end results produced by these two distinct paths must be identical, thus
providing a mutual “solution verification” that the respective computations were performed correctly.

3.1. Second-Order Sensitivities 82L/8sj8tm2,j =1,...,Josmy=1,..., ]5t

The equations needed for deriving the expressions of the second-order sensitivities
d*L/ 8sj8tm2 ,J=1,..., Josj=0;m2 = 1,..., Jot when the parameters s; correspond to the zeroth-order
(I = 0) scattering cross sections will differ from the equations needed for deriving the expressions
of the second-order sensitivities 92L/ds ]-(thz, j=1...Jssiz1;m2 =1,..., Jot when the parameters s;
correspond to the higher-order (I > 1) scattering cross sections. There are two cases, as follows:

P*L
0 (555 )
dsjdtm, (s=05 j—o,t=0t)

parameters underlying the zeroth-order scattering cross sections, and the quantities t,,, enumerate the

, =1, Jssj=0;m2 = 1,..., Jot, where the quantities s j enumerate the

parameters underlying the total cross sections;

L
() ( ; ) ,
35]8t7n2 (SZUs,Igl,t:Ut)

parameters underlying the I"*-order (I > 1) scattering cross sections, and the quantities t,;, enumerate

j=1,..., Jssi>1;m2 = 1,..., Jot, where the quantities §j enumerate the

the parameters underlying the total cross sections.

3.1.1. Second-Order Sensitivities ( 9L

75 Ty J=L =02 =1, Jot

)(S—(Ts,loff—(ft)

The direct expression for computing (% is obtained by particularizing Equation
j0tmy

)(S_US,IOIt_Ut)
(167) in [3] to the PERP benchmark, which yields:

1)
AL __ (1.8 (2) g 958 (
( e )(szas/z:o,t:m) ): fav] dﬂ[ A, I3, 0) + 0751, )37, 0) | 2L, ©3)
fOTj: 1/"'!]05,[20/m2 = 1 ]O't.
The expression of ( %, at )( : must also include the contributions stemming from the
"2 §=05,]=0,t=0¢

total cross sections, since the total cross sections comprises the zeroth-order scattering cross sections.

The contributions are computed by particularizing Equation (158) in [3] to the PERP benchmark and
ot; 2 T8 (1) ot P8 (t) .

AL % L t I — t .

s 3, — 5,0, A F3 5 = T, - to obtain:

by noting that 55— Tty

@)
(asa;th ) - T Z fV dVL aay 1)r8(r Q)ps(r, Q) %szét,f,)
1tm2 J (5= g t=0r) 0ty
3 64
=L Jy V0 [wl,j%n)w 8 (r,Q) + Y2 (r, Q)8 (r, )| B, (©4
8=

mp

fOTj = 1/"'/]as,l=0/'m2 = 1/--~r]0t-
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Adding Equations (63) and (64) yields the following expression:

1 2
() (T )
9s9tmy (s=051=0,t=01) 959tmy (s=051=0,t=01) 959tmy (s=041=0,t=01)

G
—-% [ dv]_do [952]?@ (r, QP8 (r, Q) + 61 (1, Q)3 1, Q)]
g=1 ' '

X8 (t)

: o 65

G ) . a
- v, a0 [0, Q)3 (r, 0) + 92, Q)3 (1, 0) [ B,

fOT’j = 1/"-r]os,lzo;m2 =1,...,Jot

In Equation (65), the parameters s; correspond to the zeroth-order scattering cross sections, so that

sj = =4 l] (;g , while the parameters t,,, correspond to the total cross sections, so that t,, = o‘f 2, where
the subscrlpts im, and g, denote the isotope and energy group associated with t;,,, respectlvely
Noting that
PRV PRY(:
(Y _ I, (66)
8sj8tm2 a(fg ]] g]agg@
s,1 i tim,
N; 80
IS () _ IxS(Y) (mzl g N )
d tmy do 8my a(jgmz oS g
iy imy
and inserting the results obtained in Equations (66) and (67) into Equation (65), yields:
92L _ 1),9m (Z)rgm (2),gm
(85 81‘,,,2 )(S Oy o t= Ut) - _NinzZ,MMz fV dVL “ {llb( ) 8my (1", Q)I}]b],] : (T, Q) + 61,]' 2 (rr Q)] (68)

o, )12 ,0) + 075 0, Q)] =1 o = 1

3.1.2. Second-Order Sensitivities ( ‘?ZL

i=1,... ymp =1,...
95,19tmz )(5_651121’1}_@)/] ’ ’ ]gs,lzlr 2 ’ ’ ]Gf

NG
When considering the higher-order scattering cross sections, s; = Ofl] ]i % enumerates the
parameters underlying the I/"-order (I > 1) scattering cross sections, while the t,, = gfmz enumerates
mZ

the parameters underlying the total cross sections. For this case, the contributions to ( 3t )( :
"2 s:Us,Izlrt:Uf
stem just from the right side of the general expression shown in Equation (63), which gives:

az—L) ——% [dv dﬂ[ 022, MwMs(r.Q
(asjétmz (s=0g 21t Gt) Z fv L (r, Q)p'E(r, Q) @)
+05.75 (r, Q)8 (1,0 )azf <t>] forj=1,.. Jospima=1,...,]or

Using the result obtained in Equation (67) in Equation (69) transforms the latter into the following
form:

L _ ( )8m (1),8m
(asjatmz )(5:(751>1,t o) Ni,,, mmzfv av |, dQ[ 2(r, ) 8ma (r, (2)

(2).8m N - 70
+62’j 2(r, Q) p8m (r,Q)], J=1..Jesisuma=1,..., Jo
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3.2. Alternative Path: Computing the Second-Order Sensitivities QZL/atjasmz,j =1,....Jomr=1,...,]5s

The mixed second-order sensitivities 9%L/ds ]-atmz, j=1,...,Jss; my =1,...,]s can also be
computed using the alternative expressions for 0L/ ot j85m2, j=1,...Jot; my =1,...,]os. The
numerical results obtained from both expressions must be equal to each other, thus providing a mutual
“solution verification” of the correctness of the numerical solution procedure employed for solving the
respective second-level adjoint systems. As in Section 3.1, there will be two cases, as follows:

1 ( %L )
( ) at/ast (t=(5t,S=O’S,l:0)

parameters underlying the total cross sections, and the quantities s;;, denote the parameters underlying
the zeroth-order scattering cross sections;

P*L
@ (5= ) '
9t;9sm, (t=015=0451)

parameters underlying the total cross sections, and the quantities s;;, denote the parameters underlying
the I""-order (I > 1) scattering cross sections.

