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Abstract: The Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) is applied
to compute the first-order and second-order sensitivities of the leakage response of a
polyethylene-reflected plutonium (PERP) experimental system with respect to the following nuclear
data: Group-averaged isotopic microscopic fission cross sections, mixed fission/total, fission/scattering
cross sections, average number of neutrons per fission (ν), mixed ν/total cross sections, ν/scattering
cross sections, and ν/fission cross sections. The numerical results obtained indicate that the 1st-order
relative sensitivities for these nuclear data are smaller than the 1st-order sensitivities of the PERP
leakage response with respect to the total cross sections but are larger than those with respect to the
scattering cross sections. The vast majority of the 2nd-order unmixed sensitivities are smaller than the
corresponding 1st-order ones, but several 2nd-order mixed relative sensitivities are larger than the
1st-order ones. In particular, several 2nd-order sensitivities for 239Pu are significantly larger than the
corresponding 1st-order ones. It is also shown that the effects of the 2nd-order sensitivities of the PERP
benchmark’s leakage response with respect to the benchmark’s parameters underlying the average
number of neutrons per fission, ν, on the moments (expected value, variance, and skewness) of the
PERP benchmark’s leakage response distribution are negligible by comparison to the corresponding
effects (on the response distribution) stemming from uncertainties in the total cross sections, but are
larger than the corresponding effects (on the response distribution) stemming from uncertainties in
the fission and scattering cross sections.

Keywords: polyethylene-reflected plutonium sphere; 1st- and 2nd-order sensitivities to microscopic
fission cross sections; 1st- and 2nd-order sensitivities to the average number of neutrons per fission;
expected value; variance and skewness of leakage response

1. Introduction

This work, designated as “Part III,” continues the presentations of results, commenced in Part I [1]
and set forth in Part II [2], produced within the ongoing second-order comprehensive sensitivity analysis
to nuclear data of the polyethylene-reflected plutonium (PERP) metal sphere benchmark described
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in [3]. The computational model of the PERP benchmark is solved using the multigroup discrete
ordinates neutron transport code PARTISN [4], comprising the following imprecisely known nuclear
data parameters: 180 group-averaged total microscopic cross sections, 21,600 group-averaged scattering
microscopic cross sections, 120 parameters describing the fission process, 60 parameters describing the
fission spectrum, 10 parameters describing the system’s sources, and 6 isotopic number densities.

This work presents the numerical results for the 60 first-order sensitivities of the PERP’s leakage
response with respect to the benchmark’s group-averaged fission cross sections, along with the
results for the 60 × 60 second-order sensitivities of the PERP Benchmark’s leakage response to the
group-averaged microscopic fission cross sections, 60× 180 mixed 2nd-order sensitivities to the fission
and total microscopic cross sections, and 60 × 21,600 mixed 2nd-order sensitivities to the fission and
scattering microscopic cross sections. These sensitivities have been computed by specializing the
general expressions derived by Cacuci [5] to the PERP benchmark. Section 2 of this work presents
computational results for the 1st-order and 2nd-order sensitivities of the PERP benchmark’s leakage
response with respect to the group-averaged microscopic fission cross sections. Section 3 reports
numerical results for the matrix of mixed 2nd-order leakage sensitivities to the group-averaged fission
and total microscopic cross sections. Section 4 reports numerical results for the matrix of mixed
2nd-order leakage sensitivities to the group-averaged fission and scattering microscopic cross sections.

Section 5 presents computational results for the 60 first-order and 60× 60 second-order unmixed
sensitivities of the PERP benchmark’s leakage response with respect to the parameters underlying
the average number, ν, of neutrons per fission. Section 6 reports numerical results for the 60 × 180
matrix of mixed 2nd-order leakage sensitivities to ν and total microscopic cross sections. Section 7
reports numerical results for the 60 × 21,600 matrix of mixed 2nd-order leakage sensitivities to ν and
scattering microscopic cross sections. Section 8 reports numerical results for the 60 × 60 matrix of
mixed 2nd-order leakage sensitivities to ν and fission microscopic cross sections.

Section 9 presents the impact of the 1st- and 2nd-order sensitivities on the uncertainties induced
in the leakage response by the imprecisely known group-averaged fission microscopic cross section.
Section 10 presents the impact of the 1st- and 2nd-order sensitivities on the uncertainties induced in the
leakage response by the imprecisely known parameters underlying the average number of neutrons
per fission (ν).

Section 11 concludes this work. The computational results for the sensitivities of the PERP leakage
response to the remaining imprecisely known fission spectrum, isotopic atomic number densities, and
including the source parameters will be reported in subsequent publications.

2. Computation of 1st- and 2nd-Order Sensitivities of the PERP Leakage Response to Fission
Cross Sections

The physical system considered in this work is the same polyethylene-reflected plutonium
(acronym: PERP) metal sphere benchmark [3] as was considered in the 2nd-order sensitivity and
uncertainty analyses performed for the group-averaged total microscopic cross sections [1] and the
group-averaged scattering cross sections [2], respectively. As in [1,2], the neutron flux is computed
by solving numerically the neutron transport equation using the PARTISN [4] multigroup discrete
ordinates transport code. For the PERP benchmark under consideration, PARTISN [4] solves the
following multi-group approximation of the neutron transport equation with a spontaneous fission
source provided by the code SOURCES4C [6]:

Bg(α)ϕg(r, Ω) = Qg(r), g = 1, . . . , G, (1)

ϕg(rd, Ω) = 0, Ω · n < 0, g = 1, . . . , G (2)
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where rd denotes the external radius of the PERP benchmark, and where

Bg(α)ϕg(r, Ω) , Ω·∇ϕg(r, Ω) + Σg
t (r)ϕ

g(r, Ω)

−

G∑
g′=1

∫
4π

Σg′→g
s (r, Ω′ → Ω)ϕg′(r, Ω′)dΩ′ − χg(r)

G∑
g′=1

∫
4π

(νΣ)g′

f (r)ϕ
g′(r, Ω′)dΩ′ , (3)

Qg(r) ,
N f∑
k=1

λkNk,1FSF
k ν

SF
k e−Eg/ak sinh

√
bkEg, g = 1, . . . , G. (4)

In Equation (1), the vector α denotes the “vector of imprecisely known model parameters”,

which has been defined in [1] as α ,
[
σt;σs;σ f ;ν; p; q; N

]†
, having the vector-components σt, σs, σ f ,

ν, p, q and N which comprise the various model parameters for the microscopic total cross sections,
scattering cross sections, fission cross sections, average number of neutrons per fission, fission spectra,
sources, and isotopic number densities, respectively.

The PARTISN [4] calculations used MENDF71X 618-group cross sections [7] collapsed to G = 30
energy groups, with group boundaries, Eg, as presented in [1]. The MENDF71X library uses
ENDF/B-VII.1 Nuclear Data [8].

The total neutron leakage from the PERP sphere, denoted as L(α), will depend (indirectly, through
the neutron flux) on all of the imprecisely known model parameters and is defined as follows:

L(α) ,
∫
Sb

dS
G∑

g=1

∫
Ω·n>0

dΩ Ω · nϕg(r, Ω) (5)

Part I [1] has reported the results for the 1st- and 2nd-order sensitivities of the leakage response
with respect to the total and capture microscopic cross sections for ∂L(α)/∂σt and ∂2L(α)/∂σt∂σt,
respectively. Part II [2] has presented the results for the 1st-order sensitivities of the leakage
response with respect to the scattering microscopic cross sections ∂L(α)/∂σs and for the 2nd-order
sensitivities ∂2L(α)/∂σs∂σs, and ∂2L(α)/∂σs∂σt. This work reports the computational results for the
1st-order sensitivities ∂L(α)/∂σ f and ∂L(α)/∂ν, and for the 2nd-order sensitivities ∂2L(α)/∂σ f∂σ f ,
∂2L(α)/∂σ f∂σt, ∂2L(α)/∂σ f∂σs, ∂2L(α)/∂ν∂ν, ∂2L(α)/∂ν∂σt, ∂2L(α)/∂ν∂σs and ∂2L(α)/∂ν∂σ f ,
and compares these results to those reported in Parts I and II. The components of the vector of model

parameters α ,
[
σt;σs;σ f ;ν; p; q; N

]†
have been defined in [1] and are described in the Appendix A,

for convenient reference.

2.1. First-Order Sensitivities ∂L(ααα)/∂σσσ f

The first-order sensitivity of the PERP leakage response to the group-averaged microscopic
fission cross sections, which will be denoted as

[
∂L(α)/∂ f j

]
f=σ f

, comprises two types of contributions.

The first type of contributions, which will be denoted as
[
∂L(α)/∂ f j

](1)
f=σ f

, arises from quantities that

involve the macroscopic fission cross sections directly, while the second type of contributions stems
indirectly, through the macroscopic total cross sections, which comprise the fission cross sections in

their definitions. The contributions
[
∂L(α)/∂ f j

](1)
f=σ f

are computed using the following particular forms

of Equations (152), (156) and (157) in [5]. For convenient referencing, the corresponding equations
from [5] used in this work were reproduced in Appendix B.

[
∂L(α)
∂ f j

](1)
f=σ f

=
G∑

g=1

∫
V

dV
∫

4π
dΩψ(1),g(r, Ω)

G∑
g′=1

∫
4π

dΩ′
∂
[(
νΣ f

)g′
]

∂ f j
χgϕg′(r, Ω′), j = 1, . . . , Jσ f . (6)
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The multigroup adjoint fluxes ψ(1),g(r, Ω) appearing in Equation (6) are the solutions of the
following 1st-Level Adjoint Sensitivity System (1st-LASS):

A(1),g(α)ψ(1),g(r, Ω) = Ω · nδ(r− rd), g = 1, . . . , G, (7)

ψ(1),g(rd, Ω) = 0, Ω · n > 0, g = 1, . . . , G, (8)

where the adjoint operator A(1),g(α) takes on the following particular form of Equation (149) in [5]:

A(1),g(α)ψ(1),g(r, Ω)

, −Ω·∇ψ(1),g(r, Ω) + Σg
t ψ

(1),g(r, Ω) −
G∑

g′=1

∫
4π

dΩ′Σg→g′
s (Ω→ Ω′)ψ(1),g′(r, Ω′)

−νΣg
f

G∑
g′=1

∫
4π

dΩ′χg′ ψ(1),g′(r, Ω′) , g = 1, . . . , G.

(9)

The second type of contributions, which will be denoted as
[
∂L(α)/∂ f j

](2)
f=σ f

, includes the

contributions stemming from the total cross sections, since the total cross sections comprises the fission
cross sections. The contributions are computed using Equation (150) in [5] in conjunction with the

relations ∂L
∂t j

∂t j
∂ f j

= ∂L
∂ f j

and ∂Σt
g

∂t j

∂t j
∂ f j

= ∂Σt
g

∂ f j
, to obtain:

[
∂L(α)
∂ f j

](2)
f=σ f

= −
G∑

g=1

∫
V

dV
∫

4π
dΩψ(1),g(r, Ω)ϕg(r, Ω)

∂Σt
g

∂ f j
, j = 1, . . . , Jσ f . (10)

Adding Equations (6) and (10) yields the following expression:[
∂L(α)
∂ f j

]
f=σ f

=
[
∂L(α)
∂ f j

](1)
f=σ f

+
[
∂L(α)
∂ f j

](2)
f=σ f

=
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)

G∑
g′=1

∫
4π dΩ′

∂
[
(νΣ f )

g′
]

∂ f j
χgϕg′(r, Ω′)

−

G∑
g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω) ∂Σt

g

∂ f j
, f or j = 1, . . . , Jσ f .

(11)

For the PERP benchmark, the cross-sections in every material are treated in the PARTISN [4]
calculations as being space-independent within the respective material. When the parameters f j

correspond to the fission cross sections, i.e., f j ≡ σ
g j

f ,i j
, thus the following relations hold:

∂
[(
νΣ f

)g′
]

∂ f j
=

∂
M∑

m=1

I∑
i=1

Ni,m
(
νσ f

)g′

i

∂σ
g j

f ,i j

=

∂
M∑

m=1

I∑
i=1

Ni,mν
g′

i σ
g′

f ,i

∂σ
g j

f ,i j

= δg j g′Ni j,m jν
g′

i j
, (12)

∂Σg
t

∂ f j
=

∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

]
∂σ

gj
f ,i j

=

∂

 M∑
m=1

I∑
i=1

Ni,m

σg
f ,i+σ

g
c,i+

G∑
g′=1

σ
g→g′

s,l=0,i




∂σ
gj
f ,i j

=
∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
f ,i

]
∂σ

gj
f ,i j

= δg j gNi j,m j ,

(13)

where the subscripts i j, g j and m j denote the isotope, energy group and material associated with
the parameter f j, respectively; and where δg j g′ and δg j g denote the Kronecker-delta functionals (e.g.,
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δg j g = 1 if g j = g; δg j g = 0 if g j , g). Inserting Equations (12) and (13) into Equation (11) yields the
following expression for computational purposes:

∂L(α)
∂σ

g
f ,i

= Ni,m
∫

V dVνg
i ϕ

g
0(r)

G∑
g′=1

χg′ξ
(1) ,g′

0 (r) −Ni,m
∫

V dV
∫

4π dΩψ(1),g(r, Ω)ϕg(r, Ω),

f or i = 1, . . . , I; g = 1, . . . , G; m = 1, . . . , M,
(14)

where the flux moments ϕg
0(r) and ξ(1),g

′

0 (r) are defined as follows:

ϕ
g
0(r) ,

∫
4π

dΩϕg(r, Ω), (15)

ξ
(1),g
0 (r) ,

∫
4π

dΩψ(1),g(r, Ω). (16)

The numerical values of the 1st-order relative sensitivities, S(1)
(
σ

g
f ,i

)
,

(
∂L/∂σg

f ,i

)(
σ

g
f ,i/L

)
,

i = 1, 2; g = 1, . . . , 30, of the leakage response with respect to the fission microscopic cross sections for
the six isotopes contained in the PERP benchmark will be presented in Section 2.3, below, in tables that
will also include comparisons with the numerical values of the corresponding 2nd-order unmixed

relative sensitivities S(2)
(
σ

g
f ,i, σ

g
f ,i

)
,

(
∂2L/∂σg

f ,i∂σ
g
f ,i

)(
σ

g
f ,iσ

g
f ,i/L

)
, i = 1, 2; g = 1, . . . , 30.

2.2. Second-Order Sensitivities ∂2L(ααα)/∂σσσ f∂σσσ f

The equations needed for deriving the expression of the 2nd-order sensitivities ∂2L(α)/∂σ f∂σ f
are obtained by particularizing Equations (158), (160), (177) and (179) in [5] to the PERP benchmark.
The contribution stemming directly from the fission cross section is obtained by particularizing
Equation (179) in [5] to the PERP benchmark, which yields:

(
∂2L

∂ f j∂ fm2

)(1)
=

G∑
g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)

G∑
g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂2
[
(νΣ f )

g′
]

∂ f j∂ fm2

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

1, j (r, Ω)
∂
[
(νΣ f )

g]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg′ψ(1),g′(r, Ω′)

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

2, j (r, Ω)
G∑

g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂
[
(νΣ f )

g′
]

∂ fm2
,

f or j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσ f ,

(17)

where the 2nd-level adjoint functions, u(2),g
1, j (r, Ω) and u(2),g

2, j (r, Ω), j = 1, . . . , Jσ f , g = 1, . . . , G,
are the solutions of the following 2nd-Level Adjoint Sensitivity System (2nd-LASS) presented in
Equations (183)–(185) of [5]:

Bg
(
α0

)
u(2),g

1, j (r, Ω) =
G∑

g′=1

∫
4π

dΩ′ϕg′(r, Ω′)χg
∂
[(
νΣ f

)g′
]

∂ f j
, j = 1, . . . , Jσ f ; g = 1, . . . , G, (18)

u(2),g
1, j (rd, Ω) = 0, Ω · n < 0; j = 1, . . . , Jσ f ; g = 1, . . . , G, (19)

A(1),g
(
α0

)
u(2),g

2, j (r, Ω) =
∂
[(
νΣ f

)g]
∂ f j

G∑
g′=1

∫
4π

dΩ′χg′ψ(1),g′(r, Ω′), j = 1, . . . , Jσ f ; g = 1, . . . , G, (20)

u(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσ f ; g = 1, . . . , G. (21)
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The parameters f j and fm2 in Equations (17), (18) and (20) correspond to the fission cross sections,

and are therefore denoted as f j ≡ σ
g j

f ,i j
and fm2 ≡ σ

gm2
f ,im2

, respectively, where the subscripts im2 and gm2

refer to the isotope and energy groups associated with the parameter fm2 , respectively, and where the
index m2 is defined in Equation (17). Noting that

∂2Σt
g

∂ f j∂ fm2

=
∂2Σt

g

∂σ
g j

f ,i j
∂σ

gm2
f ,im2

= 0, (22)

∂
[(
νΣ f

)g]
∂ fm2

=

∂
M∑

m=1

I∑
i=1

Ni,m
(
νσ f

)g

i

∂σ
gm2
f ,im2

=

∂
M∑

m=1

I∑
i=1

Ni,mν
g
i σ

g
f ,i

∂σ
gm2
f ,im2

= δgm2 gNim2 ,mm2
ν

g
im2

, (23)

∂
[(
νΣ f

)g′
]

∂ fm2

=

∂
M∑

m=1

I∑
i=1

Ni,m
(
νσ f

)g′

i

∂σ
gm2
f ,im2

=

∂
M∑

m=1

I∑
i=1

Ni,mν
g′

i σ
g′

f ,i

∂σ
gm2
f ,im2

= δgm2 g′Nim2 ,mm2
ν

g′

im2
, (24)

∂
[(
νΣ f

)g]
∂ f j

=

∂
M∑

m=1

I∑
i=1

Ni,m
(
νσ f

)g

i

∂σ
g j

f ,i j

=

∂
M∑

m=1

I∑
i=1

Ni,mν
g
i σ

g
f ,i

∂σ
g j

f ,i j

= δg j gNi j,m jν
g
i j

, (25)

and inserting the results obtained in Equation (12) and in Equations (22)–(25) into Equations (18), (20)
and (17) reduces the latter equation to the following expression:

(
∂2L

∂ f j∂ fm2

)(1)
= Nim2 ,mm2

ν
gm2
im2

∫
V

dV

U(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgU(2),g
2, j;0 (r)

, (26)

where

U(2),g
1, j;0 (r) ,

∫
4π

dΩ u(2),g
1, j (r, Ω), (27)

U(2),g
2, j;0 (r) ,

∫
4π

dΩ u(2),g
2, j (r, Ω), (28)

and where the 2nd-level adjoint functions, u(2),g
1, j (r, Ω) and u(2),g

2, j (r, Ω), j = 1, . . . , Jσ f ; g = 1, . . . , G are
the solutions of the following simplified form of the 2nd-Level Adjoint Sensitivity System (2nd-LASS)
shown in Equations (18) and (20):

Bg
(
α0

)
u(2),g

1, j (r, Ω) = Ni j,m jν
g j

i j
χgϕ

g j
0 (r), j = 1, . . . , Jσ f ; g = 1, . . . , G, (29)

A(1),g
(
α0

)
u(2),g

2, j (r, Ω) = δg j gNi j,m jν
g
i j

G∑
g′=1

χg′ξ
(1),g′

0 (r), j = 1, . . . , Jσ f ; g = 1, . . . , G, (30)

subject to the boundary conditions shown in Equations (19) and (21), respectively.
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The remaining contributions to
(

∂2L
∂ f j∂ fm2

)
( f=σ f , f=σ f )

stem from Equation (158) in [5], which

are obtained by using this equation in conjunction with the relations ∂2L
∂t j∂tm2

∂t j
∂ f j

∂tm2
∂ fm2

= ∂2L
∂ f j∂ fm2

,

∂Σt
g

∂tm2

∂tm2
∂ fm2

= ∂Σt
g

∂ fm2
, and ∂2Σt

g

∂t j∂tm2

∂t j
∂ f j

∂tm2
∂ fm2

= ∂2Σt
g

∂ f j∂ fm2
, which gives:

(
∂2L

∂ f j∂ fm2

)(2)
= −

G∑
g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω) ∂2Σt

g

∂ f j∂ fm2

−

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g

∂ fm2
,

f or j = 1, . . . , Jσ f , m2 = 1, . . . , Jσ f ,

(31)

where the 2nd-level adjoint functions ψ(2),g
1, j (r, Ω) and ψ(2),g

2, j (r, Ω), j = 1, . . . , Jσ f ; g = 1, . . . , G, are the
solutions of the following particular form of the 2nd-Level Adjoint Sensitivity System (2nd-LASS)
presented in Equations (164)–(166) of [5]:

Bg
(
α0

)
ψ
(2),g
1, j (r, Ω) = −ϕg(r, Ω)

∂Σt
g

∂ f j
, j = 1, . . . , Jσ f ; g = 1, . . . , G, (32)

ψ
(2),g
1, j (rd, Ω) = 0, Ω · n < 0; j = 1, . . . , Jσ f ; g = 1, . . . , G, (33)

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −ψ(1),g(r, Ω)

∂Σt
g

∂ f j
, j = 1, . . . , Jσ f ; g = 1, . . . , G, (34)

ψ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσ f ; g = 1, . . . , G. (35)

The expressions of the various derivatives appearing in Equations (31), (32), and (34) are obtained
as follows:

∂2Σt
g

∂ f j∂ fm2

=
∂2Σt

g

∂σ
g j

f ,i j
∂σ

gm2
f ,im2

= 0, (36)

∂Σg
t

∂ fm2

=

∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

]
∂σ

gm2
f ,im2

=

∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
f ,i

]
∂σ

gm2
f ,im2

= δgm2 gNim2 ,mm2
, (37)

where the subscript mm2 refers to the material associated with the parameter fm2 . Inserting Equations (36),
(37) and (13) into Equations (31)–(34) yields the following simplified expression:(

∂2L
∂ f j∂ fm2

)(2)
= −Nim2 ,mm2

∫
V

dV
∫

4π
dΩ

[
ψ
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) +ψ

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
, (38)

where the 2nd-level adjoint functions ψ(2),g
1, j (r, Ω) and ψ(2),g

2, j (r, Ω), j = 1, . . . , Jσ f ; g = 1, . . . , G, are the
solutions of the following simplified 2nd-Level Adjoint Sensitivity System (2nd-LASS):

Bg
(
α0

)
ψ
(2),g
1, j (r, Ω) = −δg j gNi j,m jϕ

g(r, Ω), j = 1, . . . , Jσ f ; g = 1, . . . , G, (39)

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −δg j gNi j,m jψ

(1),g(r, Ω), j = 1, . . . , Jσ f ; g = 1, . . . , G, (40)

subject to the boundary conditions shown in Equations (33) and (35), respectively.
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Additional contributions stem from Equation (160) in [5], in conjunction with the relation
∂2L

∂t j∂ fm2

∂t j
∂ f j

= ∂2L
∂ f j∂ fm2

, which takes on the following particular form:

(
∂2L

∂ f j∂ fm2

)(3)
=

G∑
g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂
[
(νΣ f )

g′
]

∂ fm2

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
1, j (r, Ω)

∂
[
(νΣ f )

g]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg′ψ(1),g′(r, Ω′),

f or j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσ f .