=1, Jor; my=1,..., ]s51=0, Where the quantities tj enumerate the

i=1...,Josmy =1,...,]55 151, where the quantities tj enumerate the

cpe ey 21, .
3.2.1. Second-Order Sensitivities (ataTm) o gJ=1... Joumr=1,..., Jss1=0
1772 J(t=01,5=0 1=
Contributions to the second-order sensitivities (%)( : stem from Equation (159)
I/ (t=01,5=05 -0

in [3], which takes the following form for the PERP benchmark:

1 G G ag . ,
PL _ (2).8 .8 ) 9% (s:0-0)
(atjasmz ) = g§1 JoaV [ degy A Q)gél Ji Q' p VL (1, Q) Fon,

(t:G[,S:UsJ:O)

G G ¢ —g ’
()¢ ’of 7\ 9L (s;2 =0) (71)
+g§1 v [ a0y A, 0)8,2: i (rn o)==

forj - 1/--~/]0t; mpy = 1/"'/](75,1:0}

Contributions to the second-order sensitivities ( até;SL )( )’ in addition to those shown
172 ) (t=01,5=04 =0
in Equation (71), also arise from the zeroth-order scattering cross sections. These contributions
_PL P
aze conalputed lay partlculzzlnzmi Equation (158) in [3], and by noting that 5%— Tty Ty — T sy
PES(t) Otmy XS (1) PA() Otmy _ PEE(H) -
T Ty Ty — e, AN = 0~ = T, to obtain:
2 G 2
QZ_L) —_ AV [ dop@8(r, )8 (r, Q) 22
(Qtjasmz (t=01,5=041-0) ggl fv Ln Y ( ’ )(P ( , )gt],gsmz
g )8 (1) (2)8 ¢ L) (72)
_g§1 SV [ dQ |9y (@R (r, Q) + ) (r, Q) s (r, Q) Tome

forj = ]-/-H/]Ut; mpy = ]‘”"/]US,IZO'

In Equatlons (71) and (72), the adjoint functions Ip(Z] € i i=1...,Jsg=1,...,Gand lp ] 8 j=
Jot; & ., G are the solutions of the second-level adjoint sensitivity system (2nd-LASS) as
presented in Equatlons (32), (24), (39) and (40) of Part I [1], which are reproduced below for convenient

reference:
(2 .
( )lpl )g( I ) = _6gjgNl],m](Pg(rIQ)/ ] - 1/' "/]Gt; g = ]-/' "/G/ (73)
gbllj’g(rd,ﬂ) =0,Q:n<0j=1...,Jos§=1,...,G, (74)
( )ll’(z A(r,Q) = _58]‘8'Nijrmj¢(1)'g(7/0)/ =L Jet; §=1,...,G, (75)

guz’j'g(rd,n) =0,Qn>0j=1,...,Jos¢=1,...,G. (76)
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Adding Equations (71) and (72) yields the following expression:

(8 ]
at'asw (t=0t,5=01=0) 9tj05my (t=0t,5=051=0) 9t05my (t=01,5=01=0)

_ Z Jydv [, 40y 3 (7, Q) g8 (r,0) S

’ o8
- Z fv 4V [, 40 [92) (r, Q)3 00) + 94, )8 (1, 00)| B0 77
@), o757% (5,050
+vadvﬁmdﬂ¢l)g z Sty 0) 200
(), g,_)g ;Q/—>Q
+ Zl fav ], do 1/;2,]? $(r, Q) zl Ji 0 0¥ (r, Q0 )%
8= gr=
fOT’j:l,...,]at;mz:1,_“,]0_5,1:0_
Noting that
2y,8 2y.,8
Praw Y o

at]‘asmz o a 8 aog/mzj_)gmz
t 1] Srlmz/imz

inserting the results obtained in Equations (78), (34), (39) and (40) into Equation (77), using the addition
theorem for spherical harmonics in one-dimensional geometry, performing the respective angular
integrations, and setting I;;, = 0 in the resulting expression yields:

L 8m g m g m ,gm
(at]‘asmz )(t:UtS 0o 0) 1m2 mmzfvdv[éo 2 )51] 2( ) + 2( )52] 2( )]

,gm 1 ’g m
Ny 1 Ly 0020 0,009 2,0) 437, ) 1,0,
for j=1,...,]% my=1,..., J ssi=0-

(79)

3.2.2. Second-Order Sensitivities ( QL =1 esmy=1,..., J5s1>1

% asmz )(tgffsas,bl)

’L

The contributions to (W ,i=1..Joumy =1,...,]ss1>1 stem only from the
jO5my "=

)(f—ﬁtrS—Gs,zzl)
right side of the general expression shown in Equation (71), which takes on the following specific form

in this case:

, 925 (5000
(755 ) = ¥ fav, aap®s,0) Z B e e e
J75my ) (t=01,8=04 1>1) "2

g=1

G , , z§’ 8 (5,0 >0 30
+ 21 [, dv |, do gbg,j $(r,Q) Zlﬁn 0 8 (r, 0 )—a(:m2 L, (80)
g: g/:

j:1/"'/]6t;m2 :11"'/]05,121'

For this case, t; = of? enumerates the parameters underlying the total cross sections, while
j
8 my ™8 . : .
Smy = 0 l'”z ; "2 enumerates the parameters underlying the I"*-order (I > 1) scattering cross sections.
stmy sty

Using the result obtained in Equations (39) and (40) in Equation (80) transforms the latter into the
following form:

L — N (1).8m (2).8m & (2).8m
(W)(t:m,sfab b1 szz,m,,,z 2y + 1)f dV[E L) 2 (r)él'j?lmz e, e, (1’)],

s L2 2,jilm2 (81)
f01’ j: 1,...,](;)3; my = 1,...,]55,121,' I=1 ,...,ISCT.
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3.3. Numerical Results for 82L/¢9t]-85m2,]' =1,....Joump=1,..., ]ss

The second-order absolute sensitivities, 92L/ Bt]-(?smz, j=1,...,Joumay=1,...,]ss, of the leakage
response with respect to the total cross sections and the scattering cross sections for all isotopes of the
PERP benchmark have been computed using Equations (79) and (81), and have been independently
verified by re-computing them using Equations (68) and (70), respectively. The dimensions of the matrix
PL/Oti0smy, j=1,..., Jotima =1,..., Jos is Jot X Jos (= 180 x 21600), where Jot = G x I =30 x 6 = 180
and Jos = GXGX (ISCT+1) xI = 30x30x4x6 = 21600. For convenient comparisons, the
numerical results presented in this sub-section are displayed in unit-less values of the relative

sensitivities corresponding to 9*L/ 0tjdsy,, which are denoted as s )(ag af ; kh) and are defined

as follows:
g &—h
- 2 .o
5(2)(ag. oS h)é oL LStk r—0,...,3 ik=1,...,6; ¢ h=1,...,30.  (82)

ti’ s,k g g—>h L
do t‘z(9 s, Lk

To facilitate the presentation and interpretation of the numerical results, the [t X J55 (= 180 % 21600)

sk
dimensions G X (G - G) = 30 x 900; the respective results are summarized in following four subsections,

which present the results for scattering orders | =0,/ =1,/ = 2, and | = 3, respectively.

matrix S )(og o h) was partitioned into I X I X (ISCT +1) = 6 X 6 x4 submatrices, each of

3.3.1. Results for the Relative Sensitivities S(2 )(a Gfl_}il k)

The results for second-order relative sensitivities of the leakage response with respect to the total

. . . . h
cross sections and the zeroth-order scattering cross sections between all isotopes, (2)(6 of l_)o k)

(azL/aog 3051 Ok)( fz fl_)gk/L) 1=0;i,k=1,...,6; ¢,¢',h =1,...,30, are presented in Table 12.
For every submatrix in Table 12 that comprises components having absolute values greater than 1.0,

the total number of such elements are counted and shown in the table. Otherwise, if the absolute
values of all elements in such a submatrix are less than 1.0, only the value of the largest element of
the respective submatrix is shown in Table 12. It is noteworthy that most of the largest elements of

(2)(0 of l_)él k) £ (82L / 80g BGf I (I; k)(ofiaf:g o/ L) are negative, and the vast majority of them are

g —h

Os1=0,1

very small. For example, of the 30 X 900 elements in the submatrix S(z)( ), 7658 elements are

It 1
negative, 2482 elements are positive, and the rest are zero.
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Table 12. Summary of second-order relative sensitivities of the leakage response with respect to the total

cross sections and the zeroth-order (I = 0) scattering cross sections for all isotopes: s (o , Gfl:g k) =
2 8 5. 8—=h \( 8 &—h —0 ik — . ’y
(8 L/aat,z’aas,lzo,k)(Gt,ias,lzo,k/L)’ I1=0;,i,k=1,...,6; g8, h=1,...,30.
k=1 k=2 k=3 k=4 k=5 k=6
(P°Pu) (*0Pu) (“Ga) ("'Ga) (C) ('H)
g g g g g g
s, s, o, o, oS, 0%y
s LY, s@ ¥ s LY, s@ ¥ s LY, s@ ¥
[0} [0} o o o
=1 51=0,1 51=0,2 51=0,3 51=04 51=0,5 51=0,6
2’3; Min. value = Min. value = Min. value = Min. value = Min. value = Min. value =
(27Pu) —6.44 x 1071 —-4.26 x 1072 -2.46 x 1073 -1.58 x 1073 -2.65x 107! -3.48 x 107!
g=12, atg=12, at g=12, atg=12, at g=12, atg=12,
g’=12,h=12 g’=12, h=12 g’=12,h=12 g’=12,h=12 g'=12,h=12 g’=12,h=13
g g g g g g
Oy 5y 0} 5, [Py 0} 5r 0% 5, O} 5
s<2>[ W, ] s<2>[ 2, ] sw[ 7, ] s<2>[ 2, ] s<2>[ 7, ] s<2>[ 7, ]
o T51=01 951=02 %51=03 O51=04 951=05 I51=06
2’ 10 Min. value = Min. value = Min. value = Min. value = Min. value = Min. value =
(*"Pu) -4.08 x 1072 -2.70 x 1073 -1.56 x 1074 -1.01 x 107* -1.69 x 1072 -2.20 x 1072
atg=12, atg=12, atg=12, atg=12, at g=12, atg=12,
g'=12,h=12 g'=12,h=12 g'=12, h=12 g'=12,h=12 g’=12, h=12 g’'=12,h=13
g g g g g g
0% 4, 05 4, 0% 4, 0% ) 0} o, 0y 2,
s | sl | osel T | se T | se] T | sel T,
(o) o o o
. s1=0,1 51=0,2 51=0,3 51=04 51=0,5 51=0,6
169_ Min. value = Min. value = Min. value = Min. value = Min. value = Min. value =
(' Ga) -1.83x 1073 -1.27 x 107 -7.01 x 107° -4.54 x 107° -7.57 x 1074 -1.03x 1073
at g=12, at g=13, at g=12, at g=13, at g=12, at g=16,
g’'=12, h=12 g'=13,h=13 g’'=12, h=12 g'=13,h=13 g’'=12, h=12 g'=16,h=16
g g g g g g
[P oS ,, gy 0} 4r 0y 4r Oy 4r
s e | | ose e s D) s e ) s e |
. Tsi=01 951=0.2 T51=03 95i=04 951=05 Is1=06
’7; Min. value = Min. value = Min. value = Min. value = Min. value = Min. value =
(" Ga) ~124x1073 ~858 x 1075 -475x 1076 1.93x 107 ~5.13x 1074 1.03x 107
at g=12, at g=13, at g=12, at g=22, at g=12, at g=22,
g'=12,h=12 g'=13,h=13 g'=12,h=12 g'=22,h=22 g'=12, h=12 g'=22,h=23
g g g g g g
o5, (o 0%, 07 =, (O O s/
s<2>[ o ] s<2>[ o ] s<2>[ o ] s<2>[ o ] s<2>( ) ] s<2>[ L, ]
5 O51=01 951=02 O51=03 T51=04 951=05 %51=06
1= Min. value = Min. value = Min. value = Min. value = Min. value = Min. value =
(©) -1.71 x 107! -1.13 x 1072 —-6.54 x 1074 -4.20 x 107* -1.13x 107! -9.03 x 107!
at g=30, at g=30, at g=30, at g=30, at g=30, at g=30,
g’=12, h=12 g'=12, h=12 g’=12, h=12 g'=12, h=12 g'=12,h=12 g’'=30, h=30
g g g
8 O} 6r Oy 67 O} 6r 8 8
ol e s ¥ s s @ ‘e @| e
S 8§ —h 0‘1_02 =03 0‘1_04 S g —h S g'—h
i =6 1=0,1 ANl N S e T51=05 T51=06
L Si=9, Min. value = Min. value = Min. value = =00, r=00
(*H) g8 elements ~135 = N 3 N 3 3 elements with 26 elements with
. .35 x10 7.80 x 10 5.01 x 10
with absolute absolute values absolute values
values >1.0 at g=30, at g=30, at g=30, >1.0 >1.0
: g’=12, h=12 g’'=12,h=12 g’=12,h=12 : :

As shown in Table 12, the largest absolute values of the mixed second-order sensitivities mostly
involve the zeroth-order self-scattering cross sections in the 12th energy group of the isotopes, and
either the total cross sections for the 12th energy group for isotopes 239py; 240 py 9 Gg and "1 Ga, or the
total cross sections for the 30th energy group for isotopes C and 'H.