(41)

Inserting the results obtained in Equations (23) and (24) into Equation (41), and performing the
respective angular integrations, yields the following simplified expression for Equation (41):

(
∂2L

∂ f j∂ fm2

)(3)
= Nim2 ,mm2

ν
gm2
im2

∫
V

dV

ξ(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgξ
(2),g
2, j;0 (r)

, (42)

where the flux moments ξ
(2),gm2
1, j;0 (r) and ξ(2),g2, j;0 (r) are defined as follows:

ξ
(2),g
1, j;0 (r) ,

∫
4π

dΩψ
(2),g
1, j (r, Ω), (43)

ξ
(2),g
2, j;0 (r) ,

∫
4π

dΩψ
(2),g
2, j (r, Ω). (44)

Further contributions stem from Equation (177) in [5] in conjunction with the relations
∂2L

∂ f j∂tm2

∂tm2
∂ fm2

= ∂2L
∂ f j∂ fm2

and ∂Σt
g

∂tm2

∂tm2
∂ fm2

= ∂Σt
g

∂ fm2
, as follows:

(
∂2L

∂ f j∂ fm2

)(4)
= −

G∑
g=1

∫
V dV

∫
4π dΩ

[
u(2),g

1, j (r, Ω)ψ(1),g(r, Ω) + u(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g

∂ fm2
,

f or j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσ f .
(45)

Inserting the results obtained in Equation (37) into Equation (45) reduces the latter to the
following expression:(

∂2L
∂ f j∂ fm2

)(4)
= −Nim2 ,mm2

∫
V

dV
∫

4π
dΩ

[
u
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) + u

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
, (46)

Collecting the partial contributions obtained in Equations (26), (38), (42) and (46), yields the
following result:(

∂2L
∂ f j∂ fm2

)
( f=σ f , f=σ f )

=
4∑

i=1

(
∂2L

∂ f j∂ fm2

)(i)
= Nim2 ,mm2

ν
gm2
im2

∫
V dV

u(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgU(2),g
2, j;0 (r)


−Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
ψ
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) +ψ

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
+Nim2 ,mm2

ν
gm2
im2

∫
V dV

ξ(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgξ
(2),g
2, j;0 (r)


−Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
u
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) + u

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
,

f or j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσ f .

(47)
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2.3. Numerical Results for ∂2L(ααα)/∂σσσ f∂σσσ f

The 2nd-order absolute sensitivities of the leakage response with respect to the fission cross
sections, i.e., ∂2L/∂σg

f ,i∂σ
g′

f ,k, i, k = 1, . . . , N f ; g, g′ = 1, . . . , G, for the N f = 2 fissionable isotopes and
G = 30 energy groups of the PERP benchmark are computed using Equation (47). The (Hessian)
matrix ∂2L/∂ f j∂ fm2 , j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσ f of 2nd-order absolute sensitivities has dimensions
Jσ f × Jσ f (= 60× 60), since Jσ f = G×N f = 30× 2. For convenient comparisons, the numerical results
presented in this section are presented in unit-less values of the relative sensitivities that correspond

to ∂2L/∂ f j∂ fm2 , j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσ f , which are denoted as S(2)
(
σ

g
f ,i, σ

g′

f ,k

)
and are defined

as follows:

S(2)
(
σ

g
f ,i, σ

g′

f ,k

)
,

∂2L

∂σ
g
f ,i∂σ

g′

f ,k

σ
g
f ,iσ

g′

f ,k

L

, i, k = 1, 2; g, g′ = 1, . . . , 30. (48)

The numerical results obtained for the matrix S(2)
(
σ

g
f ,i, σ

g′

f ,k

)
, i, k = 1, 2; g, g′ = 1, . . . , 30, have

been partitioned into N f ×N f = 4 submatrices, each of dimensions G×G(= 30× 30); the summary
of the main features of each submatrix is presented in Table 1. The results for the submatrices are
presented in the following form: when a submatrix comprises elements with relative sensitivities with
absolute values greater than 1.0, the total number of such elements are counted and shown in the table.
Otherwise, if the relative sensitivities of all elements of a submatrix have values lying in the interval
(−1.0, 1.0), only the element having the largest absolute value in the submatrix is listed in Table 1,

together with the phase-space coordinates of that element. The submatrix S(2)
(
σ

g
f ,1, σg′

f ,1

)
in Table 1

comprises components with absolute values greater than 1.0; it will therefore be discussed in detail in
subsequent sub-sections of this section.

Table 1. Summary presentation of the matrix S(2)
(
σ

g
f ,i, σ

g′

f ,k

)
, i, k = 1, 2; g, g′ = 1, . . . , 30.

Isotopes k = 1 (239Pu) k = 2 (240Pu)

i = 1 (239Pu)
S(2)

(
σ

g
f ,1, σg′

f ,1

)
11 elements with absolute

values > 1.0

S(2)
(
σ

g
f ,1, σg′

f ,2

)
Max. value = 6.97 × 10−2

at g = 12, g′ = 12

i = 2 (240Pu)
S(2)

(
σ

g
f ,2, σg′

f ,1

)
Max. value = 6.97 ×

10−2 at g = 12, g′ = 12

S(2)
(
σ

g
f ,2, σg′

f ,2

)
Max. value = 3.60 × 10−3

at g = 12, g′ = 12

The 2nd-order mixed sensitivities ∂2L(α)/∂σ f∂σ f are mostly positive. Among all

the Jσ f × Jσ f (= 60× 60) elements in the matrix S(2)
(
σ

g
f ,i, σ

g′

f ,k

)
, i, k = 1, 2; g, g′ = 1, . . . , 30, a total

of 3508 out of 3600 elements have positive values, and most of them are very small, as indicated in
Table 1. However, among all the Jσ f × Jσ f (= 60 × 60) elements, 11 of them have very large relative
sensitivities, with values greater than 1.0, as noted in the table. All of these larger sensitivities reside

in the sub-matrix S(2)
(
σ

g
f ,1, σg′

f ,1

)
, and relate to the fission cross sections in isotope 239Pu. The overall

maximum relative sensitivity is S(2)
(
σ12

f ,1, σ12
f ,1

)
= 1.348. Additional details about the sub-matrix

S(2)
(
σ

g
f ,1, σg′

f ,1

)
are provided in the following section. Also noted in Table 1 are the results that all of the

mixed 2nd-order relative sensitivities involving the fission cross sections of isotope 240Pu (i.e., σg
f ,2)

have absolute values smaller than 1.0. The elements with the maximum absolute value in each of the
respective submatrices relate to the fission cross sections for the 12th energy group of isotopes 239Pu
and 240Pu.
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2.3.1. Second-Order Unmixed Relative Sensitivities S(2)
(
σ

g
f ,i, σ

g
f ,i

)
, i = 1, 2; g = 1, . . . , 30

The 2nd-order unmixed sensitivities S(2)
(
σ

g
f ,i, σ

g
f ,i

)
,

(
∂2L/∂σg

f ,i∂σ
g
f ,i

)(
σ

g
f ,iσ

g
f ,i/L

)
, i = 1, 2,

g = 1, . . . , 30, which are the elements on the diagonal of the matrix S(2)
(
σ

g
f ,i, σ

g′

f ,k

)
, i, k = 1, 2;

g, g′ = 1, . . . , 30, can be directly compared to the values of the 1st-order relative sensitivities

S(1)
(
σ

g
f ,i

)
,

(
∂L/∂σg

f ,i

)(
σ

g
f ,i/L

)
, i = 1, 2; g = 1, . . . , 30, for the leakage response with respect to the

fission cross section parameters. These comparisons are presented in Tables 2 and 3 for the two
fissionable isotopes contained in the PERP benchmark. Table 2 compares the 1st-order to the 2nd-order
relative sensitivities for isotope 1 (239Pu). This comparison indicates that the values of the 2nd-order
sensitivities are comparable to, and generally smaller than, the corresponding values of the 1st-order
sensitivities for the same energy group, except for the 12th energy group, where the 2nd-order relative
sensitivity is larger. The largest values (shown in bold in the table) for the 1st-order and 2nd-order
relative sensitivities both related to the 12th energy group of isotope 239Pu. It is noteworthy that all of
the 1st-order relative sensitivities are positive, signifying that an increase in σg

f ,1 will cause an increase
in L.

Comparing the corresponding results in Table 2 in this work with Table 5 of Part I [1] and Table 6
of Part II [2] reveals that the absolute values of the 1st-order relative sensitivities with respect to the
fission cross sections are significantly smaller than the corresponding 1st-order relative sensitivities
with respect to the total cross sections, but they are approximately one order of magnitude larger than
the corresponding 1st-order relative sensitivities with respect to the 0th-order self-scattering cross
sections for isotope 239Pu. Likewise, the absolute values of the 2nd-order unmixed relative sensitivities
with respect to the fission cross sections are approximately 50–90% smaller than the corresponding
2nd-order unmixed relative sensitivities to the total cross sections, but they are approximately one to
two orders of magnitudes larger than the corresponding 2nd-order unmixed relative sensitivities for
the 0th-order self-scattering cross sections for isotope 239Pu.

Table 2. Comparison of 1st-order relative sensitivities
(
∂L/∂σg

f ,i=1

)(
σ

g
f ,i=1/L

)
, g = 1, . . . , 30 and

2nd-order relative sensitivities
(
∂2L/∂σg

f ,i=1∂σ
g
f ,k=1

)(
σ

g
f ,1σ

g
f ,1/L

)
, g = 1, . . . , 30, for isotope 1 (239Pu).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 0.00039 −0.00016 16 0.197 −0.001
2 0.00080 −0.00033 17 0.075 −0.023
3 0.00231 −0.00091 18 0.042 −0.018
4 0.011 −0.0038 19 0.036 −0.019
5 0.050 −0.014 20 0.036 −0.025
6 0.129 −0.008 21 0.033 −0.031
7 0.585 0.559 22 0.029 −0.029
8 0.489 0.353 23 0.025 −0.029
9 0.589 0.536 24 0.024 −0.019
10 0.612 0.580 25 0.020 −0.025
11 0.569 0.487 26 0.019 −0.024
12 0.882 1.348 27 0.017 −0.011
13 0.611 0.584 28 0.010 −0.003
14 0.393 0.188 29 0.014 −0.016
15 0.222 0.023 30 0.131 −0.153
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Table 3. Comparison of 1st-order relative sensitivities
(
∂L/∂σg

f ,i=2

)(
σ

g
f ,i=2/L

)
, g = 1, . . . , 30 and

2nd-order relative sensitivities
(
∂2L/∂σg

f ,i=2∂σ
g
f ,k=2

)(
σ

g
f ,i=2σ

g
f ,k=2/L

)
, g = 1, . . . , 30, for isotope 2 (240Pu).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 2.642 × 10−5
−6.237 × 10−7 16 6.361 × 10−4

−5.532 × 10−9

2 4.790 × 10−5
−1.173 × 10−6 17 2.769 × 10−4

−3.154 × 10−7

3 1.350 × 10−4
−3.098 × 10−6 18 1.399 × 10−4

−1.919 × 10−7

4 6.524 × 10−4
−1.461 × 10−5 19 7.740 × 10−5

−8.545 × 10−8

5 3.138 × 10−3
−5.479 × 10−5 20 1.254 × 10−4

−3.111 × 10−7

6 7.612 × 10−3
−3.207 × 10−5 21 6.055 × 10−5

−1.048 × 10−7

7 3.300 × 10−2 1.771 × 10−3 22 5.724 × 10−6
−1.080 × 10−9

8 2.796 × 10−2 1.150 × 10−3 23 3.435 × 10−6
−5.246 × 10−10

9 3.210 × 10−2 1.584 × 10−3 24 9.157 × 10−7
−2.867 × 10−11

10 3.229 × 10−2 1.600 × 10−3 25 2.862 × 10−6
−4.747 × 10−10

11 2.868 × 10−2 1.226 × 10−3 26 4.661 × 10−8
−1.384 × 10−13

12 4.568 × 10−2 3.602 × 10−3 27 5.471 × 10−6
−1.214 × 10−9

13 1.904 × 10−2 5.649 × 10−4 28 7.800 × 10−6
−2.129 × 10−9

14 3.365 × 10−3 1.359 × 10−5 29 1.965 × 10−8
−3.219 × 10−14

15 8.900 × 10−4 3.629 × 10−7 30 7.126 × 10−7
−4.394 × 10−12

Table 3 presents the results for the 1st-order and 2nd-order unmixed relative sensitivities for
isotope 2 (240Pu). These results show that the values for both the 1st- and 2nd-order relative sensitivities
are all very small, and the absolute values of the 2nd-order unmixed relative sensitivities are at least
one order of magnitude smaller than the corresponding values of the 1st-order ones for all energy

groups. The largest 1st-order relative sensitivity is S(1)
(
σ12

f ,i=2

)
= 4.568× 10−2, and the largest 2nd-order

unmixed relative sensitivity is S(2)
(
σ12

f ,i=2, σ12
f ,k=2

)
= 3.602× 10−3; both occur for the 12th energy group

of the fission cross section of 240Pu.

2.3.2. Second-Order Relative Sensitivities S(2)
(
σ

g
f ,i=1, σg′

f ,k=1

)
, g, g′ = 1, . . . , 30

Figure 1 depicts the 2nd-order mixed relative sensitivity results obtained for S(2)
(
σ

g
f ,i=1, σg′

f ,k=1

)
,(

∂2L/∂σg
f ,i=1∂σ

g′

f ,k=1

)(
σ

g
f ,i=1σ

g′

f ,k=1/L
)
, g, g′ = 1, . . . , 30, for the leakage response with respect to the

fission cross sections of 239Pu. This matrix is symmetrical with respect to its principal diagonal.
As shown in Figure 1, the largest 2nd-order relative sensitivities are concentrated in the energy region
confined by the energy groups g = 7, . . . , 14 and g′ = 7, . . . , 14. The numerical values of these elements
are presented in Table 4. Shown in bold in this Table are 11 sensitivities, all involving the 12th
energy group of the fission cross sections σg=12

f ,i=1 or σg′=12
f ,k=1 of 239Pu, which have values greater than 1.0.

The largest value among these sensitivities is attained by the relative 2nd-order unmixed sensitivity

S(2)
(
σ

g=12
f ,i=1, σg′=12

f ,k=1

)
= 1.348. Figure 1 also shows that the majority (877 out of 900) of the elements of

S(2)
(
σ

g
f ,i=1, σg′

f ,k=1

)
have positive 2nd-order relative sensitivities. The remaining 23 elements are located

mostly on the diagonal of S(2)
(
σ

g
f ,i=1, σg′

f ,k=1

)
and have negative values, as presented in Table 2, above.
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Figure 1. The matrix of sensitivities S(2)
(
σ

g
f ,i=1, σg′

f ,k=1

)
, g, g′ = 1, . . . , 30, for 239Pu.

Table 4. Components of S(2)
(
σ

g
f ,i=1, σg′

f ,k=1

)
, g, g′ = 1, . . . , 30 having values greater than 1.0.

Groups g′ = 6 7 8 9 10 11 12 13 14

g = 6 −0.008 0.163 0.136 0.163 0.170 0.158 0.244 0.169 0.109
7 0.163 0.558 0.609 0.732 0.762 0.707 1.095 0.758 0.488
8 0.136 0.609 0.353 0.607 0.633 0.589 0.911 0.631 0.406
9 0.163 0.732 0.607 0.536 0.758 0.707 1.095 0.757 0.487

10 0.170 0.762 0.633 0.758 0.580 0.732 1.137 0.787 0.506
11 0.158 0.707 0.589 0.707 0.732 0.487 1.054 0.731 0.470
12 0.244 1.095 0.911 1.095 1.137 1.054 1.348 1.130 0.728
13 0.169 0.758 0.631 0.757 0.787 0.731 1.130 0.584 0.502
14 0.109 0.488 0.406 0.487 0.506 0.470 0.728 0.502 0.188

3. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Parameters Underlying the Benchmark’s Fission and Total Cross Sections

This Section presents the computation and analysis of the numerical results for the 2nd-order
mixed sensitivities ∂2L(α)/∂σ f∂σt, of the leakage response with respect to the group-averaged fission
and total microscopic cross sections of all isotopes of the PERP benchmark. As has been shown by
Cacuci [5], these mixed sensitivities can be computed using two distinct expressions, involving distinct
2nd-level adjoint systems and corresponding adjoint functions, by considering either the computation
of ∂2L(α)/∂σ f∂σt or the computation of ∂2L(α)/∂σt∂σ f . These two distinct paths for computing the
2nd-order sensitivities with respect to group-averaged fission and total microscopic cross sections
will be presented in Section 3.1 and, respectively, Section 3.2. The end results produced by these two
distinct paths must be identical to one another, thus providing a mutual “solution verification” that the
respective computations were performed correctly. Moreover, the computational time for these two
distinct paths can be much different, and one of them provides the best computational speed, as will
be further illustrated by the numerical results presented in Section 3.3.

3.1. Computing the Second-Order Sensitivities ∂2L(ααα)/∂σσσ f∂σσσt

The equations needed for deriving the expression of the 2nd-order sensitivities ∂2L(α)/∂σ f∂σt

are obtained by particularizing Equations (158) and (177) in [5] to the PERP benchmark and adding
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their respective contributions. The expression obtained by particularizing Equation (177) in [5] takes
on the following form:(

∂2L
∂ f j∂tm2

)(1)
= −

G∑
g=1

∫
V dV

∫
4π dΩ

[
u(2),g

1, j (r, Ω)ψ(1),g(r, Ω) + u(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g

∂tm2
,

f or j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσt.
(49)

The parameters f j and tm2 in Equation (49) correspond to the fission cross sections and total cross

sections, and are therefore denoted as f j ≡ σ
g j

f ,i j
and tm2 ≡ σ

gm2
t,im2

, respectively. Noting that

∂Σt
g

∂tm2

=
∂Σt

g

∂σ
gm2
t,im2

=

∂

(
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

)
∂σ

gm2
t,im2

= δgm2 gNim2 ,mm2
, (50)

and inserting the result obtained in Equation (50) into Equation (49), yields:(
∂2L

∂ f j∂tm2

)(1)
= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
u
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) + u

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
,

f or j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσt.
(51)

The contributions stemming from Equation (158) in [5], in conjunction with the relations
∂2L

∂t j∂tm2

∂t j
∂ f j

= ∂2L
∂ f j∂tm2

and ∂2Σt
g

∂t j∂tm2

∂t j
∂ f j

= ∂2Σt
g

∂ f j∂tm2
, yields the following expression:

(
∂2L

∂ f j∂tm2

)(2)
= −

G∑
g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω) ∂2Σt

g

∂ f j∂tm2

−

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g

∂tm2
,

f or j = 1, . . . , Jσ f , m2 = 1, . . . , Jσt,

(52)

where the adjoint functions ψ(2),g
1, j (r, Ω) and ψ(2),g

2, j (r, Ω), j = 1, . . . , Jσ f ; g = 1, . . . , G are the solutions of
the 2nd-Level Adjoint Sensitivity System (2nd-LASS) as presented in Equations (33), (35), (39)and (40).
Noting that

∂2Σt
g

∂ f j∂tm2

=
∂2Σt

g

∂σ
g j

f ,i j
∂σ

gm2
t,im2

= 0, (53)

and inserting the results obtained in Equations (53) and (50) into Equation (52), yields:(
∂2L

∂ f j∂tm2

)(2)
= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
ψ
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) +ψ

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
,

f or j = 1, . . . , Jσ f , m2 = 1, . . . , Jσt.
(54)

Combining the partial contributions obtained in Equations (51) and (54), yields the following result:(
∂2L

∂ f j∂tm2

)
( f=σ f ,t=σt)

=
(

∂2L
∂ f j∂tm2

)(1)
+

(
∂2L

∂ f j∂tm2

)(2)
= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
ψ
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) +ψ

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
−Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
u
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) + u

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
,

f or j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσt.

(55)
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3.2. Alternative Path: Computing the Second-Order Sensitivities ∂2L(ααα)/∂σσσt∂σσσ f

As mentioned earlier, the mixed 2nd-order sensitivities∂2L(α)/∂σ f∂σt can also be computed using
the alternative expression for ∂2L(α)/∂σt∂σ f . The equations needed for deriving the expression for
∂2L(α)/∂σt∂σ f are obtained by particularizing Equations (158) and (160) in [5] to the PERP benchmark,
where Equation (160) provides the direct contributions to the mixed sensitivities ∂2L(α)/∂σt∂σ f ,
while Equation (158) provides contributions to these sensitivities arising indirectly from the total cross
sections. The expression obtained by particularizing Equation (160) in [5] takes the following form:(

∂2L
∂t j∂ fm2

)(1)
=

G∑
g=1

∫
V dV

∫
4π dΩψ

(2),g
1, j (r, Ω)

∂
[
(νΣ f )

g]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg′ψ(1),g′(r, Ω′)

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂
[
(νΣ f )

g′
]

∂ fm2
,

f or j = 1, . . . , Jσt; m2 = 1, . . . , Jσ f ,

(56)

where the adjoint functions ψ(2),g
1, j (r, Ω) and ψ(2),g

2, j (r, Ω), j = 1, . . . , Jσt; g = 1, . . . , G are the solutions of
the 2nd-Level Adjoint Sensitivity System (2nd-LASS) presented in Equations (32), (34), (39) and (40) of
Part I [1], which are reproduced below for convenient reference:

Bg
(
α0

)
ψ
(2),g
1, j (r, Ω) = −δg j gNi j,m jϕ

g(r, Ω), j = 1, . . . , Jσt; g = 1, . . . , G, (57)

ψ
(2),g
1, j (rd, Ω) = 0, Ω · n < 0; j = 1, . . . , Jσt; g = 1, . . . , G, (58)

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −δg j gNi j,m jψ

(1),g(r, Ω), j = 1, . . . , Jσt; g = 1, . . . , G, (59)

ψ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσt; g = 1, . . . , G. (60)

The parameters t j and fm2 in Equation (56) correspond to the total cross sections and fission cross

sections, and are therefore denoted as t j ≡ σ
g j

t,i j
and fm2 ≡ σ

gm2
f ,im2

, respectively. Inserting the results

obtained in Equations (23) and (24) into Equation (56), yields:(
∂2L

∂t j∂ fm2

)(1)
= Nim2 ,mm2

ν
gm2
im2

∫
V dV

ξ(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgξ
(2),g
2, j;0 (r)

,
f or j = 1, . . . , Jσt; m2 = 1, . . . , Jσ f .

(61)

The contributions stemming from Equation (158) in [5], in conjunction with the relations
∂2L

∂t j∂tm2

∂tm2
∂ fm2

= ∂2L
∂t j∂ fm2

, ∂2Σt
g

∂t j∂tm2

∂tm2
∂ fm2

= ∂2Σt
g

∂t j∂ fm2
and ∂Σt

g

∂tm2

∂tm2
∂ fm2

= ∂Σt
g

∂ fm2
, yields:

(
∂2L

∂t j∂ fm2

)(2)
= −

G∑
g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω) ∂2Σt

g

∂t j∂ fm2

−

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g

∂ fm2
,

f or j = 1, . . . , Jσt , m2 = 1, . . . , Jσ f .

(62)

Noting that
∂2Σt

g

∂t j∂ fm2

=
∂2Σt

g

∂σ
g j

t,i j
∂σ

gm2
f ,im2

= 0, (63)
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and inserting the results obtained in Equations (37) and (63) into Equation (62), yields:(
∂2L

∂t j∂ fm2

)(2)
= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
ψ
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) +ψ

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
,

f or j = 1, . . . , Jσt , m2 = 1, . . . , Jσ f .
(64)

Adding Equations (61) and (64), yields the following result:(
∂2L

∂t j∂ fm2

)
(t=σt, f=σ f )

=
(

∂2L
∂t j∂ fm2

)(1)
+

(
∂2L

∂t j∂ fm2

)(2)
= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
ψ
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) +ψ

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
+Nim2 ,mm2

ν
gm2
im2

∫
V dV

ξ(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgξ
(2),g
2, j;0 (r)

,
f or j = 1, . . . , Jσt; m2 = 1, . . . , Jσ f

(65)

3.3. Numerical Results for ∂2L(ααα)/∂σσσ f∂σσσt

The second-order absolute sensitivities, ∂2L(α)/∂σ f∂σt, of the leakage response with respect to
the fission cross sections and the total cross sections for all isotopes of the PERP benchmark have been
computed using Equation (55), and have been independently verified by computing ∂2L(α)/∂σt∂σ f
using Equation (65). Regarding the computational requirements: Computing ∂2L(α)/∂σ f∂σt needs
Jσ f = G ×N f = 30 × 2 = 60 forward and adjoint PARTISN transport computations for obtaining

the adjoint functions u(2),g
1, j (r, Ω) and u(2),g

2, j (r, Ω), j = 1, . . . , Jσ f ; g = 1, . . . , G, together with additional

Jσ f = 60 forward and adjoint PARTISN computations for obtaining the adjoint functionsψ(2),g
1, j (r, Ω) and

ψ
(2),g
2, j (r, Ω), j = 1, . . . , Jσ f ; g = 1, . . . , G. Thus, a total of 120 forward and adjoint PARTISN computations

are required to obtain all the adjoint functions needed in Equation (55). In contradistinction, computing
∂2L(α)/∂σt∂σ f would require Jσt = G× I = 30× 6 = 360 forward and adjoint PARTISN computations

for obtaining the adjoint functions ψ(2),g
1, j (r, Ω) and ψ

(2),g
2, j (r, Ω), j = 1, . . . , Jσt; g = 1, . . . , G that are

needed in Equation (65). It is thus evident that computing ∂2L(α)/∂σ f∂σt using Equation (55) is 3
times more efficient than computing ∂2L(α)/∂σt∂σ f using Equation (65).

The matrix ∂2L/∂ f j∂tm2 , j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσ f has dimensions Jσ f × Jσt (= 60 × 180);

corresponding to this matrix is the matrix denoted as S(2)
(
σ

g
f ,i, σ

g′

t,k

)
of 2nd-order relative sensitivities,

which is defined as follows:

S(2)
(
σ

g
f ,i, σ

g′

t,k

)
,

∂2L

∂σ
g
f ,i∂σ

g′

t,k

∂σ
g
f ,i∂σ

g′

t,k

L

, i = 1, 2; k = 1, . . . , 6; g, g′ = 1, . . . , 30. (66)

To facilitate the presentation and interpretation of the numerical results, the Jσ f × Jσt (= 60× 180)

matrix S(2)
(
σ

g
f ,i, σ

g′

t,k

)
has been partitioned into N f × I = 2 × 6 submatrices, each of dimensions

G×G = 30× 30. The summary of the main features of each of these submatrices is presented in Table 5.
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Table 5. Summary presentation of the matrix S(2)
(
σ

g
f ,i, σ

g′

t,k

)
.

Isotopes k=1 (239Pu) k=2 (240Pu) k=3 (69Ga) k=4 (71Ga) k=5 (C) k=6 (1H)

i = 1 (239Pu)

S(2)
(
σ

g
f ,1, σg′

t,1

)
35 elements

with absolute
values > 1.0

S(2)
(
σ

g
f ,1, σg′

t,2

)
Min. value =
−1.67× 10−1

at g = 12,
g′ = 12

S(2)
(
σ

g
f ,1, σg′

t,3

)
Min. value =
−7.48× 10−3

at g = 12,
g′ = 12

S(2)
(
σ

g
f ,1, σg′

t,4

)
Min. value =
−5.08× 10−3

at g = 12,
g′ = 12

S(2)
(
σ

g
f ,1, σg′

t,5

)
1 element with
absolute value

> 1.0

S(2)
(
σ

g
f ,1, σg′

t,6

)
48 elements

with absolute
values > 1.0

i = 2 (240Pu)

S(2)
(
σ

g
f ,2, σg′

t,1

)
Min. value =
−1.36× 10−1

at g = 12,
g′ = 12

S(2)
(
σ

g
f ,2, σg′

t,2

)
Min. value =
−8.62× 10−3

at g = 12,
g′ = 12

S(2)
(
σ

g
f ,2, σg′

t,3

)
Min. value =
−3.87× 10−4

at g = 12,
g′ = 12

S(2)
(
σ

g
f ,2, σg′

t,4

)
Min. value =
−2.63× 10−4

at g = 12,
g′ = 12

S(2)
(
σ

g
f ,2, σg′

t,5

)
Min. value =
−6.04× 10−2

at g = 12,
g′ = 30

S(2)
(
σ

g
f ,2, σg′

t,6

)
Min. value =
−7.21× 10−1

at g = 12,
g′ = 30

Most of the values of the Jσ f × Jσt (= 10, 800) elements in the matrix S(2)
(
σ

g
f ,i, σ

g′

t,k

)
, i = 1, 2;

k = 1, . . . , 6; g, g′ = 1, . . . , 30 are very small, and 10,704 elements out of 10,800 elements have negative
values. The results in Table 5 indicate that, when the 2nd-order mixed relative sensitivities involve the
fission cross sections of the isotope 240Pu or the total cross sections of isotopes 240Pu, 69Ga and 71Ga,
their absolute values are all smaller than 1.0, and the element with the most negative value in each
of the submatrices always relates to the fission cross sections for the 12th energy group and the total
cross sections for either the 12th energy group or the 30th energy group of the isotopes. There are 84
elements with large relative sensitivities, having values greater than 1.0, as indicated in Table 5. Those

large sensitivities reside in the submatrices S(2)
(
σ

g
f ,1, σg′

t,1

)
, S(2)

(
σ

g
f ,1, σg′

t,5

)
and S(2)

(
σ

g
f ,1, σg′

t,6

)
, respectively.

All of these 84 large sensitivities involve the fission cross sections of isotope 239Pu, and the total cross
sections of isotopes 239Pu, C and 1H. Of the sensitivities summarized in Table 5, the single largest

relative value is S(2)
(
σ12

f ,1, σ30
t,6

)
= −13.92.

3.3.1. Second-Order Relative Sensitivities S(2)
(
σ

g
f ,1, σg′

t,1

)
, g, g′ = 1, . . . , 30

The results obtained for the 2nd-order mixed relative sensitivity of the leakage response with
respect to the fission microscopic cross sections of 239Pu and to the total microscopic cross sections

of 239Pu, denoted as S(2)
(
σ

g
f ,i=1, σg′

t,k=1

)
,

(
∂2L/∂σg

f ,i=1∂σ
g′

t,k=1

)(
σ

g
f ,i=1σ

g′

t,k=1/L
)
, g, g′ = 1, . . . , 30, are

summarized in Table 6 and depicted in Figure 2. Almost all, namely 894 out of 900, elements in this
submatrix have negative 2nd-order relative sensitivities; only 6 elements have small positive values.
As shown in Figure 2, there are some large 2nd-order mixed relative sensitivities concentrated in the
energy region confined by the energy groups g = 7, . . . , 14 and g′ = 7, . . . , 16. The actual numerical
values of these large elements are presented in Table 6, which comprises 35 elements having values
greater than 1.0, as shown in bold in this table. The largest absolute value in this submatrix is attained

by the relative 2nd-order mixed sensitivity S(2)
(
σ

g=12
f ,i=1, σg′=12

t,k=1

)
= −2.630, which involves the 12th energy

group for both the fission and total cross sections of isotope 239Pu.
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Table 6. Components of S(2)
(
σ

g
f ,1, σg′

t,1

)
, g, g′ = 1, . . . , 30 having values greater than 1.0.

Groups g′ = 6 7 8 9 10 11 12 13 14 15 16

g = 6 −0.091 −0.199 −0.183 −0.213 −0.213 −0.195 −0.332 −0.291 −0.241 −0.176 −0.200
7 −0.159 −1.189 −0.821 −0.955 −0.958 −0.876 −1.488 −1.302 −1.080 −0.787 −0.895
8 −0.131 −0.758 −0.921 −0.790 −0.796 −0.729 −1.238 −1.083 −0.898 −0.654 −0.743
9 −0.157 −0.908 −0.844 −1.229 −0.953 −0.876 −1.487 −1.302 −1.079 −0.786 −0.893

10 −0.164 −0.941 −0.868 −1.015 −1.263 −0.906 −1.546 −1.352 −1.121 −0.816 −0.927
11 −0.152 −0.875 −0.804 −0.935 −0.946 −1.086 −1.431 −1.257 −1.041 −0.758 −0.861
12 −0.236 −1.361 −1.250 −1.452 −1.455 −1.342 −2.630 −1.941 −1.611 −1.174 −1.331
13 −0.164 −0.946 −0.870 −1.010 −1.013 −0.926 −1.588 −1.685 −1.110 −0.811 −0.919
14 −0.105 −0.610 −0.562 −0.653 −0.654 −0.599 −1.021 −0.905 −0.981 −0.516 −0.592
15 −0.059 −0.345 −0.318 −0.369 −0.370 −0.339 −0.577 −0.510 −0.434 −0.464 −0.325

Figure 2. The matrix of sensitivities S(2)
(
σ

g
f ,i=1, σg′

t,k=1

)
, g, g′ = 1, . . . , 30 for 239Pu.

The absolute values of the mixed sensitivities in row g = 12 are the largest among all g = 1, . . . , 30
rows, including rows not presented in Table 6. In other words, the absolute value of mixed relative
sensitivities involving the fission cross section parameter σg=12

f ,i=1 are always the largest among all groups
g = 1, . . . , 30. Similarly, the values of the mixed sensitivities in group g′ = 12 are the most negative
among all groups g′ = 1, . . . , 30, with one exception for the sensitivity value located in groups g = 13
and g′ = 12 which is less negative than the value located in groups g = 13 and g′ = 13.

3.3.2. Second-Order Relative Sensitivities S(2)
(
σ

g
f ,1, σg′

t,5

)
, g, g′ = 1, . . . , 30

The matrix S(2)
(
σ

g
f ,i=1, σg′

t,k=5

)
,

(
∂2L/∂σg

f ,i=1∂σ
g′

t,k=5

)(
σ

g
f ,i=1σ

g′

t,k=5/L
)
, comprising the 2nd-order

sensitivities of the leakage response with respect to the fission cross sections of isotope 1 (239Pu) and the
total cross sections of isotope 5 (C), contains a single large element that has an absolute value greater

than 1.0, namely S(2)
(
σ12

f ,1, σ30
t,5

)
= −1.167.



Energies 2019, 12, 4100 18 of 68

3.3.3. Second-Order Relative Sensitivities S(2)
(
σ

g
f ,1, σg′

t,6

)
, g, g′ = 1, . . . , 30

The submatrix S(2)
(
σ

g
f ,i=1, σg′

t,k=6

)
,

(
∂2L/∂σg

f ,i=1∂σ
g′

t,k=6

)(
σ

g
f ,i=1σ

g′

t,k=6/L
)
, comprising the

2nd-order relative sensitivities of the leakage response with respect to the fission microscopic cross
sections of isotope 1 (239Pu) and the total microscopic cross sections of isotope 6 (1H), is illustrated

in Figure 3. The submatrix S(2)
(
σ

g
f ,1, σg′

t,6

)
, g, g′ = 1, . . . , 30 includes 48 elements that have absolute

values greater than 1.0, as specified, in bold, in Table 7; 35 out of these 48 elements are located in
the energy phase-space confined by the energy groups g = 7, . . . , 13 and g′ = 16, . . . , 25. The other
13 elements are located in energy groups g = 6, . . . , 30 and g′ = 30. The largest negative value is
displayed by the 2nd-order relative sensitivity of the leakage response with respect to the 12th energy
group of the fission cross section for 239Pu and the 30th energy group of the total cross section for 1H,

namely S(2)
(
σ12

f ,1, σ30
t,6

)
= −13.92.

Figure 3. The matrix of sensitivities S(2)
(
σ

g
f ,i=1, σg′

t,k=6

)
, g, g′ = 1, . . . , 30.

Table 7. Elements of S(2)
(
σ

g
f ,i=1, σg′

t,k=6

)
, g, g′ = 1, . . . , 30, having absolute values greater than 1.0.

Groups g′ = 15 16 17 18 19 20 21 22 29 30

g = 5 −0.048 −0.099 −0.102 −0.100 −0.096 −0.091 −0.085 −0.078 −0.048 −0.833
6 −0.123 −0.252 −0.258 −0.253 −0.244 −0.231 −0.217 −0.199 −0.122 −2.114
7 −0.550 −1.128 −1.157 −1.135 −1.093 −1.034 −0.972 −0.892 −0.548 −9.472
8 −0.457 −0.936 −0.960 −0.942 −0.907 −0.858 −0.806 −0.740 −0.455 −7.859
9 −0.548 −1.124 −1.152 −1.130 −1.088 −1.030 −0.967 −0.888 −0.546 −9.431
10 −0.568 −1.164 −1.193 −1.170 −1.127 −1.067 −1.002 −0.920 −0.565 −9.768
11 −0.525 −1.077 −1.104 −1.083 −1.042 −0.987 −0.927 −0.851 −0.523 −9.038
12 −0.809 −1.658 −1.699 −1.667 −1.605 −1.519 −1.427 −1.311 −0.805 −13.92
13 −0.555 −1.137 −1.165 −1.143 −1.100 −1.042 −0.979 −0.899 −0.552 −9.549
14 −0.351 −0.725 −0.742 −0.728 −0.701 −0.664 −0.623 −0.573 −0.352 −6.087
15 −0.197 −0.404 −0.415 −0.407 −0.392 −0.371 −0.348 −0.320 −0.197 −3.405
16 −0.200 −0.382 −0.365 −0.359 −0.345 −0.327 −0.307 −0.282 −0.174 −3.010
17 −0.081 −0.169 −0.170 −0.136 −0.131 −0.124 −0.117 −0.107 −0.067 −1.151
18 −0.049 −0.103 −0.109 −0.112 −0.075 −0.071 −0.067 −0.062 −0.038 −0.665



Energies 2019, 12, 4100 19 of 68

As shown in Table 7, the values of the 2nd-order mixed sensitivities involving the fission cross
section parameter σg=12

f ,i=1, in energy group g = 12, are the most negative among all energy groups
g = 1, . . . , 30. In addition to the sensitivities presented in Table 7, the following 2nd-order mixed relative
sensitivities of the leakage response with respect to the fission microscopic cross sections of 239Pu and

the total microscopic cross sections of 1H have absolute values greater than 1.0: S(2)
(
σ12

f ,1, σ23
t,6

)
= −1.213,

S(2)
(
σ12

f ,1, σ24
t,6

)
= −1.098, S(2)

(
σ12

f ,1, σ25
t,6

)
= −1.042 and S(2)

(
σ30

f ,1, σ30
t,6

)
= −4.258.

4. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Parameters Underlying the Benchmark’s Fission and Scattering Cross Sections

This Section presents the computation and analysis of the numerical results for the 2nd-order
mixed sensitivities ∂2L(α)/∂σ f∂σs, of the leakage response with respect to the group-averaged fission
and scattering microscopic cross sections of all isotopes of the PERP benchmark. Similarly, the
2nd-order mixed sensitivities ∂2L(α)/∂σ f∂σs can also be computed using the alternative expressions
for ∂2L(α)/∂σs∂σ f . These two distinct paths for computing the 2nd-order sensitivities with respect to
group-averaged fission and scattering microscopic cross sections will be presented in Section 4.1 and,
respectively, Section 4.2 as follows. As will be discussed in detail in Section 4.3, below, the pathway for
computing ∂2L(α)/∂σ f∂σs turns out to be 60 times more efficient than the pathway for computing
∂2L(α)/∂σs∂σ f .

4.1. Computing the Second-Order Sensitivities ∂2L(ααα)/∂σσσ f∂σσσs

The equations needed for deriving the expressions of the 2nd-order sensitivities ∂2L/∂ f j∂sm2 ,
j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσs will differ from each other depending on whether the parameter sm2

corresponds to the 0th-order (l = 0) scattering cross sections or to the higher-order (l ≥ 1) scattering
cross sections, since, as shown in Equation (A3) of Appendix A, the 0th-order scattering cross sections
contribute to the total cross sections, while the higher-order ones do not. Therefore, the zeroth order
scattering cross sections must be considered separately from the higher order scattering cross sections.
As described in [1] and Appendix A, the total number of zeroth-order (l = 0) scattering cross section
comprise in σs is denoted as Jσs,l=0, where Jσs,l=0 = G×G× I; and the total number of higher order (i.e.,
l ≥ 1) scattering cross sections comprised in σs is denoted as Jσs,l≥1, where Jσs,l≥1 = G×G× I × ISCT,
with Jσs,l=0 + Jσs,l≥1 = Jσs. There are two distinct cases, as follows:

(1)
(

∂2L
∂ f j∂sm2

)
( f=σ f ,s=σs,l=0)

, j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσs,l=0, where the quantities f j refer to the

parameters underlying the fission microscopic cross sections, while the quantities sm2 refer to the
parameters underlying the 0th-order scattering microscopic cross sections; and

(2)
(

∂2L
∂ f j∂sm2

)
( f=σ f ,s=σs,l≥1)

, j = 1, . . . , Jσ f ; m2 = 1, . . . , σs,l≥1, where the quantities f j refer to the

parameters underlying the fission microscopic cross sections, and the quantities sm2 refer to the
parameters underlying the lth -order (l ≥ 1) scattering microscopic cross sections.

4.1.1. Second-Order Sensitivities
(

∂2L
∂ f j∂sm2

)
( f=σ f ,s=σs,l=0)

The equations needed for deriving the expression of the 2nd-order mixed sensitivities(
∂2L

∂ f j∂sm2

)
( f=σ f ,s=σs,l=0)

are obtained by particularizing Equations (158), (159), (177) and (178) in [5]

to the PERP benchmark, where Equation (178) provides the contributions arising directly form
the respective fission and scattering cross sections, while Equations (158), (159) and (177) provide
contributions arising indirectly through the total cross sections, since both the fission cross sections
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and the 0th-order scattering cross sections are part of the total cross sections. The expression obtained
by particularizing Equation (178) in [5] to the PERP benchmark yields:(

∂2L
∂ f j∂sm2

)(1)
( f=σ f ,s=σs,l=0)

=
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

1, j (r, Ω)
G∑

g′=1

∫
4π dΩ′ψ(1),g′(r, Ω′)

∂Σg→g′
s (s;Ω→Ω′)

∂sm2

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

2, j (r, Ω)
G∑

g′=1

∫
4π dΩ′ϕg′(r, Ω′)

∂Σg′→g
s (s;Ω′→Ω)

∂sm2
,

f or j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσs,l=0.

(67)

In Equation (67), the parameters indexed by f j correspond to the fission cross sections, which

means that f j ≡ σ
g j

f ,i j
, while the parameters indexed by sm2 correspond to the 0th-order scattering cross

sections, so that sm2 ≡ σ
g′m2
→gm2

s,lm2=0,im2
, where the subscripts im2 , lm2 , g′m2

and gm2 refer to the isotope, order

of Legendre expansion, and energy groups associated with the parameter sm2 , respectively. Noting that

∂Σg→g′
s (s;Ω→Ω′)

∂sm2
=

∂Σg→g′
s (s;Ω→Ω′)

∂σ
g′m2

→gm2
s,lm2 ,im2

=
∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g→g′

s,i (s;Ω→Ω′)

]
∂σ

g′m2
→gm2

s,lm2 ,im2

=
∂

[
M∑

m=1

I∑
i=1

ISCT∑
l=0

Ni,m(2l+1)σg→g′

s,l,i Pl(Ω
′
·σ)

]
∂σ

g′m2
→gm2

s,lm2 ,im2

= δg′m2
gδgm2 g′Nim2 ,mm2

(2lm2 + 1)Plm2
(Ω′ ·Ω),

(68)

∂Σg′→g
s (s; Ω′ → Ω)

∂sm2

=
∂Σg′→g

s (s; Ω′ → Ω)

∂σ
g′m2
→gm2

s,lm2 ,im2

= δgm2 gδg′m2
g′Nim2 ,mm2

(2lm2 + 1)Plm2
(Ω′ ·Ω), (69)

inserting the results obtained in Equations (68) and (69) into Equation (67), using the addition theorem
for spherical harmonics in one-dimensional geometry, performing the respective angular integrations,
and finally setting lm2 = 0 in the resulting expression yields the following simplified expression for
Equation (67):(

∂2L
∂ f j∂sm2

)(1)
( f=σ f ,s=σs,l=0)

= Nim2 ,mm2

∫
V

dV
[
ξ
(1),gm2
0 (r)U

(2),g′m2
1, j;0 (r) + ϕ

g′m2
0 (r)U

(2),gm2
2, j;0 (r)

]
, (70)

where the 0th-order moments ϕ
g′m2
0 (r), ξ

(1),gm2
0 (r), U

(2),g′m2
1, j;0 (r) and U

(2),gm2
2, j;0 (r) have been defined

previously in Equations (15), (16), (27) and (28), respectively.

Using Equation (158) in [5] in conjunction with the relations ∂2L
∂t j∂tm2

∂t j
∂ f j

∂tm2
∂sm2

= ∂2L
∂ f j∂sm2

, ∂Σt
g

∂tm2

∂tm2
∂sm2

=

∂Σt
g

∂sm2
and ∂2Σt

g

∂t j∂tm2

∂t j
∂ f j

∂tm2
∂sm2

= ∂2Σt
g

∂ f j∂sm2
yields the following contributions:

(
∂2L

∂ f j∂sm2

)(2)
( f=σ f ,s=σs,l=0)

= −
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω) ∂2Σt

g

∂ f j∂sm2

−

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g

∂sm2
,

f or j = 1, . . . , Jσ f , m2 = 1, . . . , Jσs,l=0 ,

(71)

where the adjoint functions ψ(2),g
1, j (r, Ω) and ψ(2),g

2, j (r, Ω), j = 1, . . . , Jσ f ; g = 1, . . . , G are the solutions of
the 2nd-Level Adjoint Sensitivity System (2nd-LASS) presented in Equations (33), (35), (39) and (40).

Noting that,
∂2Σt

g

∂ f j∂sm2

=
∂2Σt

g

∂σ
g j

f ,i j
∂σ

g′m2
→gm2

s,lm2 ,im2

= 0, (72)
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∂Σg
t

∂sm2
=

∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

]
∂σ

g′m2
→gm2

s,lm2=0,im2

=

∂

 M∑
m=1

I∑
i=1

Ni,m

σg
f ,i+σ

g
c,i+

G∑
g′=1

σ
g→g′

s,l=0,i




∂σ
g′m2

→gm2
s,lm2=0,im2

=

∂

 M∑
m=1

I∑
i=1

G∑
g′=1

Ni,mσ
g→g′

s,l=0,i


∂σ

g′m2
→gm2

s,lm2=0,im2

= δg′m2
gNim2 ,mm2

,

(73)

and inserting the results obtained in Equations (72) and (73) into Equation (71), yields the following
simplified expression for Equation (71):(

∂2L
∂ f j∂sm2

)(2)
( f=σ f ,s=σs,l=0)

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
ψ
(2),g′m2
1, j (r, Ω)ψ

(1),g′m2 (r, Ω) +ψ
(2),g′m2
2, j (r, Ω)ϕ

g′m2 (r, Ω)
]
.

(74)

Additional contributions stem from Equation (159) in [5], which takes on the following
particular form:(

∂2L
∂ f j∂sm2

)(3)
( f=σ f ,s=σs,l=0)

=
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
1, j (r, Ω)

G∑
g′=1

∫
4π dΩ′ψ(1),g′(r, Ω′)

∂Σg→g′
s (s;Ω→Ω′)

∂sm2

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ′ϕg′(r, Ω′)

∂Σg′→g
s (s;Ω′→Ω)

∂sm2
,

f or j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσs,l=0 .

(75)

Inserting the results obtained in Equations (68) and (69) into Equation (75), using the addition
theorem for spherical harmonics in one-dimensional geometry and performing the respective angular
integrations, and setting lm2 = 0, yields the following simplified expression for Equation (75):(

∂2L
∂ f j∂sm2

)(3)
( f=σ f ,s=σs,l=0)

= Nim2 ,mm2

∫
V

dV
[
ξ
(1),gm2
0 (r)ξ

(2),g′m2
1, j;0 (r) + ϕ

g′m2
0 (r)ξ

(2),gm2
2, j;0 (r)

]
, (76)

where the 0th-order moments ξ
(2),g′m2
1, j;0 (r) and ξ

(2),gm2
2, j;0 (r) have been defined previously in Equations (43)

and (44), respectively.

Using Equation (177) in [5] in conjunction with the relation ∂Σt
g

∂tm2
= ∂Σt

g

∂tm2

∂tm2
∂sm2

= ∂Σt
g

∂sm2
yields the final

set of contributions, namely:(
∂2L

∂ f j∂sm2

)(4)
( f=σ f ,s=σs,l=0)

= −
G∑

g=1

∫
V dV

∫
4π dΩ

[
u(2),g

1, j (r, Ω)ψ(1),g(r, Ω) + u(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g

∂sm2
,

f or j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσs,l=0.