Additional information regarding the three submatrices in Table 12 that have elements with
absolute values greater than 1.0 is provided below:

(1) The eight elements in the submatrix s (og

g’ —h

6’ 7s1=0k=1

t,i=

)r 3,8 ,h=1,...,30 (of second-order

sensitivities of the leakage response with respect to the total cross sections of 'H and to the
zeroth-order scattering cross sections of 2 Pu) that have values greater than 1.0 are presented
in Table 14. All of these relative sensitivities are with respect to the same total cross section
parameter oi 6:30 and to the zeroth-order self-scattering cross sections. The relative sensitivities
with respect to the Oth-order in-scattering and out-scattering cross sections are all smaller than 1.0.
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(2) The sensitivity matrix s(2 )( Gg,_)h ), g, 8 ,h =1,...,30, comprising the second-order

tl 6’ 75,1=0,k=5
mixed sensitivities of the leakage response with respect to the total cross sections of 'H and to

the zeroth—order scattering cross sections of C, includes 3 elements that have Values greater than

1212 13513 2 14—14 ) _
10: ¢ )( 04 i=6795.1=0, k= 5) = -1.346, SC )< O} i=6795,1=0, k= 5) = —1.284, and s )( O} i=6795,1=0 k= 5)

—1.031. These three sensitivities are with respect to the same total cross section parameter otgé 30

and to the zeroth-order self-scattering cross sections, just as the sensitivities presented in Table 14.

ti=6""'s,]=0k=6
sensitivities of the leakage response with respect to the total cross sections of 'H and to the
zeroth-order scattering cross sections of 'H, includes 26 elements that have values greater than
1.0, as listed in Table 13. All these 26 relative sensitivities are with respect to the total cross section

(3) The sensitivity matrix s(2) (ag ) ,ag,_)h ), 3,8 h =1,...,30, comprising the second-order

f P % The element having the largest absolute value is S(z)(o‘z?: o 62?4032 6) -10.77.
Table 13. Elements of S )( O e Sg l_'g e 6), 9,8 h=1,...,30 with absolute values greater than 1.0.

g —h g —h g —h g —h g —h g —h g —h g —h g —h
11-12 12-12 12-13 13-13 12514 13514 14-14 1215 13-15

g=30 -1.205 -1.332 —2.338 -1.329 -1.609 —2.252 -1.170 -1.076 —-1.539

g —h g —h g —h g —h g —h g —h g —h g —h g —h
14—-15 12—-16 13—>16 14-16 15-16 16—16 15517 16—-17 17->17

g=30 -1.967 -1.152 -1.677 —-2.198 —-2.618 -2.157 -1.099 -3.087 —1.485

g —h g —h g —h g —h g —h g —h g —h g —h
16—-18 17—-18 18—18 18—19 19—-20 20—21 29—-30 30—30

g=30 -1.266 -2.023 -1.089 -1.496 —1.243 -1.039 -1.205 -10.77

Table 14. Elements of S(2 >( 0} e Sg l—>(})1 k:l)’ 8,8 ,h=1,...,30, with absolute values greater than 1.0.

g —h g —h g —h g —h g —h g —h g —h g —h
77 8 —8 9 -9 10 —» 10 11— 11 12 - 12 13 - 13 14 — 14

g=30 -1.598 -1.262 -1.313 -1.244 -1.118 -2.039 -1.739 -1.268

3.3.2. Results for the Relative Sensitivities S(z)(af i ng’l;h k)

sl=1k sI=1k
3,8, h =1,...,30, comprising the second-order relative sensitivities of the leakage response with
respect to the total cross sections and the first-order scattering cross sections between all isotopes, are

summarized in Table 15. Only 15 components of S(z)(og af -1

than 1.0.

The numerical results for S )(ag o8 h ) = ((92L/80g do% " )( fz flﬁfk/L) I=1;,ik=1,...,6,

) have relative sensitivities greater
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Table 15. Summary of second-order relative sensitivities of the leakage response with respect to the total

cross sections and the first-order (I = 1) scattering cross sections for all isotopes: S(z)(a‘fi, Uf l:1h k) =
2 8 5. 8—=h \( 8 &—h 1. — o o B —
(8 L/"f’t,iaas,1:1,k)("r,if’s,1:1,k/L)f I=11ik=1,...,6;¢,¢" h=1,...,30.
k=1 k=2 k=3 k=4 k=5 k=6
(P°Pu) (*0Pu) (“Ga) ("'Ga) (C) ('H)
g g g g g g
S(Z)( Ug’];h ] 5(2)[ gﬁé'l'h ] 5(2)[ Uté’];h ] 5<2>[ U;é’gh ] 5(2){ Ut&:'l;h ] 5<2)[ Gfé'lih ]
1 Og1=11 Os1=12 Og1=13 Osi1=14 O1=15 Os1=16
2’3; Max. value = Max. value = Max. value = Max. value = Max. value = Max. value =
(27Pu) 334 x 107! 2.07 x 1072 6.84 x 107 4.10x107* 1.10 x 1071 3.46 x 107!
atg=7, atg=12, atg=12, atg=7, atg=12, atg=12,
g'=7,h=7 g’=12, h=12 g’=12,h=12 g'=7,h=7 g'=12,h=12 g’=12,h=12
g g g g g g
s | | ose e s D) s ) s T |
o Os1=11 Osi=12 Os1=13 Osi=14 O)1=15 Tsi=16
2’ 10 Max. value = Max. value = Max. value = Max. value = Max. value = Max. value =
(*"Pu) 2.10 x 1072 1.31x 1073 433x1075 257 x 1073 6.98 x 107> 220 x 1072
atg=12, atg=12, atg=12, atg=7, at g=12, atg=12,
g’=12,h=12 g’=12, h=12 g’'=12,h=12 g'=7,h=7 g’'=12,h=12 g’=12,h=12
g g g g g g
S(z)( Ui"’ih ] 5(2)[ Gt‘\’l’s;h ] 5(2){ Gg’ih ] S<2)[ Otg”ﬁh ] 5(2)( a;”i’»h ] S<2)[ Ué’*‘;h ]
. Og1—1,1 Osi=1,2 951=13 Og1=14 Os1=15 Os1=16
169_ Max. value = Max. value = Max. value = Max. value = Max. value = Max. value =
(Y'Ga) 9.42 x 1074 5.90 x 1075 1.95 x 107° 1.09 x 107° 314 x 1074 1.02 x 1073
at g=12, atg=12, at g=12, atg=7, at g=12, at g=16,
g’'=12, h=12 g'=12, h=12 g’'=12, h=12 g'=7,h=7 g’'=12, h=12 g'=16,h=16
g g g g g g
S(Z)[ Jg’gh ] 5(2)[ Gg/gh ] s@ [ 0;,/4_/);’ ] 5@ [ Ug’ih ] Sm[ U?‘L’h ] 5<2)[ G.té’{h ]
. I5i=11 I5i=12 I5i=13 I5i=14 I51=15 I51=16
’7; Max. value = Max. value = Max. value = Max. value = Max. value = Max. value =
(" Ga) 639 x 10~ 4.00 x 107 132 x 1076 7.24 %1077 213 %107 671 x 1074
at g=12, atg=12, at g=12, atg=7, at g=12, at g=13,
g’'=12,h=12 g’=12, h=12 g'=12,h=12 g'=7,h=7 g/=12, h=12 g'=12, h=13
g g g g g g
oY =, 0% =, oY =, 07 =, (O O s/
B I I o I AR I B L N
i_s O1—11 Os1=12 O51=13 Os1=14 Os1=15 Os1=16
1= Max. value = Max. value = Max. value = Max. value = Max. value = Max. value =
(©) 1.12x 107! 6.74 x 1073 226x107* 1.37 x 107 434 %1072 5.86 x 1071
at g=30, at g=30, at g=30, at g=30, at g=30, at g=30,
g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g’=12,h=12 g’=30, h=30
g g g g
g oy, [Py [P O ¢ 8
s® Ir60 S(Z)[ ;"6_», ] S(Z)[ ;”6_»1, ] 5(2)[ ;4’6_>h ] 5(2)[ ;"(Lh ] s@ Ir60
e &' —h I5i=1,2 T51=13 T5i=14 95i=15 S
’1* 2 eleme;{lt:s Mith Max. value = Max. value = Max. value = Max. value = 13 elem esfljslb ith
(‘H) w 8.04 x 1072 2.70 x 1072 1.64 % 1073 5.18 x 10~ w
absolute values absolute values
>1.0 at g=30, at g=30, at g=30, at g=30, ~1.0
: g'=7,h=7 g'=7,h=7 g'=7,h=7 g’'=12,h=12 :