(77)

Replacing the result obtained in Equation (73) into Equation (77) yields the following
simplified expression:(

∂2L
∂ f j∂sm2

)(4)
( f=σ f ,s=σs,l=0)

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
u
(2),g′m2
1, j (r, Ω)ψ

(1),g′m2 (r, Ω) + u
(2),g′m2
2, j (r, Ω)ϕ

g′m2 (r, Ω)
]
.

(78)
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Collecting the partial contributions obtained in Equations (70), (74), (76) and (78), yields the
following result:(

∂2L
∂ f j∂sm2

)
( f=σ f ,s=σs, l=0)

=
4∑

i=1

(
∂2L

∂ f j∂sm2

)(i)
( f=σ f ,s=σs,l=0)

= Nim2 ,mm2

{∫
V dVξ

(1),gm2
0 (r)

[
ξ
(2),g′m2
1, j;0 (r) + U

(2),g′m2
1, j;0 (r)

]
+

∫
V dVϕ

g′m2
0 (r)

[
ξ
(2),gm2
2, j;0 (r) + U

(2),gm2
2, j;0 (r)

]
−

∫
V dV

∫
4π dΩ

[
ψ
(2),g′m2
1, j (r, Ω)ψ

(1),g′m2 (r, Ω) +ψ
(2),g′m2
2, j (r, Ω)ϕ

g′m2 (r, Ω)
]

−

∫
V dV

∫
4π dΩ

[
u
(2),g′m2
1, j (r, Ω)ψ

(1),g′m2 (r, Ω) + u
(2),g′m2
2, j (r, Ω)ϕ

g′m2 (r, Ω)
]}

,

f or j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσs,l=0.
(79)

4.1.2. Second-Order Sensitivities
(

∂2L
∂ f j∂sm2

)
( f=σ f ,s=σs,l≥1)

For computing the 2nd-order sensitivities
(

∂2L
∂ f j∂sm2

)
( f=σ f ,s=σs,l≥1)

, the parameters f j ≡ σ
g j

f ,i j

correspond to the fission cross sections, and the parameters sm2 ≡ σ
g′m2
→gm2

s,lm2 ,im2
correspond to the

lth-order (l ≥ 1) scattering cross sections. In this case, only the fission cross sections contribute to the
total cross sections, since the lth-order (l ≥ 1) scattering cross sections are not comprised in the total

cross sections. The expression of
(

∂2L
∂ f j∂sm2

)
( f=σ f ,s=σs,l≥1)

is obtained by particularizing Equations (159)

and (178) in [5] to the PERP benchmark, which yields,(
∂2L

∂ f j∂sm2

)
( f=σ f ,s=σs,l≥1)

=
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

1, j (r, Ω) ×
G∑

g′=1

∫
4π dΩ′ψ(1),g′(r, Ω′)

∂Σg→g′
s (s;Ω→Ω′)

∂sm2

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

2, j (r, Ω)
G∑

g′=1

∫
4π dΩ′ϕg′(r, Ω′)

∂Σg′→g
s (s;Ω′→Ω)

∂sm2

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
1, j (r, Ω)

G∑
g′=1

∫
4π dΩ′ψ(1),g′(r, Ω′)

∂Σg→g′
s (s;Ω→Ω′)

∂sm2

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ′ϕg′(r, Ω′)

∂Σg′→g
s (s;Ω′→Ω)

∂sm2
,

f or j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσs,l≥1,

(80)

where the first two terms arise from Equation (178) while the last two terms arise from Equations (159).
Inserting the results obtained in Equations (68) and (69) into Equation (80), using the addition
theorem for spherical harmonics in one-dimensional geometry and performing the respective angular
integrations, yields the following expression:(

∂2L
∂ f j∂sm2

)
( f=σ f ,s=σs,l≥1)

= Nim2 ,mm2
(2lm2 + 1)

{∫
V dVξ

(1),gm2
lm2

(r)
[
ξ
(2),g′m2
1, j;lm2

(r) + U
(2),g′m2
1, j;lm2

(r)
]

+
∫

V dVϕ
g′m2
lm2

(r)
[
ξ
(2),gm2
2, j;lm2

(r) + U
(2),gm2
2, j;lm2

(r)
]}

, j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσs,l≥1; lm2 = 1, . . . , ISCT,

(81)

where the moments ϕ
g′m2
lm2

(r), ξ
(1),gm2
lm2

(r), ξ
(2),g′m2
1, j;lm2

(r), ξ
(2),gm2
2, j;lm2

(r), U
(2),g′m2
1, j;lm2

(r) and U
(2),gm2
2, j;lm2

(r) are defined

as follows:

ϕ
g
l (r) ,

∫
4π

dΩ Pl(Ω)ϕg(r, Ω′), (82)

ξ
(1),g
l (r) ,

∫
4π

dΩ Pl(Ω)ψ(1),g(r, Ω′), (83)
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ξ
(2),g
1, j;l (r) ,

∫
4π

dΩ Pl(Ω)ψ
(2),g
1, j (r, Ω′), (84)

ξ
(2),g
2, j;l (r) ,

∫
4π

dΩ Pl(Ω)ψ
(2),g
2, j (r, Ω′), (85)

U(2),g
1, j;l (r) ,

∫
4π

dΩ Pl(Ω)u(2),g
1, j (r, Ω′), (86)

U(2),g
2, j;l (r) ,

∫
4π

dΩ Pl(Ω)u(2),g
2, j (r, Ω′). (87)

4.2. Alternative Path: Computing the Second-Order Sensitivities ∂2L(ααα)/∂σσσs∂σσσ f

The results to be computed using the expressions for ∂2L(α)/∂σ f∂σs obtained in Equations (79)
and (81) can be verified, because of the symmetry of the mixed 2nd-order sensitivities, by obtaining
the expressions for ∂2L(α)/∂σs∂σ f , which also requires separate consideration of the zeroth-order
scattering cross sections. The two cases involved are as follows:

(1)
(

∂2L
∂s j∂ fm2

)
(s=σs,l=0, f=σ f )

, j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσ f , where the quantities s j refer to the

parameters underlying the 0th-order scattering cross sections, while the quantities fm2 refer to the
parameters underlying the fission cross sections;

(2)
(

∂2L
∂s j∂ fm2

)
(s=σs,l≥1, f=σ f )

, j = 1, . . . , σs,l≥1; m2 = 1, . . . , Jσ f , where the quantities s j refer to the

parameters underlying the lth -order (l ≥ 1) scattering cross sections, and the quantities fm2

refer to the parameters underlying the fission cross sections.

4.2.1. Second-Order Sensitivities
(

∂2L
∂s j∂ fm2

)
(s=σs,l=0, f=σ f )

The equations needed for deriving the expression of the 2nd-order mixed sensitivities(
∂2L

∂s j∂ fm2

)
(s=σs,l=0, f=σ f )

are obtained by particularizing Equations (158), (160), (167) and (169) in [5]

to the PERP benchmark. The expression obtained by particularizing Equation (169) in [5] to the PERP
benchmark is as follows:(

∂2L
∂s j∂ fm2

)(1)
(s=σs,l=0, f=σ f )

=
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
1, j (r, Ω′)

∂
[
(νΣ f )

g]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg′ψ(1),g′(r, Ω′)

+
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
2, j (r, Ω′)

G∑
g′=1

∫
4π dΩ′ϕg′

(
r,Ω

′
)
χg

∂
[
(νΣ f )

g′
]

∂ fm2
,

f or j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσ f

(88)

where the 2nd-level adjoint functions, θ(2),g1, j (r, Ω′) and θ(2),g2, j (r, Ω′), j = 1, . . . , Jσs; g = 1, . . . , G, are the
solutions of the 2nd-Level Adjoint Sensitivity System (2nd-LASS) presented in Equations (46), (48), (51)
and (52) of Part II [2], which are reproduced below for convenient reference:

Bg
(
α0

)
θ
(2),g
1, j (r, Ω) = δg j gNi j,m j

(
2l j + 1

)
Pl j(Ω)φ

g′ j
l (r), j = 1, . . . , Jσs; g = 1, . . . , G; l = 0, . . . , ISCT, (89)

θ
(2),g
1, j (rd, Ω) = 0, Ω · n < 0; j = 1, . . . , Jσs; g = 1, . . . , G. (90)

A(1),g
(
α0

)
θ
(2),g
2, j (r, Ω) = δg′ j gNi j,m j

(
2l j + 1

)
Pl j(Ω)ξ

(1),g j

l j
(r), j = 1, . . . , Jσs; g = 1, . . . , G; l = 0, . . . , ISCT, (91)

θ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσs; g = 1, . . . , G. (92)



Energies 2019, 12, 4100 24 of 68

In Equation (88), the parameters indexed by s j correspond to the 0th-order scattering cross sections,

so that s j ≡ σ
g′ j→g j

s,l j=0,i j
, while the parameters indexed by fm2 correspond to the fission cross sections, so

that fm2 ≡ σ
gm2
f ,im2

. Inserting the results obtained in Equations (23) and (24) into Equation (88), yields the

following simplified expression for Equation (88):

(
∂2L

∂s j∂ fm2

)(1)
(s=σs,l=0, f=σ f )

= Nim2 ,mm2
ν

gm2
im2

∫
V dV

Θ(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgΘ(2),g
2, j;0 (r)

, (93)

where the 0th-order moments Θ
(2),gm2
1, j;0 (r) and Θ(2),g

2, j;0 (r) are defined as follows:

Θ(2),g
1, j;0 (r) ,

∫
4π

dΩθ
(2),g
1, j (r, Ω′), (94)

Θ(2),g
2, j;0 (r) ,

∫
4π

dΩθ
(2),g
2, j (r, Ω′). (95)

Using Equation (158) in [5] in conjunction with the relations ∂2L
∂t j∂tm2

∂t j
∂s j

∂tm2
∂ fm2

= ∂2L
∂s j∂ fm2

,

∂Σt
g

∂tm2

∂tm2
∂ fm2

= ∂Σt
g

∂ fm2
and ∂2Σt

g

∂t j∂tm2

∂t j
∂s j

∂tm2
∂ fm2

= ∂2Σt
g

∂s j∂ fm2
yields the following contributions:

(
∂2L

∂s j∂ fm2

)(2)
(s=σs,l=0, f=σ f )

= −
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω) ∂2Σt

g

∂s j∂ fm2

−

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g

∂ fm2
,

f or j = 1, . . . , Jσs,l=0 , m2 = 1, . . . , Jσ f ,

(96)

where the 2nd-level adjoint functions, ψ(2),g
1, j (r, Ω) and ψ(2),g

2, j (r, Ω), j = 1, . . . , Jσs,l=0; g = 1, . . . , G, are
the solutions of the 2nd-Level Adjoint Sensitivity System (2nd-LASS) presented in Equations (30), (32),
(36) and (37) of Part II [2], which are reproduced below for convenient reference:

Bg
(
α0

)
ψ
(2),g
1, j (r, Ω) = −δg′ j gNi j,m jϕ

g(r, Ω), j = 1, . . . , Jσs,l=0; g = 1, . . . , G, (97)

ψ
(2),g
1, j (rd, Ω) = 0, Ω · n < 0; j = 1, . . . , Jσs,l=0; g = 1, . . . , G, (98)

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −δg′ j gNi j,m jψ

(1),g(r, Ω), j = 1, . . . , Jσs,l=0; g = 1, . . . , G, (99)

ψ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσs,l=0; g = 1, . . . , G. (100)

Noting that
∂2Σt

g

∂s j∂ fm2

=
∂2Σt

g

∂σ
g j
′→g j

s,l j,i j
∂σ

gm2
f ,im2

= 0, (101)

and inserting the results obtained in Equations (101) and (37) into Equation (96), yields the following
simplified expression for Equation (96):(

∂2L
∂s j∂ fm2

)(2)
(s=σs,l=0, f=σ f )

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
ψ
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) +ψ

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
.

(102)
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Additional contributions stem from Equation (160) in [5], which takes on the following
particular form:

(
∂2L

∂s j∂ fm2

)(3)
(s=σs,l=0, f=σ f )

=
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω′)

G∑
g′=1

∫
4π dΩ′ϕg′

(
r,Ω

′
)
χg

∂
[
(νΣ f )

g′
]

∂ fm2

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
1, j (r, Ω′)

∂
[
(νΣ f )

g]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg′ψ(1),g′

(
r,Ω

′
)
,

f or j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσ f .

(103)

Inserting the results obtained in Equations (23) and (24) into Equation (103), yields the following
simplified expression for Equation (103):

(
∂2L

∂s j∂ fm2

)(3)
(s=σs,l=0, f=σ f )

= Nim2 ,mm2
ν

gm2
im2

∫
V dV

ξ(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgξ
(2),g
2, j;0 (r)

,
f or j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσ f .

(104)

Using Equation (167) in [5] in conjunction with the relation ∂Σt
g

∂tm2

∂tm2
∂ fm2

= ∂Σt
g

∂ fm2
yields the

following contributions:(
∂2L

∂s j∂ fm2

)(4)
(s=σs,l=0, f=σ f )

= −
G∑

g=1

∫
V dV

∫
4π dΩ

[
θ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) + θ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g

∂ fm2
,

f or j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσ f .

(105)

Inserting the results obtained in Equation (37) into Equation (105), yields the following
simplified expression:(

∂2L
∂s j∂ fm2

)(4)
(s=σs,l=0, f=σ f )

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
θ
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) + θ

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
.

(106)

Collecting the partial contributions obtained in Equations (93), (102), (104) and (106), yields the
following result:(

∂2L
∂s j∂ fm2

)
(s=σs,l=0, f=σ f )

=
4∑

i=1

(
∂2L

∂s j∂ fm2

)(i)
(s=σs,l=0, f=σ f )

= Nim2 ,mm2
ν

gm2
im2

∫
V dV

Θ(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgΘ(2),g
2, j;0 (r)


−Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
ψ
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) +ψ

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
+Nim2 ,mm2

ν
gm2
im2

∫
V dV

ξ(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgξ
(2),g
2, j;0 (r)


−Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
θ
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) + θ

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
,

f or j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσ f .

(107)

4.2.2. Second-Order Sensitivities
(

∂2L
∂s j∂ fm2

)
(s=σs,l≥1, f=σ f )

For this case, only the fission cross sections contribute to the total cross sections, so the parameters

s j correspond to the lth-order (l ≥ 1) scattering cross sections, denoted as s j ≡ σ
g j
′
→g j

s,l j,i j
, and the
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parameters fm2 correspond to the fission cross sections, denoted as fm2 ≡ σ
gm2
f ,im2

. The expression

of
(

∂2L
∂s j∂ fm2

)
(s=σs,l≥1, f=σ f )

is obtained by particularizing Equations (167) and (169) in [5] to the PERP

benchmark, which yields,

(
∂2L

∂s j∂ fm2

)
(s=σs,l≥1, f=σ f )

= −
G∑

g=1

∫
V dV

∫
4π dΩ

[
θ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) + θ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g

∂ fm2

+
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
1, j (r, Ω)

∂
[
(νΣ f )

g]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg′ψ(1),g′(r, Ω′)

+
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂
[
(νΣ f )

g′
]

∂ fm2
,

f or j = 1, . . . , Jσs,l≥1; m2 = 1, . . . , Jσ f .

(108)

Inserting the results obtained in Equations (23), (24) and (37) into Equation (108), yields the final
expression as follows:(

∂2L
∂s j∂ fm2

)
(s=σs,l≥1, f=σ f )

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
θ
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) + θ

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
+Nim2 ,mm2

ν
gm2
im2

∫
V dV

Θ(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) +φ
gm2
0 (r)

G∑
g=1

χgΘ(2),g
2, j;0 (r)

,
f or j = 1, . . . , Jσs,l≥1; m2 = 1, . . . , Jσ f .

(109)

4.3. Numerical Results for ∂2L(ααα)/∂σσσ f∂σσσs

Computing the second-order absolute sensitivities, ∂2L(α)/∂σ f∂σs, using Equations (79) and
(81) requires Jσ f = G×N f = 30× 2 = 60 forward and adjoint PARTISN computations to obtain the

adjoint functions u(2),g
1, j (r, Ω) and u(2),g

2, j (r, Ω), j = 1, . . . , Jσ f ; g = 1, . . . , G, as well as Jσ f = 60 forward

and adjoint PARTISN computations to obtain the adjoint functions ψ(2),g
1, j (r, Ω) and ψ

(2),g
2, j (r, Ω),

j = 1, . . . , Jσ f ; g = 1, . . . , G. Thus, a total of 120 forward and adjoint PARTISN computations are
required to obtain all of the 2nd-order sensitivities ∂2L(α)/∂σ f∂σs using Equations (79) and (81).

On the other hand, computing the alternative expression ∂2L(α)/∂σs∂σ f using Equations (107)
and (109), requires 7101 forward and adjoint PARTISN computations to obtain the adjoint functions

θ
(2),g
1, j (r, Ω) and θ(2),g2, j (r, Ω), j = 1, . . . , Jσs; g = 1, . . . , G. The reason for needing “only” 7101, rather

than 21, 600, PARTISN computations is that all of the up-scattering and some of the down-scattering
cross sections are zero for the PERP benchmark. Thus, computing ∂2L(α)/∂σ f∂σs using Equations
(79) and (81) is about 60(≈ 7101/120) times more efficient than computing ∂2L(α)/∂σs∂σ f by using
Equations (107) and (109).

The dimensions of the matrix ∂2L/∂ f j∂sm2 , j = 1, . . . , Jσ f ; m2 = 1, . . . , Jσ f is Jσ f × Jσs (= 60 ×
21, 600), where Jσ f = G ×N f = 30 × 2 = 60 and Jσs = G × G × (ISCT + 1) × I = 30 × 30 × 4 × 6 =

21, 600. The matrix of 2nd-order relative sensitivities corresponding to ∂2L/∂ f j∂sm2 , j = 1, . . . , Jσ f ;

m2 = 1, . . . , Jσ f , denoted as S(2)
(
σ

g
f ,i, σ

g′→h
s,l,k

)
, is defined as follows:

S(2)
(
σ

g
f ,i, σ

g′→h
s,l,k

)
, ∂2L

∂σ
g
f ,i∂σ

g′→h
s,l,k

σg
f ,iσ

g′→h
s,l,k

L

, l = 0, . . . , 3; i = 1, 2; k = 1, . . . , 6; g, g′, h = 1, . . . , 30. (110)

To facilitate the presentation and interpretation of the numerical results, the Jσ f × Jσs (= 60×21, 600)

matrix S(2)
(
σ

g
f ,i, σ

g′→h
s,l,k

)
has been partitioned into N f × I × (ISCT + 1) = 2× 6× 4 submatrices, each of

dimensions G × (G ·G) = 30 × 900. The results for scattering orders l = 0, l = 1, l = 2, and l = 3,
respectively, are summarized below, in Sections 4.3.1–4.3.4.
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4.3.1. Results for the Relative Sensitivities S(2)
(
σ

g
f ,i, σ

g′→h
s,l=0,k

)
Table 8 presents the results for 2nd-order relative sensitivities of the leakage response with

respect to the fission cross sections and the 0th-order scattering cross sections for all isotopes,

S(2)
(
σ

g
f ,i, σ

g′→h
s,l=0,k

)
,

(
∂2L/∂σg

f ,i∂σ
g′→h
s,l=0,k

)(
σ

g
f ,iσ

g′→h
s,l=0,k/L

)
, l = 0; i = 1, 2; k = 1, . . . , 6; g, g′, h = 1, . . . , 30.

All of these 2nd-order relative sensitivities are smaller than 1.0. The value of the largest element of each
of the respective sub-matrices is presented in Table 8, together with the phase-space coordinates of the
respective element. For the 2nd-order mixed sensitivities with respect to the 0th-order scattering cross
sections, the values can be positive or negative, but there are more positive values than negative ones.

For example, the submatrix S(2)
(
σ

g
f , 1, σg′→h

s,l= 0,1

)
, having dimensions G× (G ·G) = 30× 900, comprises

7577 positive elements, 2563 negative elements, while the remaining elements are zero. The largest
absolute values of the mixed 2nd-order sensitivities all involve the fission cross sections for the 12th
energy group of isotopes 239Pu or240Pu, and (mostly) the 0th-order self-scattering cross sections in
the 12th energy group for isotopes 239Pu, 240Pu, 69Ga, 71Ga andC, or (occasionally) the 0th-order
out-scattering cross section σ16→17

s,l= 0,k=6 for isotope 1H. All of the largest elements in the respective
sub-matrix are positive, and the vast majority of them are very small. The overall largest element in

the matrix S(2)
(
σ

g
f ,i, σ

g′→h
s,l=0,k

)
is S(2)

(
σ

g=12
f , 1 , σ12→12

s,l= 0,1

)
= 3.03× 10−1.

Table 8. Summary presentation of the matrix S(2)
(
σ

g
f ,i, σ

g′→h
s,l=0,k

)
.

Isotopes k=1 (239Pu) k=2 (240Pu) k=3 (69Ga) k=4 (71Ga) k=5 (C) k=6 (1H)

i = 1 (239Pu)

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 0,1


Max. value =

3.03× 10−1

at g = 12, g′ = 12
→ h = 12

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 0,2


Max. value =

2.01× 10−2

at g = 12, g′ = 12
→ h = 12

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 0,3


Max. value =

1.16× 10−3

at g = 12, g′ = 12
→ h = 12

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 0,4


Max. value =

7.44× 10−4

at g = 12, g′ = 12
→ h = 12

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 0,5


Max. value =

1.37× 10−1

at g = 12, g′ = 12
→ h = 12

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 0,6


Max. value =

2.30× 10−1

at g = 12, g′ = 16
→ h = 17

i = 2 (240Pu)

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 0,1


Max. value =

1.56× 10−2

at g = 12, g′ = 12
→ h = 12

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 0,2


Max. value =

1.04× 10−3

at g = 12, g′ = 12
→ h = 12

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 0,3


Max. value =

5.99× 10−5

at g = 12, g′ = 12
→ h = 12

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 0,4


Max. value =

3.84× 10−5

at g = 12, g′ = 12
→ h = 12

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 0,5


Max. value =

7.10× 10−3

at g = 12, g′ = 12
→ h = 12

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 0,6


Max. value =

1.19× 10−2

at g = 12, g′ = 16
→ h = 17

4.3.2. Results for the Relative Sensitivities S(2)
(
σ

g
f ,i, σ

g′→h
s,l=1,k

)
Table 9 summarizes the results for the 2nd-order mixed relative sensitivities of the leakage response

with respect to the fission cross sections and the 1st-order scattering cross sections for all isotopes,

S(2)
(
σ

g
f ,i, σ

g′→h
s,l=1,k

)
,

(
∂2L/∂σg

f ,i∂σ
g′→h
s,l=1,k

)(
σ

g
f ,iσ

g′→h
s,l=1,k/L

)
, l = 1; i = 1, 2; k = 1, . . . , 6; g, g′, h = 1, . . . , 30.

Most of these 2nd-order mixed sensitivities are zero; the non-zero ones are mostly negative. For example,

the submatrix S(2)
(
σ

g
f , 1, σg′→h

s,l= 1,1

)
, having dimensions G× (G ·G) = 30× 900, comprises 7798 elements

with negative values, 2342 elements with positive values, while the remaining elements are zero.
As shown in Table 9, the largest absolute values of the mixed 2nd-order sensitivities all involve the
fission cross sections σg=12

f ,i , i = 1, 2 for the 12th energy group of isotopes 239Pu or 240Pu, and either the

1st-order self-scattering cross sections σ7→7
s,l=1,k, k = 1, . . . , 4 in the 7th energy group for isotopes 239Pu,

240Pu, 69Ga and71Ga, or the 1st-order self-scattering cross sections σ12→12
s,l=1,k , k = 5, 6 in the 12th energy

group for isotopes C and1H. All of the largest (in absolute value) elements are negative, and the vast

majority of them are very small. The overall most negative element in the matrix S(2)
(
σ

g
f ,i, σ

g′→h
s,l=1,k

)
is

S(2)
(
σ

g=12
f , 1 , σ7→7

s,l= 1,1

)
= −1.70× 10−1.
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Table 9. Summary presentation of the matrix S(2)
(
σ

g
f ,i, σ

g′→h
s,l=1,k

)
.