As shown in Table 15, the largest absolute values of the mixed second-order sensitivities involve
mostly the first-order self-scattering cross sections in the 7th, 12th, or 30th energy groups of the
isotopes, along (mostly) with either the total cross sections for the 7th or 12th energy group for isotopes
239py,240 py,% Ga and 7'Ga, or (occasionally) the total cross sections for the 30th energy group for
isotopes C and 'H.

Additional details regarding the two submatrices in Table 15 that comprise several elements with
absolute values greater than 1.0, are provided below:



Energies 2019, 12, 4114 26 of 33

v ce@)f -8 §'—h 2 g —h g &k ’
(1) The matrix s )(Gt,i:()’ 0011 fe 1) (8 L/aatl 6801 Lh— 1)(Gt,i=6as,l:1,k:1/L)’ g 9,h=1,...,30,

of second-order sensitivities of the leakage response with respect to the total cross sections of 'H
and to the first-order scattering cross sections of 2*Pu, comprises two elements that have values

greater than 1.0, namely 5(2)( f’? 6,051_’71 . 1) = 1.337 and 5(2)( 0 ier 03—’115 1) = 1.018. Both are

related to the total cross section parameter a . 32 and the first-order self-scattering cross sections.

§'—h 2 8§ —h § &k _
(2) The matrix S )( 67 Ts 1 1,k:6) (3 L/aotl 699 11— 6)(Gt,i:605,l:l,k:6/L)’ 28, h=1,...,30,

of second-order sensitivities of the leakage response with respect to the total cross sections of 'H
and the first-order scattering cross sections of 'H, comprises 13 elements that have values greater
than 1.0 which are listed in Table 16. All the 13 sensitivities presented in this table are with respect

) 30-30
to the total cross section parameter o ° The largest sensitivity is S(2 ( O i Ty 1 ke 6) = 6.996.

Table 16. Elements of S )( Oy ier fl_)fk 6) 9,8 h=1,...,30, having values greater than 1.0.
g’—)h g’—»h g —h g’—)h g’—)h g —h g’—)h
11 —-12 12> 12 12 - 13 13- 13 13 > 14 14 — 14 14 - 15
g=30 1.212 1.628 2.003 1.522 1.779 1.289 1.448
g’—)h g’—»h g’—>h g’—)h g’—)h g —h
15 - 16 16 —» 16 16 —» 17 17 - 17 17 - 18 30 — 30
g=30 1.631 1.979 1.642 1.312 1.096 6.996

3.3.3. Results for the Relative Sensitivities S(2 )(a Gf l_ﬁ k)

Table 17 summarizes the results obtained for the second-order relative sensitivities of the leakage
response with respect to the total cross sections and the second-order scattering cross sections between all

. 'k 'k N3 . ,
isotopes, S(2>(a afl 2k) = (82L/8a§i8o§l:2,k)(afl fl 2k/L) =2ik=1,...,6;¢",¢,h=1,...,30.

All components of this matrix have absolute values smaller than 1.0. The largest negative value is
2)(530 ;1212 _ -
st )(Gt,izé’asl 2= 6) 4258 % 1071
As shown in Table 17, the largest values of the mixed second-order sensitivities in each of the
respective submatrix involve the second-order self-scattering cross sections in the 7th or 12th energy
groups of the isotopes, and the total cross sections corresponding either to the 7th energy group for

isotopes 237 Pu,?40 Pu,% Ga and 71Ga, or to the 30th energy group for isotopes C and 'H, respectively.
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Table 17. Summary of second-order relative sensitivities of the leakage response with respect to the total