Isotopes k=1 (239Pu) k=2 (240Pu) k=3 (69Ga) k=4 (71Ga) k=5 (C) k=6 (1H)

i = 1 (239Pu)

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 1,1


Min. value =
−1.70× 10−1

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 1,2


Min. value =
−1.02× 10−2

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 1,3


Min. value =
−3.43× 10−4

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 1,4


Min. value =
−2.08× 10−4

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 1,5


Min. value =
1.37× 10−1

at g = 12, g′ = 12
→ h = 12

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 1,6


Min. value =
−5.63× 10−2

at g = 12, g′ = 12
→ h = 12

i = 2 (240Pu)

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 1,1


Min. value =
−8.78× 10−3

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 1,2


Min. value =
−5.28× 10−4

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 1,3


Min. value =
−1.78× 10−5

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 1,4


Min. value =
−1.08× 10−5

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 1,5


Min. value =
−2.91× 10−3

at g = 12, g′ = 12
→ h = 12

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 1,6


Min. value =
−9.15× 10−3

at g = 12, g′ = 12
→ h = 12

4.3.3. Results for the Relative Sensitivities S(2)
(
σ

g
f ,i, σ

g′→h
s,l=2,k

)
Table 10 presents the results for the 2nd-order mixed relative sensitivities S(2)

(
σ

g
f ,i, σ

g′→h
s,l=2,k

)
,(

∂2L/∂σg
f ,i∂σ

g′→h
s,l=2,k

)(
σ

g
f ,iσ

g′→h
s,l=2,k/L

)
, l = 2; i = 1, 2; k = 1, . . . , 6; g, g′, h = 1, . . . , 30, of the leakage

response with respect to the fission cross sections and the 2nd-order scattering cross sections for all

isotopes. Most of the non-zero elements of S(2)
(
σ

g
f ,i, σ

g′→h
s,l=2,k

)
are positive. For example, the submatrix

S(2)
(
σ

g
f , 1, σg′→h

s,l= 2,1

)
, having dimensions G× (G ·G) = 30× 900, comprises 6308 positive elements and

3832 negative elements, while the remaining elements are zero. As shown in Table 10, all of the largest
absolute values of the mixed 2nd-order sensitivities involve the fission cross sections σg=12

f ,i , i = 1, 2

for the 12th energy group of isotopes 239Pu or 240Pu, and involve either the 2nd-order self-scattering
cross sections σ12→12

s,l=2,i=6 in the 12th energy group for isotope 1H, or the 2nd-order self-scattering cross

sections σ7→7
s,l=2,k, k = 1, . . . , 5 in the 7th energy group for isotopes 239Pu, 240Pu, 69Ga, 71Ga and C.

As shown in Table 10, all of the largest elements in the respective sub-matrix are positive, and the

vast majority of them are very small. The overall largest element in the matrix S(2)
(
σ

g
f ,i, σ

g′→h
s,l=2,k

)
is

S(2)
(
σ

g=12
f , 1 , σ7→7

s,l= 2,1

)
= 1.02× 10−2.

Table 10. Summary presentation of the matrix S(2)
(
σ

g
f ,i, σ

g′→h
s,l=2,k

)
.

Isotopes k=1 (239Pu) k=2 (240Pu) k=3 (69Ga) k=4 (71Ga) k=5 (C) k=6 (1H)

i = 1 (239Pu)

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 2,1


Max. value =

1.02× 10−2

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 2,2


Max. value =

6.25× 10−4

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 2,3


Max. value =

1.87× 10−5

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 2,4


Max. value =

1.16× 10−5

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 2,5


Max. value =

1.39× 10−2

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 2,6


Max. value =

5.94× 10−2

at g = 12, g′ = 12
→ h = 12

i = 2 (240Pu)

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 2,1


Max. value =

5.29× 10−4

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 2,2


Max. value =

3.24× 10−5

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 2,3


Max. value =

9.71× 10−7

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 2,4


Max. value =

6.03× 10−7

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 2,5


Max. value =

7.18× 10−4

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 2,6


Max. value =

3.07× 10−3

at g = 12, g′ = 12
→ h = 12

4.3.4. Results for the Relative Sensitivities S(2)
(
σ

g
f ,i, σ

g′→h
s,l=3,k

)
Table 11 presents the results for the 2nd-order mixed relative sensitivities S(2)

(
σ

g
f ,i, σ

g′→h
s,l=3,k

)
,(

∂2L/∂σg
f ,i∂σ

g′→h
s,l=3,k

)(
σ

g
f ,iσ

g′→h
s,l=3,k/L

)
, l = 3; i = 1, 2; k = 1, . . . , 6; g, g′, h = 1, . . . , 30, of the leakage
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response with respect to the fission cross sections and the 3rd-order scattering cross sections for all

isotopes. Most of the elements of S(2)
(
σ

g
f ,i, σ

g′→h
s,l=3,k

)
are zero; the non-zero elements are very small,

and the negative ones slightly outnumber the positive ones. For example, the G× (G ·G) = 30× 900

-dimensional submatrix S(2)
(
σ

g
f , 1, σg′→h

s,l= 3,1

)
comprises 5288 negative elements and 4822 positive elements,

while the remaining ones are zero. As shown in Table 11, the mixed 2nd-order sensitivities having
the largest absolute values involve the fission cross sections σg=12

f ,i , i = 1, 2 for the 12th energy group

of isotopes 239Pu or240Pu, and either the 3rd-order self-scattering cross sections σ12→12
s,l=3,i=6 for the 12th

energy group for isotope 1H or the 3rd-order self-scattering cross sections σ7→7
s,l=3,k, k = 1, . . . , 5 for the

7th energy group for isotopes239Pu, 240Pu, 69Ga, 71Ga andC. The overall largest (in absolute value)

element of the matrix S(2)
(
σ

g
f ,i, σ

g′→h
s,l=3,k

)
is S(2)

(
σ

g=12
f , i=1, σ12→12

s,l= 3,k=6

)
= −1.25× 10−2.

Table 11. Summary presentation of the matrix S(2)
(
σ

g
f ,i, σ

g′→h
s,l=3,k

)
.

Isotopes k=1 (239Pu) k=2 (240Pu) k=3 (69Ga) k=4 (71Ga) k=5 (C) k=6 (1H)

i = 1 (239Pu)

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 3,1


Min. value =
−1.79× 10−5

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 3,2


Min. value =
−1.10× 10−6

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 3,3


Min. value =
−3.12× 10−8

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 3,4


Min. value =
−1.96× 10−8

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 3,5


Min. value =
−3.48× 10−3

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 1,

σ
g′→h
s,l= 3,6


Min. value =
−1.25× 10−2

at g = 12, g′ = 12
→ h = 12

i = 2 (240Pu)

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 3,1


Min. value =
−9.26× 10−7

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 3,2


Min. value =
−5.70× 10−8

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 3,3


Min. value =
−1.62× 10−9

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 3,4


Min. value =
−1.02× 10−9

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 3,5


Min. value =
−1.80× 10−4

at g = 12, g′ = 7
→ h = 7

S(2)

 σ
g
f , 2,

σ
g′→h
s,l= 3,6


Min. value =
−6.44× 10−4

at g = 12, g′ = 12
→ h = 12

The results in Tables 9–11 indicate that the largest mixed second-order relative sensitivities in

matrices S(2)
(
σ

g
f ,i, σ

g′→h
s,l=1,k

)
, S(2)

(
σ

g
f ,i, σ

g′→h
s,l=2,k

)
and S(2)

(
σ

g
f ,i, σ

g′→h
s,l=3,k

)
frequently involve the self-scattering

cross sections in the 7th-energy group namely, σ7→7
s,l,k , l = 1, 2, 3; k = 1, . . . , 4, which is likely due to the

fact that, for isotope 239Pu, the scattering cross section σ7→7
s,l,k=1, l = 1, 2, 3 has the largest value among

all scattering cross sections σg′→h
s,l,k=1, g′, h = 1, . . . , 30, for l = 1, 2, 3.

Figure 4 shows the energy-group structure of the fission spectrum for isotope 239Pu, highlighting
that most of the spectrum is concentrated in the energy region g = 7, . . . , 14, with the largest portion
contained in group 12. It is therefore not surprising that most of the large mixed 2nd-order relative
sensitivities of ∂2L(α)/∂σ f∂σ f , ∂2L(α)/∂σ f∂σt, ∂2L(α)/∂σ f∂σs and ∂2L(α)/∂ν∂σ f are concentrated
in the energy region g = 7, . . . , 14 of the fission cross sections of 239Pu. In particular, the 1st- and 2nd
-order sensitivities of leakage response to the fission cross sections of 239Pu are both related to the
12th energy group, which is expected since energy-group 12 contains the largest portion of the fission
spectrum of 239Pu.
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Figure 4. Histogram plot of fission spectrum χ
g
i=1, g = 1, . . . , 30 for isotope 239Pu.

5. Computation of the 1st- and 2nd-Order Sensitivities of the PERP Leakage Response to the
Average Number of Neutrons Per Fission

This Section reports the computational results for the 1st-order sensitivities ∂L(α)/∂ν and for the
2nd-order sensitivities ∂2L(α)/∂ν∂ν. Sections 6–8 report the equations and results for ∂2L(α)/∂ν∂σt,
∂2L(α)/∂ν∂σs, ∂2L(α)/∂ν∂σ f , respectively.

5.1. First-Order Sensitivities ∂L(ααα)/∂ννν

The expressions for computing the 1st-order sensitivities of the leakage response with respect to the
parameters underlying the average number of neutrons per fission are derived using Equations (152),
(156) and (157) in [5], as follows:

[
∂L(α)
∂ f j

]
f=ν

=
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)

G∑
g′=1

∫
4π dΩ′

∂
[
(νΣ f )

g′
]

∂ f j
χgϕg′(r, Ω′) ,

f or j = Jσ f + 1, . . . , Jσ f + Jν,

(111)

where the parameters f j, j = Jσ f + 1, . . . , Jσ f + Jν correspond to the components of the vector

ν ,
[

fJσ f +1, . . . , fJσ f +Jν

]†
,

[
ν1

i=1, ν2
i=1, . . . , νG

i=1, . . . , νg
i , . . . , ν1

i=N f
, . . . , νG

i=N f

]†
, i = 1, . . . , N f ; g =

1, . . . , G; Jν = G×N f , as defined in Equation (A13) in Appendix A.
The multigroup adjoint fluxes ψ(1),g(r, Ω), g = 1, . . . , G in Equation (111) are the solutions of the

1st-Level Adjoint Sensitivity System (1st-LASS) as previously defined in Equations (7) and (8).
When the parameters f j correspond to the average number of neutrons per fission, i.e., f j ≡ ν

g j

i j
,

the following relation holds:

∂
[(
νΣ f

)g′
]

∂ f j
=

∂
M∑

m=1

I∑
i=1

Ni,m
(
νσ f

)g′

i

∂ν
g j

i j

=

∂
M∑

m=1

I∑
i=1

Ni,mν
g′

i σ
g′

f ,i

∂ν
g j

i j

= δg j g′Ni j,m jσ
g′

f ,i j
. (112)
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Inserting Equation (112) into Equation (111) yields the following simplified expression for
computational purposes:

∂L(α)

∂ν
g
i

= Ni,m

∫
V

dVσg
f ,iϕ

g
0(r)

G∑
g′=1

χg′ξ
(1) ,g′

0 (r) , i = 1, . . . , I; g = 1, . . . , G; m = 1, . . . , M. (113)

The numerical values of the 1st-order relative sensitivities, S(1)
(
ν

g
i

)
,

(
∂L/∂νg

i

)(
ν

g
i /L

)
, i = 1, 2;

g = 1, . . . , 30, of the leakage response with respect to the average number of neutrons per fission for
the two fissionable isotopes contained in the PERP benchmark will be presented in Section 5.3, below,
in tables that will also include comparisons with the numerical values of the corresponding 2nd-order
unmixed relative sensitivities S(2)

(
ν

g
i , νg

i

)
,

(
∂2L/∂νg

i ∂ν
g
i

)(
ν

g
i ν

g
i /L

)
, i = 1, 2; g = 1, . . . , 30.

5.2. Second-Order Sensitivities ∂2L(ααα)/∂ννν∂ννν

The equations needed for deriving the expression of the 2nd-order sensitivities ∂2L(α)/∂ν∂ν are
obtained by particularizing Equation (179) in [5] to the PERP benchmark, which takes the following
particular form:

(
∂2L

∂ f j∂ fm2

)
( f=ν, f=ν)

=
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)

G∑
g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂2
[
(νΣ f )

g′
]

∂ f j∂ fm2

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

1, j (r, Ω)
∂
[
(νΣ f )

g]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg′ψ(1),g′(r, Ω′)

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

2, j (r, Ω)
G∑

g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂
[
(νΣ f )

g′
]

∂ fm2
,

f or j = Jσ f + 1, . . . , Jσ f + Jν; m2 = Jσ f + 1, . . . , Jσ f + Jν,

(114)

where the 2nd-level adjoint functions, u(2),g
1, j (r, Ω) and u(2),g

2, j (r, Ω), j = Jσ f + 1, . . . , Jσ f + Jν; g = 1, . . . , G,
are the solutions of the following 2nd-Level Adjoint Sensitivity System (2nd-LASS) presented in
Equations (183)–(185) in [5]:

Bg
(
α0

)
u(2),g

1, j (r, Ω) =
G∑

g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂
[
(νΣ f )

g′
]

∂ f j
, j = Jσ f + 1, . . . , Jσ f + Jν; g = 1, . . . , G, (115)

u(2),g
1, j (rd, Ω) = 0, Ω · n < 0; j = Jσ f + 1, . . . , Jσ f + Jν; g = 1, . . . , G, (116)

A(1),g
(
α0

)
u(2),g

2, j (r, Ω) =
∂
[
(νΣ f )

g]
∂ f j

G∑
g′=1

∫
4π dΩ′ψ(1),g′(r, Ω′)χg′ , j = Jσ f + 1, . . . , Jσ f + Jν; g = 1, . . . , G, (117)

u(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = Jσ f + 1, . . . , Jσ f + Jν; g = 1, . . . , G. (118)

The parameters f j and fm2 in Equations (114), (115) and (117) correspond to the average number

of neutrons per fission, and are therefore denoted as f j ≡ ν
g j

i j
and fm2 ≡ ν

gm2
im2

, respectively. Noting that,

∂2Σt
g

∂ f j∂ fm2

=
∂2Σt

g

∂ν
g j

i j
∂ν

gm2
im2

=

∂

∂Σt
g

∂ν
gj
i j


∂ν

gm2
im2

= 0, (119)
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∂
[(
νΣ f

)g]
∂ fm2

=

∂
M∑

m=1

I∑
i=1

Ni,m
(
νσ f

)g

i

∂ν
gm2
im2

=

∂
M∑

m=1

I∑
i=1

Ni,mν
g
i σ

g
f ,i

∂ν
gm2
im2

= δgm2 gNim2 ,mm2
σ

g
f ,im2

, (120)

∂
[(
νΣ f

)g′
]

∂ fm2

=

∂
M∑

m=1

I∑
i=1

Ni,m
(
νσ f

)g′

i

∂ν
gm2
im2

=

∂
M∑

m=1

I∑
i=1

Ni,mν
g′

i σ
g′

f ,i

∂ν
gm2
im2

= δgm2 g′Nim2 ,mm2
σ

g′

f ,im2
, (121)

∂
[(
νΣ f

)g]
∂ f j

=

∂
M∑

m=1

I∑
i=1

Ni,m
(
νσ f

)g

i

∂ν
g j

i j

=

∂
M∑

m=1

I∑
i=1

Ni,mν
g
i σ

g
f ,i

∂ν
g j

i j

= δg j gNi j,m jσ
g
f ,i j

, (122)

and inserting the results obtained in Equation (112) and Equations (119)–(122) into Equations (115),
(117) and (114) reduces the latter equation to the following simplified expression:

(
∂2L

∂ f j∂ fm2

)
( f=ν, f=ν)

= Nim2 ,mm2
σ

gm2
f ,im2

∫
V dV

U(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgU(2),g
2, j;0 (r)

,
f or j = Jσ f + 1, . . . , Jσ f + Jν; m2 = Jσ f + 1, . . . , Jσ f + Jν,

(123)

where the 2nd-level adjoint functions, u(2),g
1, j (r, Ω) and u(2),g

2, j (r, Ω), j = Jσ f + 1, . . . , Jσ f + Jν; g = 1, . . . , G
are the solutions of the following simplified form of the 2nd-Level Adjoint Sensitivity System (2nd-LASS)
obtained from Equations (115) and (117):

Bg
(
α0

)
u(2),g

1, j (r, Ω) = Ni j,m jσ
g j

f ,i j
χgϕ

g j
0 (r), j = Jσ f + 1, . . . , Jσ f + Jν; g = 1, . . . , G, (124)

A(1),g
(
α0

)
u(2),g

2, j (r, Ω) = δg j gNi j,m jσ
g j

f ,i j

G∑
g′=1

χg′ξ
(1),g′

0 (r), j = Jσ f + 1, . . . , Jσ f + Jν; g = 1, . . . , G, (125)

and subject to the boundary conditions shown in Equations (116) and (118), respectively.

5.3. Numerical Results for ∂2L(ααα)/∂ννν∂ννν

The 2nd-order absolute sensitivities of the leakage response with respect to the parameters
underlying the average number of neutrons per fission, i.e., ∂2L/∂νg

i ∂ν
g′

k , i, k = 1, . . . , N f ;
g, g′ = 1, . . . , G, for the N f = 2 fissionable isotopes and G = 30 energy groups of the PERP

benchmark are computed using Equation (123). The (Hessian) matrix
(
∂2L/∂ f j∂ fm2

)
( f=ν, f=ν)

, j, m2 =

Jσ f + 1, . . . , Jσ f + Jν of the 2nd-order absolute sensitivities has dimensions Jν × Jν (= 60 × 60), since

Jν = G ×N f = 30 × 2. The relative sensitivities corresponding to
(
∂2L/∂ f j∂ fm2

)
( f=ν, f=ν)

, j, m2 =

Jσ f + 1, . . . , Jσ f + Jν, which are denoted as S(2)
(
ν

g
i , νg′

k

)
and are defined as follows:

S(2)
(
ν

g
i , νg′

k

)
,

∂2L

∂ν
g
i ∂ν

g′

k

ν
g
i ν

g′

k
L

, i, k = 1, 2; g, g′ = 1, . . . , 30. (126)

The numerical results obtained for the matrix S(2)
(
ν

g
i , νg′

k

)
, i, k = 1, 2; g, g′ = 1, . . . , 30 have been

partitioned into N f ×N f = 4 submatrices, each of dimensions G×G(= 30× 30), and the summary of
the main features of each submatrix is presented in Table 12.
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Table 12. Summary presentation of the matrix S(2)
(
ν

g
i , νg′

k

)
, i, k = 1, 2; g, g′ = 1, . . . , 30.

Isotopes k=1 (239Pu) k=2 (240Pu)

i = 1 (239Pu)
S(2)

(
ν

g
1 , νg′

1

)
52 elements with absolute

values > 1.0

S(2)
(
ν

g
1 , νg′

2

)
Max. value = 1.54× 10−1

at g = 12, g′ = 12

i = 2 (240Pu)
S(2)

(
ν

g
2 , νg′

1

)
Max. value = 1.54× 10−1

at g = 12, g′ = 12

S(2)
(
ν

g
2 , νg′

2

)
Max. value = 8.01× 10−3

at g = 12, g′ = 12

The 2nd-order mixed sensitivities S(2)
(
ν

g
i , νg′

k

)
, i, k = 1, 2; g, g′ = 1, . . . , 30 are all positive. Most

of the Jν × Jν (= 60× 60) elements are very small, but 52 elements have very large relative sensitivities,
with values greater than 1.0, as summarized in Table 12. All of these 52 large sensitivities belong

to the sub-matrix S(2)
(
ν

g
1 , νg′

1

)
, and relate to the parameters corresponding to the average number of

neutrons per fission in isotope 239Pu. The overall maximum relative sensitivity is S(2)
(
ν12

1 , ν12
1

)
= 2.963.

Additional details about the sub-matrix S(2)
(
ν

g
1 , νg′

1

)
, g, g′ = 1, . . . , 30 is provided in the following

Section. Also noted in Table 12 is that all of the mixed 2nd-order relative sensitivities involving
ν

g
2 , g = 1, . . . , G have absolute values smaller than 1.0. The elements with the maximum absolute value

in each of the respective submatrices relate to the 12th energy group of νg
i for isotopes 239Pu and 240Pu.

5.3.1. Second-Order Unmixed Relative Sensitivities S(2)
(
ν

g
i , νg

i

)
, i = 1, 2; g = 1, . . . , 30

The 2nd-order unmixed sensitivities S(2)
(
ν

g
i , νg

i

)
,

(
∂2L/∂νg

i ∂ν
g
i

)(
ν

g
i ν

g
i /L

)
, i = 1, 2; g = 1, . . . , 30,

which are the elements on the diagonal of the matrix S(2)
(
ν

g
i , νg′

k

)
, i, k = 1, 2; g, g′ = 1, . . . , 30, can

be directly compared to the values of the 1st-order relative sensitivities S(1)
(
ν

g
i

)
,

(
∂L/∂νg

i

)(
ν

g
i /L

)
,

i = 1, 2; g = 1, . . . , 30, for the leakage response with respect to the average number of neutrons
per fission.

Table 13 presents the results obtained for the 1st- and 2nd-order unmixed relative sensitivities with
respect to the average number of neutrons per fission ν for isotope 1 (239Pu). These results indicate
that for energy groups g = 7, . . . , 14, the values of the 2nd-order sensitivities are significantly larger
than the corresponding values of the 1st-order sensitivities for the same energy group; for other energy
groups, the 2nd-order relative sensitivities are smaller than the corresponding values of the 1st-order
sensitivities. All of the 1st- and 2nd-order relative sensitivities are positive, and the largest values for
the 1st-order and 2nd-order relative sensitivities are both related to the 12th energy group.

Table 14 presents the 1st-order and 2nd-order unmixed relative sensitivities for isotope 2 (240Pu).
The results in this table indicate that the values for both the 1st- and 2nd-order relative sensitivities
are all very small, and the values of the 2nd-order unmixed relative sensitivities are at least one
order of magnitude smaller than the corresponding values of the 1st-order ones for all energy groups.
The largest 1st-order relative sensitivity is S(1)

(
ν12

i=2

)
= 6.316× 10−2, and the largest 2nd-order unmixed

relative sensitivity is S(2)
(
ν12

i=2, ν12
k=2

)
= 8.011× 10−3, both occur for the 12th energy group of the average

number of neutrons per fission for isotope 240Pu.
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Table 13. 1st-order relative sensitivities
(
∂L/∂νg

i=1

)(
ν

g
i=1/L

)
, g = 1, . . . , 30 and 2nd-order relative

sensitivities
(
∂2L/∂νg

1∂ν
g
1

)(
ν

g
1ν

g
1/L

)
, g = 1, . . . , 30, for isotope 1 (239Pu).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 0.0005266 0.0000006 16 0.297 0.177
2 0.0010690 0.0000025 17 0.117 0.027
3 0.0030646 0.0000206 18 0.068 0.009
4 0.0140 0.0004 19 0.060 0.007
5 0.0672 0.0097 20 0.065 0.009
6 0.169 0.060 21 0.071 0.010
7 0.762 1.192 22 0.064 0.008
8 0.659 0.880 23 0.064 0.008
9 0.802 1.299 24 0.042 0.004
10 0.843 1.430 25 0.055 0.006
11 0.786 1.243 26 0.051 0.005
12 1.215 2.963 27 0.026 0.001
13 0.847 1.444 28 0.012 0.0003
14 0.555 0.620 29 0.034 0.002
15 0.321 0.208 30 0.461 0.429

Table 14. Comparison of 1st-order relative sensitivities
(
∂L/∂νg

i=2

)(
ν

g
i=2/L

)
, g = 1, . . . , 30 and 2nd-order

relative sensitivities
(
∂2L/∂νg

2∂ν
g
2

)(
ν

g
2ν

g
2/L

)
, g = 1, . . . , 30, for isotope 2 (240Pu).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 3.278 × 10−5 2.395 × 10−9 16 9.569 × 10−4 1.834 × 10−6

2 6.388 × 10−5 9.027 × 10−9 17 4.337 × 10−4 3.745 × 10−7

3 1.790 × 10−4 7.043 × 10−8 18 2.251 × 10−4 1.009 × 10−7

4 8.648 × 10−4 1.627 × 10−6 19 1.278 × 10−4 3.261 × 10−8

5 4.197 × 10−3 3.767 × 10−5 20 2.292 × 10−4 1.050 × 10−7

6 1.003 × 10−2 2.115 × 10−4 21 1.298 × 10−4 3.374 × 10−8

7 4.313 × 10−2 3.819 × 10−3 22 1.227 × 10−5 3.019 × 10−10

8 3.774 × 10−2 2.890 × 10−3 23 8.578 × 10−6 1.480 × 10−10

9 4.397 × 10−2 3.904 × 10−3 24 1.631 × 10−6 5.347 × 10−12

10 4.475 × 10−2 4.034 × 10−3 25 7.522 × 10−6 1.140 × 10−10

11 3.985 × 10−2 3.192 × 10−3 26 1.225 × 10−7 3.010 × 10−14

12 6.316 × 10−2 8.011 × 10−3 27 8.661 × 10−6 1.505 × 10−10

13 2.649 × 10−2 1.411 × 10−3 28 9.563 × 10−6 1.845 × 10−10

14 4.768 × 10−3 4.572 × 10−5 29 4.853 × 10−8 4.752 × 10−15

15 1.289 × 10−3 3.338 × 10−6 30 2.463 × 10−6 1.222 × 10−11

5.3.2. Second-Order Relative Sensitivities S(2)
(
ν

g
i=1, νg′

k=1

)
, g, g′ = 1, . . . , 30

Table 15 presents the 2nd-order mixed relative sensitivity results obtained for S(2)
(
ν

g
1 , νg′

1

)
,(

∂2L/∂νg
i=1∂ν

g′

k=1

)(
ν

g
i=1ν

g′

k=1/L
)
, g, g′ = 1, . . . , 30, for the leakage response with respect to the parameters

underlying the average number of neutrons per fission of isotope 239Pu. The majority of the larger
2nd-order relative sensitivities are concentrated in the energy region confined by the energy groups
g = 7, . . . , 14 and g′ = 7, . . . , 14. Shown in bold in Table 15 are the numerical values of 52 elements that
have values greater than 1.0. The largest value among these sensitivities is attained by the relative

2nd-order unmixed sensitivity S(2)
(
ν

g=12
1 , νg′=12

1

)
= 2.963.
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Table 15. Components of S(2)
(
ν

g
1 , νg′

1

)
, g, g′ = 1, . . . , 30 having values greater than 1.0.

Groups g′ = 6 7 8 9 10 11 12 13 14 15

g = 6 0.060 0.267 0.230 0.279 0.293 0.273 0.422 0.294 0.193 0.112
7 0.267 1.192 1.024 1.244 1.306 1.217 1.879 1.312 0.860 0.497
8 0.230 1.024 0.880 1.069 1.122 1.046 1.615 1.127 0.739 0.427
9 0.279 1.244 1.069 1.299 1.363 1.271 1.962 1.370 0.897 0.519

10 0.293 1.306 1.122 1.363 1.430 1.333 2.059 1.437 0.942 0.545
11 0.273 1.217 1.046 1.271 1.333 1.243 1.919 1.340 0.878 0.508
12 0.422 1.879 1.615 1.962 2.059 1.919 2.963 2.068 1.356 0.784
13 0.294 1.312 1.127 1.370 1.437 1.340 2.068 1.444 0.946 0.547
14 0.193 0.860 0.739 0.897 0.942 0.878 1.356 0.946 0.620 0.359
15 0.112 0.497 0.427 0.519 0.545 0.508 0.784 0.547 0.359 0.208

In addition to the sensitivities presented in Table 15, the following 2nd-order relative sensitivities

in the matrix S(2)
(
ν

g
1 , νg′

1

)
, g, g′ = 1, . . . , 30 have values greater than 1.0: S(2)

(
ν30

i=1, ν12
k=1

)
=

S(2)
(
ν12

i=1, ν30
k=1

)
= 1.062. Also, as shown in Table 15, the values of the mixed sensitivities in row

g = 12 are the largest among all g = 1, . . . , 30 rows. Likewise, the values of the mixed sensitivities in
column g′ = 12 are the largest among all groups g′ = 1, . . . , 30.

6. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Parameters Underlying the Average Number of Neutrons Per Fission and Total Cross Sections

This section presents the computation and analysis of the numerical results for the 2nd-order mixed
sensitivities ∂2L(α)/∂ν∂σt of the leakage response with respect to the average number of neutrons per
fission and total microscopic cross sections of all isotopes of the PERP benchmark. Similarly, these
mixed sensitivities can be computed using either the computation of ∂2L(α)/∂ν∂σt or the computation
of ∂2L(α)/∂σt∂ν. These two distinct paths will be presented in Sections 6.1 and 6.2, respectively.

6.1. Second-Order Sensitivities ∂2L(ααα)/∂ννν∂σσσt

The equations needed for deriving the expression of the 2nd-order sensitivities ∂2L(α)/∂ν∂σt are
obtained by particularizing Equation (177) in [5] to the PERP benchmark, which takes the following form:(

∂2L
∂ f j∂tm2

)
( f=ν,t=σt)

= −
G∑

g=1

∫
V dV

∫
4π dΩ

[
u(2),g

1, j (r, Ω)ψ(1),g(r, Ω) + u(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g

∂tm2
,

f or j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσt.
(127)

The parameters f j and tm2 in Equation (127) correspond to the average number of neutrons per

fission and total cross sections, and are therefore denoted as f j ≡ ν
g j

i j
and tm2 ≡ σ

gm2
t,im2

, respectively.

Inserting the results obtained in Equation (50) into Equation (127), yields:(
∂2L

∂ f j∂tm2

)
( f=ν,t=σt)

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
u
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) + u

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
,

f or j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσt.
(128)
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6.2. Alternative Path: Computing the Second-Order Sensitivities ∂2L(ααα)/∂σσσt∂ννν

The equations needed for deriving the expression for ∂2L(α)/∂σt∂ν are obtained by particularizing
Equation (160) in [5] to the PERP benchmark, which takes the following form:(

∂2L
∂t j∂ fm2

)
(t=σt, f=ν)

=
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
1, j (r, Ω)

∂
[
(νΣ f )

g]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg′ψ(1),g′(r, Ω′)

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂
[
(νΣ f )

g′
]

∂ fm2
,

f or j = 1, . . . , Jσt; m2 = Jσ f + 1, . . . , Jσ f + Jν ,

(129)

where the adjoint functions ψ(2),g
1, j (r, Ω) and ψ(2),g

2, j (r, Ω), j = 1, . . . , Jσt; g = 1, . . . , G are the solutions of
the 2nd-Level Adjoint Sensitivity System (2nd-LASS) presented in Equations (32), (34), (39) and (40) of
Part I [1], which have been reproduced as Equations (57)–(60) in Section 3.2.

The parameters t j and fm2 in Equation (129) correspond to the total cross sections and the average

number of neutrons per fission, respectively, and are therefore denoted as t j ≡ σ
g j

t,i j
and fm2 ≡ ν

gm2
im2

.

Inserting the results obtained in Equations (121) and (122) into Equation (129) yields:

(
∂2L

∂t j∂ fm2

)
(t=σt, f=ν)

= Nim2 ,mm2
σ

gm2
f ,im2

∫
V dV

ξ(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgξ
(2),g
2, j;0 (r)

,
f or j = 1, . . . , Jσt; m2 = Jσ f + 1, . . . , Jσ f + Jν ,

(130)

where the flux moments ξ
(2),gm2
1, j;0 (r) and ξ(2),g2, j;0 (r) have been defined in Equations (43) and (44).

6.3. Numerical Results for ∂2L(ααα)/∂ννν∂σσσt

The second-order absolute sensitivities, ∂2L(α)/∂ν∂σt, of the leakage response with respect
to the average number of neutrons per fission and the total cross sections for all isotopes of the
PERP benchmark have been computed using Equation (128), and have been independently verified
by computing ∂2L(α)/∂σt∂ν using Equation (130). Similarly, computing ∂2L(α)/∂ν∂σt by using
Equation (128) requires 120 PARTISN computations while computing ∂2L(α)/∂σt∂ν using Equation
(130) requires Jσt = G × I = 30 × 6 = 360 PARTISN computations. Thus, computing ∂2L(α)/∂ν∂σt

using Equation (128) is 3 times more efficient than computing ∂2L(α)/∂σt∂ν using Equation (130).
The matrix

(
∂2L/∂ f j∂tm2

)
( f=ν,t=σt)

, j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσ f ; has dimensions

Jν × Jσt (= 60 × 180). The matrix of 2nd-order relative sensitivities corresponding to(
∂2L/∂ f j∂tm2

)
( f=ν,t=σt)

, j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσ f ;, denoted as S(2)
(
ν

g
i , σg′

t,k

)
, is defined

as follows:

S(2)
(
ν

g
i , σg′

t,k

)
,

∂2L

∂ν
g
i ∂σ

g′

t,k

∂ν
g
i ∂σ

g′

t,k

L

, i = 1, 2; k = 1, . . . , 6; g, g′ = 1, . . . , 30. (131)

To facilitate the presentation and interpretation of the numerical results, the Jν × Jσt (= 60× 180)

matrix S(2)
(
ν

g
i , σg′

t,k

)
has been partitioned into N f × I = 2× 6 submatrices, each of dimensions G×G =

30× 30. The main features of each of these submatrices is presented in Table 16.



Energies 2019, 12, 4100 37 of 68

Table 16. Summary presentation of the matrix S(2)
(
ν

g
i , σg′

t,k

)
.

Isotopes k=1 (239Pu) k=2 (240Pu) k=3 (69Ga) k=4 (71Ga) k=5 (C) k=6 (1H)

i = 1 (239Pu)

S(2)
(
ν

g
1 , σg′

t,1

)
72 elements with
absolute values

> 1.0

S(2)
(
ν

g
1 , σg′

t,2

)
Min. value =
−2.39× 10−1

at g = 12, g′ = 12

S(2)
(
ν

g
1 , σg′

t,3

)
Min. value =
−1.08× 10−2

at g = 12, g′ = 12

S(2)
(
ν

g
1 , σg′

t,4

)
Min. value =
−7.31× 10−3

at g = 12, g′ = 12

S(2)
(
ν

g
1 , σg′

t,5

)
7 elements with
absolute values

> 1.0

S(2)
(
ν

g
1 , σg′

t,6

)
99 elements with
absolute values

> 1.0

i = 2 (240Pu)

S(2)
(
ν

g
2 , σg′

t,1

)
Min. value =
−1.97× 10−1

at g = 12, g′ = 12

S(2)
(
ν

g
2 , σg′

t,2

)
Min. value =
−1.25× 10−2

at g = 12, g′ = 12

S(2)
(
ν

g
2 , σg′

t,3

)
Min. value =
−5.60× 10−4

at g = 12, g′ = 12

S(2)
(
ν

g
2 , σg′

t,4

)
Min. value =
−3.80× 10−4

at g = 12, g′ = 12

S(2)
(
ν

g
2 , σg′

t,5

)
Min. value =
−8.41× 10−2

at g = 12, g′ = 30

S(2)
(
ν

g
2 , σg′

t,6

)
1 element with

absolute value >
1.0

Most of the values of the Jν × Jσt (= 10, 800) elements in the matrix S(2)
(
ν

g
i , σg′

t,k

)
, i = 1, 2;

k = 1, . . . , 6; g, g′ = 1, . . . , 30 are very small, and the majority (10,780 out of 10,800) of these elements
have negative values. The results in Table 16 indicate that, when the 2nd-order mixed relative
sensitivities involve νg

2 , g = 1, . . . , 30 or the total cross sections of isotopes 240Pu, 69Ga and 71Ga, their

absolute values are all smaller than 1.0, except for one element in the submatrix S(2)
(
ν

g
2 , σg′

t,6

)
. The

element with the most negative value in each of the submatrices is always related to νg
i , i = 1, 2 for

the 12th energy group and σg′

t,k, k = 1, . . . , 6 for either the 12th or the 30th energy group. There are
179 elements with large relative sensitivities, having absolute values greater than 1.0, as indicated

in Table 16. Those large sensitivities reside in the submatrices S(2)
(
ν

g
1 , σg′

t,1

)
, S(2)

(
ν

g
1 , σg′

t,5

)
, S(2)

(
ν

g
1 , σg′

t,6

)
and S(2)

(
ν

g
2 , σg′

t,6

)
, respectively, and 178 out of the 179 large sensitivities involve the average number of

neutrons per fission of isotope 239Pu, namely, νg
1 , and the total cross sections of isotopes 239Pu, C and 1H.

Of the sensitivities summarized in Table 16, the single largest relative value is S(2)
(
ν12

1 , σ30
t,6

)
= −19.29.

6.3.1. Second-Order Relative Sensitivities S(2)
(
ν

g
1 , σg′

t,1

)
, g, g′ = 1, . . . , 30

The submatrix S(2)
(
ν

g
i=1, σg′

t,k=1

)
,

(
∂2L/∂νg

i=1∂σ
g′

t,k=1

)(
ν

g
i=1σ

g′

t,k=1/L
)

comprises the 2nd-order

mixed relative sensitivity results obtained for, g, g′ = 1, . . . , 30, for the leakage response with respect to
the average number of neutrons per fission of 239Pu and to the total microscopic cross sections of 239Pu.
All elements in this submatrix have negative 2nd-order relative sensitivities. The largest 2nd-order
mixed relative sensitivities are concentrated in the energy region confined by the energy groups
g = 7, . . . , 14 and g′ = 7, . . . , 16. The numerical values of these large elements are presented in Table 17,
which indicates (in bold) the 72 elements that have values greater than 1.0. The largest absolute value

in this submatrix is attained by the relative 2nd-order mixed sensitivity S(2)
(
ν

g=12
i=1 , σg′=12

t,k=1

)
= −3.785,

involving the parameters representing the average number of neutrons per fission and total cross
section of isotope 239Pu in the 12th energy group.

Table 17. Components of S(2)
(
ν

g
i=1, σg′

t,k=1

)
, g, g′ = 1, . . . , 30 having values greater than 1.0.

Groups g′ = 6 7 8 9 10 11 12 13 14 15 16

g = 6 −0.139 −0.256 −0.236 −0.274 −0.274 −0.251 −0.426 −0.373 −0.310 −0.226 −0.257
7 −0.202 −1.635 −1.051 −1.220 −1.222 −1.119 −1.901 −1.666 −1.382 −1.008 −1.146
8 −0.172 −0.997 −1.334 −1.049 −1.051 −0.962 −1.634 −1.432 −1.188 −0.866 −0.985
9 −0.209 −1.207 −1.124 −1.787 −1.277 −1.169 −1.986 −1.740 −1.444 −1.053 −1.197

10 −0.220 −1.262 −1.165 −1.363 −1.856 −1.226 −2.084 −1.826 −1.515 −1.105 −1.257
11 −0.205 −1.178 −1.083 −1.259 −1.275 −1.612 −1.942 −1.702 −1.413 −1.030 −1.171
12 −0.316 −1.825 −1.677 −1.948 −1.953 −1.802 −3.785 −2.629 −2.181 −1.590 −1.809
13 −0.221 −1.279 −1.176 −1.366 −1.369 −1.252 −2.148 −2.513 −1.523 −1.110 −1.263
14 −0.145 −0.840 −0.773 −0.898 −0.900 −0.825 −1.406 −1.247 −1.565 −0.728 −0.828
15 −0.084 −0.486 −0.448 −0.521 −0.522 −0.478 −0.815 −0.719 −0.613 −0.821 −0.479
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In addition to the sensitivities presented in Table 17, the following 2nd-order relative sensitivities in

the matrix S(2)
(
ν

g
i=1, σg′

t,k=1

)
, g, g′ = 1, . . . , 30 have absolute values greater than 1.0: S(2)

(
ν30

i=1, σ12
t,k=1

)
=

−1.175, S(2)
(
ν30

i=1, σ13
t,k=1

)
= −1.053 and S(2)

(
ν12

i=1, σ30
t,k=1

)
= −1.064. The absolute values of the mixed

sensitivities in row g = 12 are the largest among all g = 1, . . . , 30 rows, including rows not presented in
Table 17. Similarly, the values of the mixed sensitivities in group g′ = 12 are the most negative among
all groups g′ = 1, . . . , 30, except for the sensitivity value located in groups g = 13 and g′ = 12, which
is less negative than the value located in groups g = 13 and g′ = 13.

6.3.2. Second-Order Relative Sensitivities S(2)
(
ν

g
1 , σg′

t,5

)
, g, g′ = 1, . . . , 30

As presented in Table 18, the submatrix S(2)
(
ν

g
1 , σg′

t,5

)
, g, g′ = 1, . . . , 30, comprising the 2nd-order

relative sensitivities of the leakage response with respect to the average number of neutrons per fission
of isotope 1 (239Pu) and the total cross sections of isotope 5 (C), includes 7 elements that have values
greater than 1.0. All of these 7 large elements involve the total cross section σg′=30

t,5 for group g′ = 30 of
isotope 5 (C).

Table 18. Components of S(2)
(
ν

g
1 , σg′

t,5

)
, g, g′ = 1, . . . , 30 having values greater than 1.0.

Energy
Groups

g = 7
g′ = 30

g = 9
g′ = 30

g = 10
g′ = 30

g = 11
g′ = 30

g = 12
g′ = 30

g = 13
g′ = 30

g = 30
g′ = 30

Values −1.022 −1.070 −1.122 −1.046 −1.617 −1.129 −1.258

6.3.3. Second-Order Relative Sensitivities S(2)
(
ν

g
1 , σg′

t,6

)
, g, g′ = 1, . . . , 30

The submatrix S(2)
(
ν

g
1 , σg′

t,6

)
, g, g′ = 1, . . . , 30, comprises the 2nd-order relative sensitivities of the

leakage response with respect to the average number of neutrons per fission of isotope 1 (239Pu) and

the total microscopic cross sections of isotope 6 (1H). The submatrix S(2)
(
ν

g
1 , σg′

t,6

)
, g, g′ = 1, . . . , 30

includes 99 elements that have absolute values greater than 1.0, as specified (in bold) in Tables 19
and 20. Of these 99 elements, 71 elements are located in the energy phase-space confined by the energy
groups g = 7, . . . , 14 and g′ = 14, . . . , 29, while the other 28 elements are located in energy groups
g = 30 or g′ = 30; some of these sensitivities have very large negative values. The largest negative
value is displayed by the 2nd-order relative sensitivity of the leakage response with respect to the 12th
energy group of the parameter underlying the average number of neutrons per fission for 239Pu and
the 30th energy group of the total cross section for 1H, namely, S(2)

(
ν12

1 , σ30
t,6

)
= −19.29.
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Table 19. Elements of S(2)
(
ν

g
i=1, σg′

t,k=6

)
, g, g′ = 1, . . . , 30, having absolute values greater than 1.0.

Groups g′ = 13 14 15 16 17 18 19 20 21

g = 5 −0.054 −0.061 −0.063 −0.130 −0.134 −0.131 −0.126 −0.120 −0.112
6 −0.134 −0.153 −0.158 −0.325 −0.333 −0.327 −0.315 −0.298 −0.280
7 −0.600 −0.682 −0.707 −1.451 −1.488 −1.460 −1.406 −1.331 −1.251
8 −0.517 −0.587 −0.608 −1.248 −1.280 −1.256 −1.209 −1.145 −1.076
9 −0.628 −0.714 −0.740 −1.518 −1.557 −1.528 −1.471 −1.393 −1.308
10 −0.660 −0.750 −0.777 −1.593 −1.634 −1.603 −1.543 −1.461 −1.373
11 −0.615 −0.699 −0.724 −1.486 −1.523 −1.495 −1.439 −1.362 −1.280
12 −0.950 −1.080 −1.118 −2.295 −2.352 −2.308 −2.223 −2.104 −1.977
13 −0.691 −0.754 −0.781 −1.602 −1.643 −1.612 −1.552 −1.470 −1.381
14 −0.448 −0.524 −0.512 −1.050 −1.077 −1.057 −1.018 −0.964 −0.906
15 −0.260 −0.299 −0.323 −0.609 −0.624 −0.613 −0.590 −0.559 −0.525
16 −0.246 −0.282 −0.295 −0.629 −0.580 −0.569 −0.548 −0.519 −0.488
17 −0.103 −0.119 −0.125 −0.261 −0.293 −0.227 −0.219 −0.208 −0.195
18 −0.064 −0.074 −0.078 −0.165 −0.174 −0.195 −0.130 −0.123 −0.116
19 −0.057 −0.067 −0.071 −0.150 −0.158 −0.159 −0.180 −0.108 −0.102
20 −0.063 −0.074 −0.078 −0.165 −0.174 −0.175 −0.172 −0.197 −0.111
21 −0.069 −0.081 −0.086 −0.181 −0.191 −0.191 −0.188 −0.182 −0.211
22 −0.062 −0.073 −0.078 −0.163 −0.172 −0.172 −0.169 −0.163 −0.157
23 −0.063 −0.074 −0.079 −0.166 −0.174 −0.174 −0.171 −0.165 −0.158
24 −0.042 −0.049 −0.052 −0.110 −0.115 −0.115 −0.113 −0.109 −0.104
25 −0.054 −0.064 −0.068 −0.142 −0.149 −0.149 −0.146 −0.140 −0.135
26 −0.051 −0.059 −0.063 −0.132 −0.139 −0.139 −0.136 −0.131 −0.125
27 −0.026 −0.031 −0.033 −0.069 −0.073 −0.072 −0.071 −0.068 −0.065
28 −0.012 −0.014 −0.015 −0.031 −0.033 −0.033 −0.032 −0.031 −0.030
29 −0.035 −0.041 −0.043 −0.091 −0.095 −0.095 −0.093 −0.089 −0.085
30 −0.470 −0.550 −0.584 −1.224 −1.281 −1.278 −1.250 −1.201 −1.151

Table 20. Continuation of Table 19.