cross sections and the second-order (I = 2) scattering cross sections for all isotopes: S(Z)(a , ng ]:él k) =
'—h '—h .
(/905005 2 (08 Tap/ L) 1= 20 ik =1, G = 1,30,
k=1 k=2 k=3 k=4 k=5 k=6
(P°Pu) (*0Pu) (“Ga) ("'Ga) (C) ('H)
g g g g g g
s<2>( o ] s<2>[ o ] 5(2)[ o ] s<2>[ o, ] s<2>{ o ] s<2>[ o, ]
1 Osi=21 I5i=22 O5i=23 Osi=24 951=25 O5i=26
2’3; Min. value = Min. value = Min. value = Min. value = Min. value = Min. value =
(27Pu) -2.51 x 1072 -1.54 x 1073 -4.61 x107° -2.86 x 107° -2.63 x 1072 -1.23 x 107!
atg=7, atg=7, atg=7, atg=7, atg=7, atg=12,
g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=12, h=12
g g g g g g
S(Z)[ Giﬂh ] 5(2)[ g@’ih ] s [ Ufé’z—l»h ] 5(2)[ Ufé’z—:h ] 5(2)[ gg’z;h ] 5@ [ U[é’z—/m ]
o Os1=21 Osi=22 Os1=23 Os1=24 O1=25 Os1=26
2’ 10 Min. value = Min. value = Min. value = Min. value = Min. value = Min. value =
(*Pu) ~158 %1073 ~9.66 x 1075 ~2.90 x 106 ~1.79 x 106 ~1.65x 1073 ~7.77 x 1073
,at g=7, ,at g=7, ,at g=7, ,at g=7, ,at g=7, ,at g=12,
g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g’'=12,h=12
g g g g g g
0% ., 0% ., 0% o, O} ) 0}~y 0y 2,
s<2>{ G ] s<2>[ W ] s<2){ - ] s<2>[ " ] s<2>( ) ] s<2>[ W ]
. si=2,1 Is1=22 Tsi=23 Tsi=24 I51=25 Tsi=256
169_ Min. value = Min. value = Min. value = Min. value = Min. value = Min. value =
(Y'Ga) -6.71 x 107° -4.10x 107° -1.23 x 1077 -7.64x 1078 -7.01 x107° -3.49 x 1074
atg=7, atg=7, atg=7, atg=7, atg=7, atg=12,
g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g’'=12, h=12
g g g g g g
o ., o ., o 4, 0} 4r 0y 4r Oy 4r
s<2)[ o ] s<2>[ o ] s<2)[ o ] s<2>[ o ] s<2>[ it ] s<2>[ o ]
. Tsi=21 Isi=22 Tsi=23 I5i=24 I51=25 Is1=2,6
’7; Min. value = Min. value = Min. value = Min. value = Min. value = Min. value =
(" Ga) -4.45x 107 ~2.72 %106 -8.16x 1078 ~5.06 x 1078 -4.65% 1075 -2.37 x 10~
,at g=7, ,at g=7, ,at g=7, ,at g=7, ,at g=7, ,at g=12,
g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g’'=12,h=12
g g g g g g
s e ) | se e s T ) s ) s e |
. Os)=21 I5i=22 Osi=23 Osi=24 I51=25 O5i=26
i=5 Min. value = Min. value = Min. value = Min. value = Min. value = Min. value =
(©) -4.86 x 1073 -2.97 x 107 -8.91 x 107° -5.53 x 107° -1.02 x 1072 -3.57 x 1072
at g=30, at g=30, at g=30, at g=30, at g=30, at g=30,
g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g’'=12, h=12
g g g g g g
o ., o, gy 0, o 0% er Oy 67
5(2)[ o ] 5(2)[ o ] 5(2)[ o ] 5(2)[ o ] 5(2)[ o ] 5(2)[ o ]
. s1=2,1 Is1=22 I51=23 Isi=24 I5)=25 Is1=26
’1* Min. value = Min. value = Min. value = Min. value = Min. value = Min. value =
(‘H) ~5.79 x 102 ~3.55x 1073 ~1.06 x 1074 ~6.60 x 1075 -1.22x 107! ~426x 107!
at g=30, at g=30, at g=30, at g=30, at g=30, at g=30,
g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=12,h=12
. e rs ' —h
3.3.4. Results for the Relative Sensitivities 5(2)(G§ i of 123 k)
. . '—h
Table 18 summarizes the results for the matrix S® (0 af 123 k) =
' —h ' —h . ..
(32L/90f,i305123 k)(ofioflzg k/L)’ 1=3;ik=1,...,6;¢",¢,h =1,...,30, comprising the second-order

relative sensitivities of the leakage response with respect to the total cross sections and the
third-order scattering cross sections for all isotopes. The largest absolute values of these mixed
second-order sensitivities involve the third-order self-scattering cross sections in the 6th or 7th or
12th energy group, and either the total cross sections for the 7th or 12th energy group for isotopes
239py,240 py,% Ga and 7' Ga, or the total cross sections for the 30th energy group for isotopes C and 'H,

respectively. All of these relative sensitivities have values much smaller than 1.0; the largest value is

2)(~30 12-12 _ -2
S@(020_ 012202 ) =7.13x1072
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Table 18. Summary of the second-order relative sensitivities of the leakage response with respect
to the total cross sections and the third-order (I = 3) scattering cross sections between all isotopes:

S(2>(0g ag'qh ) = (82L/aafi8agl_>h )(ag.aéf/_)h /L), ik=1,...,6;¢9',g,h=1,...,30.

ti’ 7 s,1=3k s,1=3,k ti s,1=3k
k=1 k=2 k=3 k=4 k=5 k=6
(P°Pu) (**0Pu) (“Ga) ("'Ga) (C) ('H)
g g g g g g
s<2>[ L, ] s<2>[ W, ] s<2>[ Y, ] s<2>[ Wy, ] s<2>[ o ] s<2>[ Ly, ]
_— T51=3,1 Is1=32 T51=33 Ts1=34 51=35 Ts1=36
2’3; Max. value = Max. value = Max. value = Max. value = Max. value = Max. value =
(27Pu) 9.12x 1073 5.61x 1070 1.59 x 1077 1.00 x 1077 712x 1073 2.76 x 1072
atg=7, atg=7, atg=7, atg=7, atg=7, atg=12,
g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=12,h=12
g g g g g g
s® Gt’/z_,m s@ gt"z—:h s@ Ut”z—,»h s@ 6”'2—:;. s@ Ut’/z_,,h s@ U"'Z_/m
o e % an o as 0 aa % a5 L
21 10+ Max. value = Max. value = Max. value = Max. value = Max. value = Max. value =
(*Pu) 5.73 % 107 352% 1077 1.00 x 10-8 6.28 x 1079 447 x 107 1.75x 1072
atg=7, at g=7, atg=7, atg=7, atg=7, atg=12,
g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g’'=12,h=12
g g g g g g
sof 2, | s T, | s | se| | sef T | sef T,
o %5 %3 %3 %3 o s %56
169_ Max. value = Max. value = Max. value = Max. value = Max. value = Max. value =
(*Ga) 243 x 1077 1.50 x 1078 4.25x 10710 2.67 x 10710 1.90 x 1072 7.85 % 107°
atg=7, atg=7, atg=7, atg=7, atg=7, atg=12,
g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g’'=12, h=12
g g g g g g
0%, 0 4 0% 4 0y ., o, s,
e | () (s ] (s ] (] (0 )
. O51=31 O51=32 O51=33 O51=34 951=35 951=36
’7; Max. value = Max. value = Max. value = Max. value = Max. value = Max. value =
(" Ga) 1.61 x 107 9.93 x 10~ 2.82 x 10710 1.77 x 10710 1.26 X 1075 532 x 107
atg=7, atg=7, atg=7, atg=7, at g=7, atg=12,
g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g'=7,h=7 g’'=12,h=12
g g g g g g
S(Z)( Gg’s;h ] 5(2)[ g(té’s;h ] 5(2)[ Oi"s;h ] S<2>[ g(téah ] 5(2)[ afé’s;h ] S<2)[ G;é’s;h ]
s O51=31 I51=32 Osi=33 O5i=34 951=35 O51=36
L= Max. value = Max. value = Max. value = Max. value = Max. value = Max. value =
(©) -3.67 x 107° -2.34 x 1077 -3.63 x 1077 214 x107° 239 x 1073 5.98 x 1073
at g=30, at g=30, at g=30, at g=30, at g=30, at g=30,
g’=12,h=12 g’=12, h=12 g’=10, h=10 g'=6, h=6 g'=7,h=7 g’=12,h=12
g g g g g g
s<z>[ U, ] s<z>[ W ] s<z>[ U, ] s<2>[ U, ] s<2>[ e ] s<2>[ U, ]
0° o o o
. s,1=3,1 s1=32 s1=3.3 sl=34 s,1=35 51=3,6
’1* Max. value = Max. value = Max. value = Max. value = Max. value = Max. value =
(*H) -4.38 x 107° -2.79 x 107° -4.33x 1078 256 x 1078 2.85x 1072 7.13 x 1072
at g=30, at g=30, at g=30, at g=30, at g=30, at g=30,
g'=12,h=12 g'=12, h=12 g'=10,h=10 g'=6,h=6 g'=7,h=7 g'=12,h=12
. . ' —h .
Comparing the results for the matrices s(2) ofi,asg 1: ), for scattering orders I = 0,/ =1,/ =2,