Groups g′ = 22 23 24 25 26 27 28 29 30

g = 5 −0.103 −0.095 −0.086 −0.082 −0.076 −0.067 −0.063 −0.063 −1.096
6 −0.257 −0.238 −0.215 −0.204 −0.188 −0.168 −0.157 −0.158 −2.732
7 −1.148 −1.063 −0.962 −0.913 −0.841 −0.750 −0.703 −0.706 −12.20
8 −0.988 −0.915 −0.828 −0.785 −0.724 −0.645 −0.605 −0.607 −10.49
9 −1.202 −1.113 −1.007 −0.955 −0.880 −0.785 −0.736 −0.739 −12.77
10 −1.261 −1.167 −1.056 −1.002 −0.924 −0.823 −0.772 −0.775 −13.39
11 −1.176 −1.088 −0.985 −0.934 −0.861 −0.767 −0.720 −0.723 −12.49
12 −1.816 −1.681 −1.521 −1.443 −1.330 −1.186 −1.112 −1.116 −19.29
13 −1.268 −1.174 −1.063 −1.008 −0.929 −0.828 −0.777 −0.780 −13.48
14 −0.832 −0.770 −0.697 −0.661 −0.609 −0.543 −0.509 −0.512 −8.843
15 −0.482 −0.447 −0.404 −0.383 −0.353 −0.315 −0.295 −0.297 −5.129
16 −0.448 −0.415 −0.376 −0.357 −0.329 −0.293 −0.275 −0.276 −4.777
17 −0.180 −0.167 −0.151 −0.143 −0.132 −0.118 −0.111 −0.111 −1.921
18 −0.107 −0.099 −0.090 −0.085 −0.078 −0.070 −0.066 −0.066 −1.142
19 −0.094 −0.087 −0.079 −0.075 −0.069 −0.062 −0.058 −0.058 −1.004
20 −0.102 −0.095 −0.086 −0.082 −0.075 −0.067 −0.063 −0.063 −1.096
21 −0.111 −0.103 −0.093 −0.089 −0.082 −0.073 −0.069 −0.069 −1.190
22 −0.183 −0.093 −0.084 −0.080 −0.073 −0.065 −0.062 −0.062 −1.068
23 −0.151 −0.179 −0.085 −0.080 −0.074 −0.066 −0.062 −0.062 −1.077
24 −0.099 −0.095 −0.113 −0.053 −0.049 −0.043 −0.041 −0.041 −0.708
25 −0.127 −0.122 −0.116 −0.144 −0.063 −0.056 −0.053 −0.053 −0.915
26 −0.118 −0.113 −0.107 −0.104 −0.129 −0.052 −0.049 −0.049 −0.849
27 −0.062 −0.059 −0.055 −0.054 −0.052 −0.064 −0.025 −0.026 −0.443
28 −0.028 −0.027 −0.025 −0.024 −0.023 −0.022 −0.028 −0.012 −0.200
29 −0.081 −0.077 −0.072 −0.070 −0.067 −0.063 −0.062 −0.083 −0.578
30 −1.085 −1.031 −0.967 −0.936 −0.893 −0.836 −0.811 −0.817 −15.02
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6.3.4. Second-Order Relative Sensitivities S(2)
(
ν

g
2 , σg′

t,6

)
, g, g′ = 1, . . . , 30

The submatrix S(2)
(
ν

g
2 , σg′

t,6

)
, g, g′ = 1, . . . , 30, comprising the 2nd-order sensitivities of the leakage

response with respect to the average number of neutrons per fission of isotope 2 (240Pu) and the total
cross sections of isotope 6 (1H), contains a single large element that has an absolute value greater than
1.0, namely, S(2)

(
ν12

2 , σ30
t,6

)
= −1.003.

7. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Parameters Underlying the Average Number of Neutrons Per Fission and Scattering
Cross Sections

This Section presents the computation and analysis of the numerical results for the 2nd-order
mixed sensitivities, ∂2L(α)/∂ν∂σs, of the leakage response with respect to the average number of
neutrons per fission and scattering microscopic cross sections of all isotopes of the PERP benchmark.
The numerical values of the 2nd-order mixed sensitivities ∂2L(α)/∂ν∂σs can alternatively be computed
by using the symmetric expression ∂2L(α)/∂σs∂ν. The path for computing the 2nd-order mixed
sensitivities ∂2L(α)/∂ν∂σs will be presented in Section 7.1. The path for computing the alternative
expressions for ∂2L(α)/∂σs∂νwill be presented in Section 7.2.

7.1. Computation of the Second-Order Sensitivities ∂2L(ααα)/∂ννν∂σσσs

Similar to the computation of ∂2L(α)/∂σ f∂σs as presented in Section 4.1, the equations needed
for deriving the expressions of the 2nd-order sensitivities ∂2L/∂ f j∂sm2 , j = Jσ f + 1, . . . , Jσ f + Jν;
m2 = 1, . . . , Jσs will differ from each other depending on whether the parameter sm2 corresponds to
the 0th-order (l = 0) scattering cross sections or to the higher-order (l ≥ 1) scattering cross sections.
The two distinct cases are as follows:

(1)
(

∂2L
∂ f j∂sm2

)
( f=ν,s=σs,l=0)

, j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσs,l=0, where the quantities f j

enumerate the parameters underlying the average number of neutrons per fission, and
the quantities sm2 enumerate parameters underlying the 0th-order scattering microscopic
cross sections;

(2)
(

∂2L
∂ f j∂sm2

)
( f=ν,s=σs,l≥1)

, j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , σs,l≥1, where the quantities f j enumerate

the parameters underlying the average number of neutrons per fission, and the quantities sm2

enumerate parameters underlying the lth-order (l ≥ 1) scattering microscopic cross sections.

7.1.1. Computation of the Second-Order Sensitivities
(

∂2L
∂ f j∂sm2

)
( f=ν,s=σs,l=0)

The equations needed for deriving the expression of the 2nd-order mixed sensitivities(
∂2L/∂ f j∂sm2

)
( f=ν,s=σs,l=0)

are obtained by particularizing Equations (177) and (178) presented in [5]

to the PERP benchmark, where Equation (178) provides the contributions arising directly from the
parameters underlying the average number of neutrons per fission and scattering cross sections, while
Equation (177) provides contributions arising indirectly through the total cross sections, since the
0th-order scattering cross sections are part of the total cross sections. The expression obtained by
particularizing Equation (178) in [5] to the PERP benchmark yields:(

∂2L
∂ f j∂sm2

)(1)
( f=ν,s=σs,l=0)

=
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

1, j (r, Ω)
G∑

g′=1

∫
4π dΩ′ψ(1),g′(r, Ω′)

∂Σg→g′
s (s;Ω→Ω′)

∂sm2

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

2, j (r, Ω)
G∑

g′=1

∫
4π dΩ′ϕg′(r, Ω′)

∂Σg′→g
s (s;Ω′→Ω)

∂sm2
,

f or j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσs,l=0.

(132)
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In Equation (132), the parameters indexed by f j correspond to the average number of neutrons

per fission, so that f j ≡ ν
g j

i j
, while the parameters indexed by sm2 correspond to the 0th-order scattering

cross sections, so that sm2 ≡ σ
g′m2
→gm2

s,lm2=0,im2
, respectively.

Inserting the results obtained in Equations (68) and (69) into Equation (132), using the addition
theorem for spherical harmonics in one-dimensional geometry, performing the respective angular
integrations, and setting lm2 = 0 in the resulting expression yields the following simplified form for
Equation (132):(

∂2L
∂ f j∂sm2

)(1)
( f=ν,s=σs,l=0)

= Nim2 ,mm2

∫
V

dV
[
ξ
(1),gm2
0 (r)U

(2),g′m2
1, j;0 (r) + ϕ

g′m2
0 (r)U

(2),gm2
2, j;0 (r)

]
, (133)

where the 0th-order moments ϕ
g′m2
0 (r), ξ

(1),gm2
0 (r), U

(2),g′m2
1, j;0 (r) and U

(2),gm2
2, j;0 (r) have been defined

previously in Equations (15), (16), (27) and (28), respectively.
The contributions stemming from the specialized form of Equation (177) of [5], in conjunction

with the relation ∂Σt
g

∂tm2
= ∂Σt

g

∂tm2

∂tm2
∂sm2

= ∂Σt
g

∂sm2
, are as follows:

(
∂2L

∂ f j∂sm2

)(2)
( f=ν,s=σs,l=0)

= −
G∑

g=1

∫
V dV

∫
4π dΩ

[
u(2),g

1, j (r, Ω)ψ(1),g(r, Ω) + u(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g

∂sm2
,

f or j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσs,l=0.
(134)

Inserting the result obtained in Equation (73) into Equation (134) yields the following
simplified expression:(

∂2L
∂ f j∂sm2

)(2)
( f=ν,s=σs,l=0)

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
u
(2),g′m2
1, j (r, Ω)ψ

(1),g′m2 (r, Ω) + u
(2),g′m2
2, j (r, Ω)ϕ

g′m2 (r, Ω)
]
.

(135)

Collecting the partial contributions obtained in Equations (133) and (135), yields the
following result:(

∂2L
∂ f j∂sm2

)
( f=ν,s=σs,l=0)

=
2∑

i=1

(
∂2L

∂ f j∂sm2

)(i)
( f=ν,s=σs,l=0)

= Nim2 ,mm2

∫
V dV

[
ξ
(1),gm2
0 (r)U

(2),g′m2
1, j;0 (r) + ϕ

g′m2
0 (r)U

(2),gm2
2, j;0 (r)

]
−Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
u
(2),g′m2
1, j (r, Ω)ψ

(1),g′m2 (r, Ω) + u
(2),g′m2
2, j (r, Ω)ϕ

g′m2 (r, Ω)
]
,

f or j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσs,l=0.

(136)

7.1.2. Second-Order Sensitivities
(

∂2L
∂ f j∂sm2

)
( f=ν,s=σs,l≥1)

When computing the 2nd-order sensitivities
(
∂2L/∂ f j∂sm2

)
( f=ν,s=σs, l≥1)

, the parameters f j ≡ ν
g j
j

correspond to the average number of neutrons per fission, while the parameters sm2 ≡ σ
g′m2
→gm2

s,lm2 ,im2

correspond to the lth-order (l ≥ 1) scattering cross sections, neither of which contribute to the total cross
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sections. Thus, the expression of
(
∂2L/∂ f j∂sm2

)
( f=ν,s=σs, l≥1)

is obtained by particularizing Equation (178)

in [5] to the PERP benchmark, which yields,(
∂2L

∂ f j∂sm2

)
( f=ν,s=σs, l≥1)

=
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

1, j (r, Ω)
G∑

g′=1

∫
4π dΩ′ψ(1),g′(r, Ω′)

∂Σg→g′
s (s;Ω→Ω′)

∂sm2

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

2, j (r, Ω)
G∑

g′=1

∫
4π dΩ′ϕg′(r, Ω′)

∂Σg′→g
s (s;Ω′→Ω)

∂sm2
,

f or j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσs,l≥1.

(137)

Inserting the results obtained in Equations (68) and (69) into Equation (137), using the addition
theorem for spherical harmonics in one-dimensional geometry and performing the respective angular
integrations yields the following simplified form for Equation (137):(

∂2L
∂ f j∂sm2

)
( f=ν,s=σs,l≥1)

= Nim2 ,mm2
(2lm2 + 1)

[∫
V dVξ

(1),gm2
lm2

(r)U
(2),g′m2
1, j;lm2

(r) +
∫

V dVϕ
g′m2
lm2

(r)U
(2),gm2
2, j;lm2

(r)
]

f or j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσs,l≥1; lm2 = 1, . . . , ISCT,

(138)

where the momentsϕ
g′m2
lm2

(r), ξ
(1),gm2
lm2

(r), U
(2),g′m2
1, j;lm2

(r) and U
(2),gm2
2, j;lm2

(r) have been defined in Equations (82),

(83), (86) and (87), respectively.

7.2. Alternative Path: Computing the Second-Order Sensitivities ∂2L(ααα)/∂σσσs∂ννν

Due to the symmetry of the mixed 2nd-order sensitivities, the results computed using Equations
(136) and (138) for ∂2L(α)/∂ν∂σs can be verified by computing the expressions of the sensitivities
∂2L(α)/∂σs∂ν, which also requires separate consideration of the zeroth-order scattering cross sections.
The two cases involved are as follows:

(1)
(

∂2L
∂s j∂ fm2

)
(s=σs,l=0, f=ν)

, j = 1, . . . , Jσs,l=0; m2 = Jσ f + 1, . . . , Jσ f + Jν, where the quantities s j refer to

the parameters underlying the 0th-order scattering cross sections, while the quantities fm2 refer to
the parameters underlying the average number of neutrons per fission;

(2)
(

∂2L
∂s j∂ fm2

)
(s=σs,l≥1, f=ν)

, j = 1, . . . , Js,l≥1; m2 = Jσ f + 1, . . . , Jσ f + Jν, where the quantities s j refer to

the parameters underlying the lth -order (l ≥ 1) scattering cross sections, and the quantities fm2

refer to the parameters underlying the average number of neutrons per fission.

7.2.1. Second-Order Sensitivities
(

∂2L
∂s j∂ fm2

)
(s=σs,l=0, f=ν)

The equations needed for deriving the expression of the 2nd-order mixed sensitivities(
∂2L/∂s j∂ fm2

)
(s=σs,l=0, f=ν)

are obtained by particularizing Equations (160) and (169) in [5] to the PERP

benchmark. Particularizing Equation (169) in [5] to the PERP benchmark yields the following expression:(
∂2L

∂s j∂ fm2

)(1)
(s=σs,l=0, f=ν)

=
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
1, j (r, Ω′)

∂
[
(νΣ f )

g]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg′ψ(1),g′

(
r,Ω

′
)

+
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
2, j (r, Ω′)

G∑
g′=1

∫
4π dΩ′ϕg′

(
r,Ω

′
)
χg

∂
[
(νΣ f )

g′
]

∂ fm2
,

f or j = 1, . . . , Jσs,l=0; m2 = Jσ f + 1, . . . , Jσ f + Jν,

(139)

where the 2nd-level adjoint functions, θ(2),g1, j (r, Ω′) and θ(2),g2, j (r, Ω′), j = 1, . . . , Jσs; g = 1, . . . , G, are the
solutions of the 2nd-Level Adjoint Sensitivity System (2nd-LASS) presented in Equations (46), (48), (51)
and (52) of Part II [2], which have been reproduced previously in Equations (89)–(92).
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In Equation (139), the parameters indexed by s j correspond to the 0th-order scattering cross

sections, so that s j ≡ σ
g′ j→g j

s,l j=0,i j
, while the parameters indexed by fm2 correspond to the average number

of neutrons per fission, so that fm2 ≡ ν
gm2
im2

. Inserting the results obtained in Equations (121) and (122)

into Equation (139), yields the following simplified expression for Equation (139):

(
∂2L

∂s j∂ fm2

)(1)
(s=σs,l=0, f=ν)

= Nim2 ,mm2
σ

gm2
f ,im2

∫
V dV

Θ(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgΘ(2),g
2, j;0 (r)

, (140)

where the 0th-order moments Θ
(2),gm2
1, j;0 (r) and Θ(2),g

2, j;0 (r) have been previously defined in Equations (94)
and (95), respectively.

The contributions stemming from Equation (160) in [5] takes on the following particular form:

(
∂2L

∂s j∂ fm2

)(2)
(s=σs,l=0, f=ν)

=
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω′)

G∑
g′=1

∫
4π dΩ′ϕg′

(
r,Ω

′
)
χg

∂
[
(νΣ f )

g′
]

∂ fm2

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
1, j (r, Ω′)

∂
[
(νΣ f )

g]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg′ψ(1),g′

(
r,Ω

′
)
,

f or j = 1, . . . , Jσs,l=0; m2 = Jσ f + 1, . . . , Jσ f + Jν,

(141)

where the 2nd-level adjoint functions ψ(2),g
1, j (r, Ω′) and ψ(2),g

2, j (r, Ω′), j = 1, . . . , Jσs,l=0; g = 1, . . . , G are
the solutions of the 2nd-Level Adjoint Sensitivity System (2nd-LASS) presented in Equations (30), (32),
(36) and (37) of Part II [2], which were reproduced previously in Equations (97)–(100), respectively.

Inserting the results obtained in Equations (121) and (122) into Equation (141), yields the following
simplified expression for Equation (141):

(
∂2L

∂s j∂ fm2

)(2)
(s=σs,l=0, f=ν)

= Nim2 ,mm2
σ

gm2
f ,im2

∫
V dV

ξ(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgξ
(2),g
2, j;0 (r)

,
f or j = 1, . . . , Jσs,l=0; m2 = Jσ f + 1, . . . , Jσ f + Jν,

(142)

Collecting the partial contributions obtained in Equations (140) and (142), yields the following
result:(

∂2L
∂s j∂ fm2

)
(s=σs,l=0, f=ν)

=
2∑

i=1

(
∂2L

∂s j∂ fm2

)(i)
(s=σs,l=0, f=ν)

= Nim2 ,mm2
σ

gm2
f ,im2

∫
V dV

[Θ(2),gm2
1, j;0 (r) + ξ

(2),gm2
1, j;0 (r)

] G∑
g′=1

χg′ξ
(1),g′

0 (r) +ϕ
gm2
0 (r)

G∑
g=1

χg
[
Θ(2),g

2, j;0 (r) + ξ
(2),g
2, j;0 (r)

],

f or j = 1, . . . , Jσs,l=0; m2 = Jσ f + 1, . . . , Jσ f + Jν.

(143)

7.2.2. Second-Order Sensitivities
(

∂2L
∂s j∂ fm2

)
(s=σs,l≥1, f=ν)

For this case, the parameters s j correspond to the lth-order (l ≥ 1) scattering cross sections, denoted

as s j ≡ σ
g j
′
→g j

s,l j,i j
, while the parameters fm2 correspond to the average number of neutrons per fission,

denoted as fm2 ≡ ν
gm2
im2

, neither of them contribute to the total cross sections. Therefore, the expression of(
∂2L/∂s j∂ fm2

)
(s=σs, l≥1, f=ν)

is obtained by particularizing Equation (169) in [5] to the PERP benchmark,

which yields,

(
∂2L

∂s j∂ fm2

)
(s=σs, l≥1, f=ν)

=
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
1, j (r, Ω)

∂
[
(νΣ f )

g]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg′ψ(1),g′(r, Ω′)

+
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂
[
(νΣ f )

g′
]

∂ fm2
,

f or j = 1, . . . , Jσs,l≥1; m2 = Jσ f + 1, . . . , Jσ f + Jν.

(144)
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Inserting the results obtained in Equations (121) and (122) into Equation (144) yields the
following expression:

(
∂2L

∂s j∂ fm2

)
(s=σs, l≥1, f=ν)

= Nim2 ,mm2
σ

gm2
f ,im2

∫
V dV

Θ(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) +φ
gm2
0 (r)

G∑
g=1

χgΘ(2),g
2, j;0 (r)

,
f or j = 1, . . . , Jσs,l≥1; m2 = Jσ f + 1, . . . , Jσ f + Jν.

(145)

7.3. Numerical Results for ∂2L(ααα)/∂ννν∂σσσs

The second-order absolute sensitivities, ∂2L(α)/∂ν∂σs for the PERP benchmark, have been
computed using Equations (136) and (138), and have been verified by computing ∂2L(α)/∂σs∂ν using
Equations (143) and (145). Similar to the computation of ∂2L(α)/∂σ f∂σs as shown in Section 4.3,
computing the second-order sensitivities ∂2L(α)/∂ν∂σs using Equations (136) and (138) requires a
total of 120 forward and adjoint PARTISN computations to obtain all the adjoint functions to compute
the 2nd-order sensitivities ∂2L(α)/∂ν∂σs.

On the other hand, computing the alternative expression ∂2L(α)/∂σs∂ν using Equations (143) and
(145) would require 7101 forward and adjoint PARTISN computations to obtain the adjoint functions

θ
(2),g
1, j (r, Ω) and θ(2),g2, j (r, Ω), j = 1, . . . , Jσs; g = 1, . . . , G. As has been explained in Section 4.3, the reason

for needing “only” 7101, instead of Jσs = 21600, PARTISN computations is that all of the up-scattering
and some of the down-scattering cross sections are zero for the PERP benchmark. Thus, computing
∂2L(α)/∂ν∂σs using Equations (136) and (138) is about 60(≈ 7101/120) times more efficient than
computing ∂2L(α)/∂σs∂ν by using Equations (143) and (145).

The matrix ∂2L/∂ f j∂sm2 , j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσ f ; has dimensions Jν × Jσs (=

60 × 21, 600). The matrix of 2nd-order relative sensitivities corresponding to ∂2L/∂ f j∂sm2 , j = Jσ f +

1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσ f ;, denoted as S(2)
(
ν

g
i , σg′→h

s,l,k

)
, is defined as follows:

S(2)
(
ν

g
i , σg′→h

s,l,k

)
,

∂2L

∂ν
g
i ∂σ

g′→h
s,l,k

ν
g
i σ

g′→h
s,l,k

L

, l = 0, . . . , 3; i = 1, 2; k = 1, . . . , 6; g, g′, h = 1, . . . , 30. (146)

To facilitate the presentation and interpretation of the numerical results, the Jν × Jσs (= 60× 21600)

matrix S(2)
(
ν

g
i , σg′→h

s,l,k

)
has been partitioned into N f × I × (ISCT + 1) = 2× 6× 4 submatrices, each of

dimensions G × (G ·G) = 30 × 900. The results for scattering orders l = 0, l = 1, l = 2, and l = 3,
respectively, are summarized below, in Sections 7.3.1–7.3.4.

7.3.1. Results for the Relative Sensitivities S(2)
(
ν

g
i , σg′→h

s,l=0,k

)
Table 21 presents the results for 2nd-order relative sensitivities S(2)

(
ν

g
i , σg′→h

s,l=0,k

)
,(

∂2L/∂νg
i ∂σ

g′→h
s,l=0,k

)(
ν

g
i σ

g′→h
s,l=0,k/L

)
, i = 1, 2; k = 1, . . . , 6; g, g′, h = 1, . . . , 30 of the leakage response

with respect to the average number of neutrons per fission and the 0th-order scattering cross
sections for all isotopes. All of these 2nd-order relative sensitivities are smaller than 1.0. For

the 2nd-order mixed sensitivities S(2)
(
ν

g
i , σg′→h

s,l=0,k

)
, the values can be positive or negative, but there

are more positive values than negative ones. For example, the submatrix S(2)
(
ν

g
1 , σg′→h

s,l= 0,1

)
, having

dimensions G× (G ·G) = 30× 900, comprises 7601 positive elements, 2539 negative elements, while
the remaining elements are zero. The largest absolute values of the mixed 2nd-order sensitivities in
the submatrices all involve the 12th energy group of νg

i for isotopes 239Pu or 240Pu, and (mostly) the
0th-order self-scattering cross sections in the 12th energy group of isotopes239Pu, 240Pu, 69Ga, 71Ga
andC, or (occasionally) the 0th-order out-scattering cross section σ16→17

s,l= 0,k=6 of isotope 1H. All of the
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largest elements in the respective sub-matrix are positive, and the vast majority of them are very small.

The overall largest element in the matrix S(2)
(
ν

g
i , σg′→h

s,l=0,k

)
is S(2)

(
ν

g=12
1 , σ12→12

s,l= 0,k=1

)
= 4.65× 10−1.

Table 21. Summary presentation of the matrix S(2)
(
ν

g
i , σg′→h

s,l=0,k

)
.

Isotopes k=1 (239Pu) k=2 (240Pu) k=3 (69Ga) k=4 (71Ga) k=5 (C) k=6 (1H)

i = 1 (239Pu)

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 0,1


Max. value =

4.65× 10−1

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 0,2


Max. value =

3.08× 10−2

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 0,3


Max. value =

1.78× 10−3

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 0,4


Max. value =

1.14× 10−3

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 0,5


Max. value =

1.98× 10−1

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 0,6


Max. value =

3.18× 10−1

at g = 12, g′ = 16
→ h = 17

i = 2 (240Pu)

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 0,1


Max. value =

2.42× 10−2

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 0,2


Max. value =

1.60× 10−3

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 0,3


Max. value =

9.25× 10−5

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 0,4


Max. value =

5.94× 10−5

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 0,5


Max. value =

1.03× 10−2

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 0,6


Max. value =

1.65× 10−2

at g = 12, g′ = 16
→ h = 17

7.3.2. Results for the Relative Sensitivities S(2)
(
ν

g
i , σg′→h

s,l=1,k

)
Table 22 summarizes the results for 2nd-order mixed relative sensitivities S(2)

(
ν

g
i , σg′→h

s,l=1,k

)
,(

∂2L/∂νg
i ∂σ

g′→h
s,l=1,k

)(
ν

g
i σ

g′→h
s,l=1,k/L

)
, l = 1; i = 1, 2; k = 1, . . . , 6; g, g′, h = 1, . . . , 30 of the leakage response

with respect to the average number of neutrons per fission and the 1st-order scattering cross sections
for all isotopes. Most of these 2nd-order mixed sensitivities are zero; the non-zero ones are mostly

negative. For example, the submatrix S(2)
(
ν

g
1 , σg′→h

s,l= 1,k=1

)
, having dimensions G× (G ·G) = 30× 900,

comprises 7918 elements with negative values, 2222 elements with positive values, while the remaining
elements are zero. As shown in Table 22, the largest absolute values of the mixed 2nd-order sensitivities
in the submatrices involve the 12th energy group of νg

i for isotopes 239Pu or 240Pu, and (mostly) the
1st-order self-scattering cross sections for the 12th energy group of isotopes239Pu, 240Pu, 69Ga, C and1H,
or (occasionally) the 1st-order self-scattering cross sections for the 7th energy group of isotope 71Ga.
All of the largest (in absolute value) elements are negative, and the vast majority of them are very small.