and [ = 3, as summarized in Tables 12, 15, 17 and 18, respectively, indicates that for a submatrix that is
located in the same position in these tables, the higher the scattering order, the smaller the absolute value

g g'—h
b iz6 Oa ke 6) located at the

lower right corner in each table, the largest absolute values decrease as the scattering order increases, i.e.,
S@(a20_,, 039220 ) = -10.77, S@(620_, 020230 ) = 6996, S@)(o¥0_,, 012212 ) = -4258 x107},

of the second-order mixed sensitivities. For example, for the submatrix s (O‘ o

t,i=6" "s,1=0k=6 t,i=6" "s,l=1k=6 t,i=6" ~s,]1=2,k=6
(2)( 30 12512 ) _ -2 -
and S O ier Ts1—3k—6 7.13 x 1077, respectively.

4. Uncertainties in the PERP Leakage Response Induced by Uncertainties in Scattering Cross
Sections

Since correlations among the group cross sections are not available for the PERP benchmark, the
maximum entropy principle (see, e.g., [8]) indicates that neglecting them minimizes the inadvertent
introduction of spurious information into the computations of the various response moments. As has
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been discussed in Part I [1], up to second-order response sensitivities, the expected value of the PERP
benchmark’s leakage response has the following expression:

[E(L)], = L(a) + [EL)]Y, (83)

ll ”

where the subscript “s” indicates contributions solely from the group-averaged uncorrelated scattering

microscopic cross sections, and where the second-order contributions, [E(L)](2 W to the expected
value, [E(L)],, of the leakage response L(«), is given by the following expression:

2u) 18 & L BT a2 (a) o
st 8 =8 _ _ _
[E( = ZZ Z Z; § =y, gﬁg(ssrlli ) , G=230,1=6,ISCT = 3. (84)
g=1g'=1 s,l,i sll

In Equation (84), the quantity sf l?‘g denotes the standard deviation associated with the imprecisely

g -8
sLi

Taking into account contributions solely from the group-averaged uncorrelated and
normally-distributed scattering microscopic cross sections (which will be indicated by using the
superscript “(U,N)” in the following equations), the expression for computing the variance, denoted as

known model parameter o

[Var(L)]gu’N), of the leakage response of the PERP benchmark takes on the following form:

var(L)[*N) = [var (L)]{""N) + [var ()] FV), (85)

U,N)

where the first-order contribution term, [var (L)}gl’u’m, to the variance [Var(L)]£ is defined as

SR CI ch B Kl 2
var ()M £ 3 Y Y (sfljg), G =30,1=6,ISCT =3, (86)

UN)

while the second-order contribution term, [var (L)] §Z’U'N> , to the variance [Var(L)]g is defined as

G G I ISCT 2 2
QunN) . 1 8L—w( g ﬁg)
[Var (L)]S = 22 Z 4 Z 8(jg —>ga -9 Ssll
g=1g'=1i=1 I=0 s,Li Sll

2
, G=30,1=6,ISCT=3. (87

Again, taking into account contributions solely from the group-averaged uncorrelated scattering

microscopic cross sections, the third-order moment, [p3(L)] gu,N )

benchmark takes on the following form:

G G I ISCT
(LY = 32 Z Y Z
g=1g'=1i=1 I=0

As Equation (88) indicates, if the second-order sensitivities were unavailable, the third moment

, of the leakage response for the PERP

82L N 4
30 7890 v

308—’8
sl 511

sl

[us(L)]s (UN) \ould vanish and the response distribution would by default be assumed to be Gaussian.

The skewness, [y1 (L)]S(U'N), induced by the variances of microscopic scattering cross sections in the
leakage response, L, is defined as follows:

LI = s {pvar] ) ®9)

The effects of the first- and, respectively, second-order sensitivities on the response’s expected
value, variance and skewness can be quantified by considering typical values for the standard deviations
for the uncorrelated group-averaged isotopic scattering cross sections, using these values together with
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the respective sensitivities computed in Section 2 in Equations (84)—(89). The results thus obtained
are presented in Table 19, considering uniform parameter standard deviations of 1%, 5%, and 10%,
respectively. These results indicate that the effects of both the first- and second-order sensitivities on the
expected response value, its standard deviation and skewness are negligible, which is not surprising in
view of the values for the first- and second-order sensitivities already presented in Tables 6-11.

Table 19. Comparison of Response Moments for Different Relative Standard Deviations of the
Uncorrelated Scattering Cross Section Parameters.

Relative Standard Deviation 10% 5% 1%
L(cxo) 1.7648 x 106 1.7648 x 106 1.7648 x 106
[E(L) W -1.3473 x 10* -3.3682 x 103 ~1.3473 x 102
E(L)]. = L(«®) + [E(L)]*Y 1.7513 x 10° 1.7614 x 10 1.7647 x 106
S S
var (L)](WUAN) 1.2379 x 108 3.0947 x 10° 102379 x 108
[var (L)],
var (L)]ZUN) 4.3207 x 107 2.7004 x 10° 43207 x 103
[var (L)]g
var (L))" = [var (L)Y 4 [var (L)) YY) 12422 %101 3.0974 x 10° 1.2379 x 108
[us(L)]UN) ~4.9281 x 1012 ~3.0800 x 10! ~4.9281 x 108
3/2
L)) = [us (L)) UM /{[var(L)]gqu >} ~3.5595 x 1073 ~1.7868 x 1073 ~3.5780 x 10~

The contributions to the leakage response moments stemming from the group-averaged
uncorrelated microscopic scattering cross sections are much smaller than the corresponding
contributions stemming from the group-averaged uncorrelated microscopic total cross sections. This
fact can be readily illustrated by considering standard deviations of 10% for all of the group-averaged
uncorrelated microscopic scattering and total cross sections, and by comparing the corresponding
results in Table 19 and Table 25 of Part I [1], which reveals that:

[E(L))PY) = —1.3473 x 10* < [E(L))*Y) = 45980 x 106,

var (L)Y = 12379 x 1010 < [var (L)] ) = 3.4196 x 1012,

[var (L)] "N = 43207 x 107 < [var (L) "N = 2.8789 x 1012,

| )] =3.5595x 107 < [y (L))" = 0.3407.

It is noteworthy that several mixed second-order sensitivities of the leakage response with respect
to the total and scattering cross sections, as shown in Section 3, have values that are significantly larger
(by several orders of magnitude) than the values of the unmixed sensitivities. Recall that the following
sensitivities have absolute values larger than 1.0:

(a) 8 elements of the matrix S(z)(og g —h

L6’ Gs,l:(),k:l)’ g8 ,h=1,...,30, presented in Table 14;

g —h
s,1=0,k=5

. @) - g'—h
(c) 26 elements of the matrix S (at,i: 6 05 1=0k—6

), g, ¢, h=1,...,30, as listed in Table 15;

(b) 3 elements of the matrix S(z)(atgi: Y ), g8, h=1,...,30, as listed in Table 12;

), 8,9 ,h=1,...,30, as listed in Table 13;

a2~ g’ —h
(d) 2 elements of the matrix S (Gt,i=6’ Og 11 k=1

(e) 13 elements of the matrix S(z)(og o8

L6’ s,l:l,k:6)’ g, ¢ ,h=1,...,30,as listed in Table 16.

The above results indicate that it would be very important to obtain correlations among the
various model parameter, since these correlations could contribute, in conjunction with the mixed
second-order sensitivities, to the ultimate values of the response moments. Since the mixed second-order
sensitivities of the leakage response to the group-averaged total and scattering microscopic cross
sections are significantly larger than the unmixed second-order sensitivities of the leakage response to
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the group-averaged scattering microscopic cross sections, it is likely that the correlations among the
respective total and scattering cross sections could provide significantly larger contributions to the
response moments than just the standard deviations of the scattering cross sections.

5. Conclusions

This work has presented results for the first- and second-order sensitivities of the PERP total
leakage response with respect to the benchmark’s group-averaged microscopic scattering and total
cross sections.

1. The first-order sensitivities of the leakage response with respect to the zeroth-order self-scattering
cross sections can be compared directly to the corresponding unmixed second-order sensitivities.
For all six of the isotopes contained in the PERP benchmark, both the first- and the second-order
unmixed relative sensitivities of the leakage response with respect to the zeroth-order
self-scattering cross sections are small, and the second-order relative sensitivities are much
smaller, by at least an order of magnitude, than the corresponding first-order relative sensitivities.
2. For the second-order mixed sensitivities 92L/ds ]'Bsmz, j=1,...,Jos;ma=1,...,]ss, the numerical
values of the corresponding relative sensitivities are very small, the largest of them being of the

order of 1072. The largest second-order relative sensitivity is S (2)(01%_’0112 v 03?_)01]% 1) =3.579 x

31—’8 h’—)h) I, I =
i
L3Lk=1,...,6; g,¢',hh =1,...,30 are mostly with respect to the self-scattering cross

sections, rather than to the in-scattering or out-scattering cross sections.

1072. The largest relative sensitivities in each of the respective submatrix S(Z)(o

3. For the second-order mixed sensitivities 9%L/ &t]-&sm, j=1..Joumy = 1,...,Jss, the
corresponding relative sensitivities are generally very small, with a few exceptions. Among
all the Jst X Jos = 180 x 21600 elements, only 52 of them have absolute values of the relative
sensitivities greater than 1.0; most of these elements belong to the submatrices s (Gtg 6 ng l:g 1),

Ti6 Os1=0,6 ) Ir679s1=1,1 Ii679s1=1,6
large values are related to the total cross section parameter a of isotope 6 (lH) Also, the largest

5(2)( 8 o8 h ) S(z)( $ 687 )and s )( g ) where g, ¢’,h = 1,...,30. All of these

absolute values in each of those submatrices are mostly related to the self-scattering cross sections
in the 12th or 30th energy groups of isotope 1 (?*°Pu) and isotope 6 (\H), respectively. The overall

; ; ivity is S(2)(530 530-30) —
largest mixed relative sensitivity is S )(0 t679%1—0, 6) = -10.77.
4. In each submatrix of S(z)(o agl:h),l =0,....3i,k=1,...,6; g,¢',h = 1,...,30, most of

the largest absolute value of the 2nd-order relative sensitivities are negative when involving
odd-order (I = 1,3) scattering cross sections; in contradistinction, most of these large sensitivities
are positive when involving even-order (I = 0, 2) scattering cross sections. Furthermore, the larger
the Legendre expansion order (I =0, ..., 3), the smaller the absolute values of the corresponding
second-order mixed relative sensitivities.

5. This work has not taken into consideration the effects of the mixed second-order sensitivities of
the leakage response with respect to the scattering and total microscopic cross section parameters
since no correlations among these parameters are available. However, several mixed second-order
sensitivities of the leakage response to the group-averaged microscopic total and scattering
cross sections are significantly larger than the unmixed second-order sensitivities of the leakage
response with respect to the group-averaged microscopic scattering cross sections. Therefore, it
would be very important to obtain correlations among the respective total and scattering cross
sections, since these correlations could provide, through the mixed second-order sensitivities,
significantly larger contributions to the response moments than just the contributions from the
standard deviations of the scattering cross sections.
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Subsequent works will report the values and effects of the first- and second-order sensitivities of the
PERP’s leakage response with respect to the group-averaged isotopic fission cross sections and average
number of neutrons per fission [9], source parameters [10], isotopic number densities and fission
spectrum [11]. The overall conclusions and implications of this pioneering and uniquely comprehensive
second-order sensitivity and uncertainty analysis of a paradigm reactor physics benchmark will also
be presented in [11].
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