The overall most negative value in the matrix S(2)
(
ν

g
1 , σg′→h

s,l= 1,k

)
is S(2)

(
ν

g=12
1 , σ12→12

s,l= 1,k=6

)
= −2.64× 10−1.

Table 22. Summary presentation of the matrix S(2)
(
ν

g
i , σg′→h

s,l=1,k

)
.

Isotopes k=1 (239Pu) k=2 (240Pu) k=3 (69Ga) k=4 (71Ga) k=5 (C) k=6 (1H)

i = 1 (239Pu)

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 1,1


Min. value =
−2.37× 10−1

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 1,2


Min. value =
−1.48× 10−2

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 1,3


Min. value =
−4.88× 10−4

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 1,4


Min. value =
−2.78× 10−4

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 1,5


Min. value =
−8.40× 10−2

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 1,6


Min. value =
−2.64× 10−1

at g = 12, g′ = 12
→ h = 12

i = 2 (240Pu)

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 1,1


Min. value =
−1.23× 10−2

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 1,2


Min. value =
−7.70× 10−4

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 1,3


Min. value =
−2.54× 10−5

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 1,4


Min. value =
−1.50× 10−5

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 1,5


Min. value =
−4.37× 10−3

at g = 12, g′ = 12
→ h = 12

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 1,6


Min. value =
−1.37× 10−2

at g = 12, g′ = 12
→ h = 12

7.3.3. Results for the Relative Sensitivities S(2)
(
ν

g
i , σg′→h

s,l=2,k

)
Table 23 presents the results for 2nd-order mixed relative sensitivities S(2)

(
ν

g
i , σg′→h

s,l=2,k

)
,(

∂2L/∂νg
i ∂σ

g′→h
s,l=2,k

)(
ν

g
i σ

g′→h
s,l=2,k/L

)
, l = 2; i = 1, 2; k = 1, . . . , 6; g, g′, h = 1, . . . , 30, of the leakage response
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with respect to the average number of neutrons per fission and the 2nd-order scattering cross sections

for all isotopes. Most of the non-zero elements of S(2)
(
ν

g
i , σg′→h

s,l=2,k

)
are positive. For example, the

submatrix S(2)
(
ν

g
i=1, σg′→h

s,l=2,k=1

)
, having dimensions G × (G ·G) = 30 × 900, comprises 6439 positive

elements, 3701 negative elements, while the remaining elements are zero. As shown in Table 23, all
of the largest absolute values of the mixed 2nd-order sensitivities involve νg=12

i , i = 1, 2 for the 12th
energy group or the 7th energy group of isotopes 239Pu or240Pu, and (most of the time) involve either
the 2nd-order self-scattering cross sections σ7→7

s,l=2,k, k = 1, . . . , 5 for the 7th energy group of isotopes
239Pu, 240Pu, 69Ga, 71Ga and C or (occasionally) the 2nd-order self-scattering cross sections σ12→12

s,l=2,i=6 for

the 12th energy group of isotope1H. As shown in Table 23, all of the largest elements in the respective
sub-matrix are positive, and the vast majority of them are very small. The overall largest element in

the matrix S(2)
(
ν

g
i , σg′→h

s,l=2,k

)
is S(2)

(
ν

g=12
1 , σ12→12

s,l= 2,k=6

)
= 9.03× 10−2.

Table 23. Summary presentation of the matrix S(2)
(
ν

g
i , σg′→h

s,l=2,k

)
.

Isotopes k=1 (239Pu) k=2 (240Pu) k=3 (69Ga) k=4 (71Ga) k=5 (C) k=6 (1H)

i = 1 (239Pu)

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 2,1


Max. value =

1.35× 10−2

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 2,2


Max. value =

8.24× 10−4

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 2,3


Max. value =

2.47× 10−5

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 2,4


Max. value =

1.53× 10−5

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 2,5


Max. value =

1.86× 10−2

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 2,6


Max. value =

9.03× 10−2

at g = 12, g′ = 12
→ h = 12

i = 2 (240Pu)

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 2,1


Max. value =

7.16× 10−4

at g = 7, g′ = 7→
h = 7

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 2,2


Max. value =

4.38× 10−5

at g = 7, g′ = 7→
h = 7

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 2,3


Max. value =

1.31× 10−6

at g = 7, g′ = 7→
h = 7

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 2,4


Max. value =

8.16× 10−7

at g = 7, g′ = 7→
h = 7

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 2,5


Max. value =

9.85× 10−4

at g = 7, g′ = 7→
h = 7

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 2,6


Max. value =

4.70× 10−3

at g = 12, g′ = 12
→ h = 12

7.3.4. Results for the Relative Sensitivities S(2)
(
ν

g
i , σg′→h

s,l=3,k

)
Table 24 presents the results for 2nd-order mixed relative sensitivities S(2)

(
ν

g
i , σg′→h

s,l=3,k

)
,(

∂2L/∂νg
i ∂σ

g′→h
s,l=3,k

)(
ν

g
i σ

g′→h
s,l=3,k/L

)
, l = 3; i = 1, 2; k = 1, . . . , 6; g, g′, h = 1, . . . , 30, of the leakage response

with respect to the average number of neutrons per fission and the 3rd-order scattering cross sections

for all isotopes. Most of the elements of S(2)
(
ν

g
i , σg′→h

s,l=3,k

)
are zero; the non-zero elements are very small,

and the negative ones slightly outnumber the positive ones. For example, the G× (G ·G) = 30× 900

-dimensional submatrix S(2)
(
ν

g
i=1, σg′→h

s,l=3,k=1

)
comprises 5375 negative elements, 4735 positive elements,

while the remaining ones are zero. As shown in Table 24, the mixed 2nd-order sensitivities having the
largest absolute values involve νg=12

i , i = 1, 2 for the 12th energy group or (occasionally) the 7th energy
group of isotopes 239Pu or240Pu, and the 3rd-order self-scattering cross sections σ7→7

s,l=3,k, k = 1, . . . , 5

for the 7th energy group of isotopes239Pu, 240Pu, 69Ga, 71Ga and C, or (occasionally) the 3rd-order
self-scattering cross sections σ12→12

s,l=3,i=6 for the 12th energy group of isotope 1H. The overall largest (in

absolute value) element of the matrix S(2)
(
ν

g
i , σg′→h

s,l=3,k

)
is S(2)

(
ν

g=12
1 , σ12→12

s,l= 3,k=6

)
= −1.94× 10−2.
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Table 24. Summary presentation of the matrix S(2)
(
ν

g
i , σg′→h

s,l=3,k

)
.

Isotopes k=1 (239Pu) k=2 (240Pu) k=3 (69Ga) k=4 (71Ga) k=5 (C) k=6 (1H)

i = 1 (239Pu)

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 3,1


Min. value =
−2.08× 10−5

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 3,2


Min. value =
−1.28× 10−6

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 3,3


Min. value =
−3.64× 10−8

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 3,4


Min. value =
−2.28× 10−8

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 3,5


Min. value =
−4.66× 10−3

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
1 ,

σ
g′→h
s,l= 3,6


Min. value =
−1.94× 10−2

at g = 12, g′ = 12
→ h = 12

i = 2 (240Pu)

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 3,1


Min. value =
−1.08× 10−6

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 3,2


Min. value =
−6.67× 10−8

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 3,3


Min. value =
−1.89× 10−9

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 3,4


Min. value =
−1.19× 10−9

at g = 12, g′ = 7
→ h = 7

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 3,5


Min. value =
−2.59× 10−4

at g = 7, g′ = 7→
h = 7

S(2)

 ν
g
2 ,

σ
g′→h
s,l= 3,6


Min. value =
−1.01× 10−3

at g = 12, g′ = 12
→ h = 12

8. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Parameters Underlying the Average Number of Neutrons per Fission and Fission Cross Sections

This Section presents the computation and analysis of the numerical results for the 2nd-order mixed
sensitivities ∂2L(α)/∂ν∂σ f of the leakage response with respect to the average number of neutrons
per fission and fission microscopic cross sections of all isotopes of the PERP benchmark. Likewise,
the numerical values of the 2nd-order mixed sensitivities ∂2L(α)/∂ν∂σ f can also be computed by
using the alternative expression for ∂2L(α)/∂σ f∂ν. The formulas for computing the 2nd-order mixed
sensitivities ∂2L(α)/∂ν∂σ f are presented in Section 8.1, while the formulas for computing, alternatively,
the expressions for ∂2L(α)/∂σ f∂ν are presented in Section 8.2.

8.1. Computing the Second-Order Sensitivities ∂2L(ααα)/∂ννν∂σσσ f

The equations needed for deriving the expression of the 2nd-order sensitivities ∂2L(α)/∂ν∂σ f
are obtained by particularizing Equations (177) and (179) in [5] to the PERP benchmark and adding
their respective contributions. The expression obtained by particularizing Equation (179) in [5] takes
on the following form:

(
∂2L

∂ f j∂ fm2

)(1)
( f=ν, f=σ f )

=
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)

G∑
g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂2
[
(νΣ f )

g′
]

∂ f j∂ fm2

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

1, j (r, Ω)
∂
[
(νΣ f )

g]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg′ψ(1),g′(r, Ω′)

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

2, j (r, Ω)
G∑

g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂
[
(νΣ f )

g′
]

∂ fm2
,

f or j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσ f .

(147)

The parameters f j and tm2 in Equation (147) correspond to the average number of neutrons per

fission and fission cross sections, and are therefore denoted as f j ≡ ν
g j

i j
and fm2 ≡ σ

gm2
f ,im2

, respectively.

Noting that

∂2
[(
νΣ f

)g′
]

∂ f j∂ fm2

=

∂


∂

M∑
m=1

I∑
i=1

Ni,m(νσ f )
g′

i

∂ν
gj
i j


∂σ

gm2
f ,im2

=
∂
[
δg j g′Ni j,m jσ

g′

f ,i j

]
∂σ

gm2
f ,im2

= δi jim2
δg j g′δgm2 g′Nim2 ,mm2

, (148)
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and inserting the results obtained in Equations (148), (23) and (24) into Equation (147), yields the
following simplified expression for Equation (147):(

∂2L
∂ f j∂ fm2

)(1)
( f=ν, f=σ f )

= δi jim2
δg j gm2

Nim2 ,mm2

∫
V dVϕ

gm2
0 (r)

G∑
g=1

χgξ
(1),g
0 (r)

+Nim2 ,mm2
ν

gm2
im2

∫
V dV

U(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) +ϕ
gm2
0 (r)

G∑
g=1

χgU(2),g
2, j;0 (r)

,
f or j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσ f .

(149)

The contributions stemming from Equation (177) in [5], in conjunction with the relations ∂Σt
g

∂tm2
=

∂Σt
g

∂tm2

∂tm2
∂ fm2

= ∂Σt
g

∂ fm2
, take on the following particular form:

(
∂2L

∂ f j∂ fm2

)(2)
( f=ν, f=σ f )

= −
G∑

g=1

∫
V dV

∫
4π dΩ

[
u(2),g

1, j (r, Ω)ψ(1),g(r, Ω) + u(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g

∂ fm2
,

f or j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσ f .
(150)

Inserting the results obtained in Equation (37) into Equation (150), yields the following simplified
expression for Equation (150):

(
∂2L

∂ f j∂ fm2

)(2)
( f=ν, f=σ f )

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
u
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) + u

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
, (151)

Collecting the partial contributions obtained in Equations (149) and(151), yields the following
final expression:(

∂2L
∂ f j∂ fm2

)
( f=ν, f=σ f )

=
2∑

i=1

(
∂2L

∂ f j∂ fm2

)(1)
( f=ν, f=σ f )

= δi jim2
δg j gm2

Nim2 ,mm2

∫
V dVϕ

gm2
0 (r)

G∑
g=1

χgξ
(1),g
0 (r)

+Nim2 ,mm2
ν

gm2
im2

∫
V dV

U(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) +ϕ
gm2
0 (r)

G∑
g=1

χgU(2),g
2, j;0 (r)


−Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
u
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) + u

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
,

f or j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσ f .

(152)

8.2. Alternative Path: Computing the Second-Order Sensitivities ∂2L(ααα)/∂σσσ f∂ννν

The equations needed for deriving the expression of the 2nd-order sensitivities ∂2L(α)/∂σ f∂ν are
obtained by particularizing Equations (160) and (179) in [5] to the PERP benchmark. The expression
obtained by particularizing Equation (179) in [5] to the PERP benchmark, takes on the following form:

(
∂2L

∂ f j∂ fm2

)(1)
( f=σ f , f=ν)

=
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)

G∑
g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂2
[
(νΣ f )

g′
]

∂ f j∂ fm2

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

1, j (r, Ω)
∂
[
(νΣ f )

g]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg′ψ(1),g′(r, Ω′)

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

2, j (r, Ω)
G∑

g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂
[
(νΣ f )

g′
]

∂ fm2
,

f or j = 1, . . . , Jσ f ; m2 = Jσ f + 1, . . . , Jσ f + Jν.

(153)
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In Equation (153), the 2nd-level adjoint functions u(2),g
1, j (r, Ω), and u(2),g

2, j (r, Ω), j = 1, . . . , Jσ f ;
g = 1, . . . , G, are the solutions of the 2nd-Level Adjoint Sensitivity System (2nd-LASS) presented in
Equations (18)–(21) in Section 2.2.

The parameters f j and tm2 in Equation (153) correspond to the fission cross sections and the average

number of neutrons per fission, and are therefore denoted as f j ≡ σ
g j

f ,i j
and fm2 ≡ ν

gm2
im2

, respectively.

Noting that,

∂2
[(
νΣ f

)g′
]

∂ f j∂ fm2

=

∂


∂

M∑
m=1

I∑
i=1

Ni,m(νσ f )
g′

i

∂σ
gj
f ,i j


∂ν

gm2
im2

=
∂
[
δg j g′Ni j,m jν

g′

i j

]
∂ν

gm2
im2

= δi jim2
δg j g′δgm2 g′Nim2 ,mm2

, (154)

and inserting the results obtained in Equations (120), (121) and (154) into Equation (153), yields the
following simplified expression for Equation (153):(

∂2L
∂ f j∂ fm2

)(1)
( f=σ f , f=ν)

= δi jim2
δg j gm2

Nim2 ,mm2

∫
V dVϕ

gm2
0 (r)

G∑
g=1

χgξ
(1),g
0 (r)

+Nim2 ,mm2
σ

gm2
f ,im2

∫
V dV

U(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) +ϕ
gm2
0 (r)

G∑
g=1

χgU(2),g
2, j;0 (r)

,
f or j = 1, . . . , Jσ f ; m2 = Jσ f + 1, . . . , Jσ f + Jν.

(155)

The contributions stemming from Equation (160) in [5], in conjunction with the relations
∂2L

∂t j∂ fm2

∂t j
∂ f j

= ∂2L
∂ f j∂ fm2

, yield the following particular form for these contributions:

(
∂2L

∂ f j∂ fm2

)(2)
( f=σ f , f=ν)

=
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
1, j (r, Ω)

∂
[
(νΣ f )

g]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg′ψ(1),g′(r, Ω′)

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg

∂
[
(νΣ f )

g′
]

∂ fm2
,

f or j = 1, . . . , Jσ f ; m2 = Jσ f + 1, . . . , Jσ f + Jν,

(156)

where the 2nd-level adjoint functions ψ(2),g
1, j (r, Ω), and ψ(2),g

2, j (r, Ω), j = 1, . . . , Jσ f ; g = 1, . . . , G, are the
solutions of the 2nd-Level Adjoint Sensitivity System (2nd-LASS) presented in Equations (33), (35), (39)
and (40) in Section 2.2.

Inserting the results obtained in Equations (120) and (121) into Equation (156) and performing the
respective angular integrations yields the following simplified expression for Equation (156):

(
∂2L

∂ f j∂ fm2

)(2)
( f=σ f , f=ν)

= Nim2 ,mm2
σ

gm2
f ,im2

∫
V dV

ξ(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgξ
(2),g
2, j;0 (r)

, (157)
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Collecting the partial contributions obtained in Equations (155) and (157), yields the following
final expression:(

∂2L
∂ f j∂ fm2

)
( f=σ f , f=ν)

=
2∑

i=1

(
∂2L

∂ f j∂ fm2

)(i)
( f=σ f , f=ν)

= δi jim2
δg j gm2

Nim2 ,mm2

∫
V dVϕ

gm2
0 (r)

G∑
g=1

χgξ
(1),g
0 (r)

+Nim2 ,mm2
σ

gm2
f ,im2

∫
V dV

U(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgU(2),g
2, j;0 (r)

+ξ
(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) + ϕ
gm2
0 (r)

G∑
g=1

χgξ
(2),g
2, j;0 (r)

,
f or j = 1, . . . , Jσ f ; m2 = Jσ f + 1, . . . , Jσ f + Jν.

(158)

8.3. Numerical Results for ∂2L(ααα)/∂ννν∂σσσ f

The second-order absolute sensitivities, ∂2L(α)/∂ν∂σ f , of the leakage response with respect
to the average number of neutrons per fission and fission cross sections for all isotopes of the
PERP benchmark have been computed using Equation (152), and have been independently verified
by computing ∂2L(α)/∂σ f∂ν using Equation (158). For this case, computing ∂2L(α)/∂ν∂σ f using
Equation (152) is as efficient as computing ∂2L(α)/∂σ f∂νusing Equation (158) since either path requires
120 forward and adjoint PARTISN computations to obtain all the needed 2nd-level adjoint functions.

The matrix
(
∂2L/∂ f j∂ fm2

)
( f=ν, f=σ f )

, j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, . . . , Jσ f of 2nd-order absolute

sensitivities has dimensions Jν × Jσ f (= 60 × 60), since Jσ f = Jν = G ×N f = 60. For convenient
comparisons, the numerical results presented in this section are presented in unit-less values of
the relative sensitivities that correspond to

(
∂2L/∂ f j∂ fm2

)
( f=ν, f=σ f )

, j = Jσ f + 1, . . . , Jσ f + Jν; m2 =

1, . . . , Jσ f , which are denoted as S(2)
(
ν

g
i , σg′

f ,k

)
and are defined as follows:

S(2)
(
ν

g
i , σg′

f ,k

)
,

∂2L

∂ν
g
i ∂σ

g′

f ,k

ν
g
i σ

g′

f ,k

L

, i, k = 1, 2; g, g′ = 1, . . . , 30. (159)

The numerical results obtained for the matrix S(2)
(
ν

g
i , σg′

f ,k

)
, i, k = 1, 2; g, g′ = 1, . . . , 30 have been

partitioned into N f ×N f = 4 submatrices, each of dimensions G×G(= 30× 30). The summary of the
main features of each submatrix is presented in Table 25.

Table 25. Summary presentation of the matrix S(2)
(
ν

g
i , σg′

f ,k

)
, i, k = 1, 2; g, g′ = 1, . . . , 30.

Isotopes k=1 (239Pu) k=2 (240Pu)

i = 1 (239Pu)
S(2)

(
ν

g
i=1, σg′

f ,k=1

)
28 elements with absolute

values > 1.0

S(2)
(
ν

g
i=1, σg′

f ,k=2

)
Max. value = 1.04× 10−1

at g = 12, g′ = 12

i = 2 (240Pu)
S(2)

(
ν

g
i=2, σg′

f ,k=1

)
Max. value = 1.05× 10−1

at g = 12, g′ = 12

S(2)
(
ν

g
i=2, σg′

f ,k=2

)
Max. value = 6.86× 10−2

at g = 12, g′ = 12

The 2nd-order mixed sensitivities ∂2L(α)/∂ν∂σ f are mostly positive. Among the Jν × Jσ f (=

60× 60) elements in the matrix S(2)
(
ν

g
i , σg′

f ,k

)
, i, k = 1, 2; g, g′ = 1, . . . , 30, 3557 out of 3600 elements

have positive values, and most of them are very small; however, 28 out of these 3600 elements
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have large relative sensitivities, with values greater than 1.0, as noted inTable 25. All of these larger

sensitivities reside in the sub-matrix S(2)
(
ν

g
i=1, σg′

f ,k=1

)
, and relate to the fission parameters for isotope

239Pu. The overall maximum relative sensitivity is S(2)
(
ν12

1 , σ12
f ,1

)
= 3.225. Additional details about the

sub-matrix S(2)
(
ν

g
i=1, σg′

f ,k=1

)
are provided in the following section. The results in Table 25 also indicate

that all of the mixed 2nd-order relative sensitivities involving the fission parameters (either νg
i=2 or

σ
g′

f ,k=2) of isotope 240Pu have absolute values smaller than 1.0. Moreover, as shown in this table, the
elements with the maximum absolute value in each of the respective submatrices all involve the fission
parameters for the 12th energy group (i.e., νg=12

i , i = 1, 2 or σg′=12
f ,k , k = 1, 2) of isotopes 239Pu and 240Pu.

The numerical results for the elements of the submatrix S(2)
(
ν

g
i=1, σg′

f ,k=1

)
,(

∂2L/∂νg
i=1∂σ

g′

f ,k=1

)(
ν

g
i=1σ

g′

f ,k=1/L
)
, g, g′ = 1, . . . , 30, of 2nd-order mixed relative sensitivities of the

leakage response with respect to the average number of neutrons per fission and fission cross sections
of isotope 239Pu, indicate that the majority (899 out of 900) of the elements of this submatrix have
positive 2nd-order relative sensitivities; only 1 element is negative. Table 26 presents the 28 elements

(in bold) of S(2)
(
ν

g
i=1, σg′

f ,k=1

)
, g, g′ = 1, . . . , 30 which have values greater than 1.0. The largest value

among these sensitivities is attained by the relative 2nd-order mixed sensitivity S(2)
(
ν12

1 , σ12
f ,1

)
= 3.225.

Table 26. Components of S(2)
(
ν

g
i=1, σg′

f ,k=1

)
, g, g′ = 1, . . . , 30 having values greater than 1.0.

Groups g′ = 6 7 8 9 10 11 12 13 14

g = 6 0.188 0.210 0.175 0.210 0.218 0.203 0.314 0.218 0.140
7 0.207 1.587 0.779 0.936 0.973 0.904 1.401 0.971 0.625
8 0.179 0.801 1.227 0.804 0.836 0.776 1.203 0.834 0.537
9 0.217 0.974 0.807 1.649 1.015 0.943 1.462 1.013 0.652

10 0.228 1.023 0.850 1.018 1.767 0.990 1.534 1.063 0.684
11 0.212 0.953 0.793 0.952 0.986 1.577 1.430 0.991 0.638
12 0.328 1.470 1.223 1.469 1.527 1.414 3.225 1.530 0.985
13 0.229 1.025 0.853 1.024 1.064 0.989 1.528 1.777 0.688
14 0.150 0.671 0.558 0.670 0.697 0.647 1.002 0.691 0.910
15 0.087 0.388 0.323 0.388 0.403 0.374 0.579 0.400 0.255

9. Quantification of Uncertainties in the PERP Leakage Response Due to Uncertainties in Fission
Cross Sections

Correlations between the group-averaged microscopic fission cross sections or correlations
between these cross sections and other cross sections are not available for the PERP benchmark.
When such correlations are unavailable, the maximum entropy principle (see, e.g., [9]) indicates that
neglecting them minimizes the inadvertent introduction of spurious information into the computations
of the various moments of the response’s distribution in parameter space. The formulas for computing
the expected value, variance and skewness of the response distribution by taking into account the
2nd-order response sensitivities together with the standard deviations of the group-averaged fission
microscopic cross sections parameter correlations are as follows:

1. The expected value, [E(L)] f , of the leakage response L(α) has the following expression:

[E(L)] f = L
(
α0

)
+ [E(L)](2,U)

f , (160)
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where the subscript “f” indicates contributions solely from the group-averaged uncorrelated fission
microscopic cross sections, and where the term [E(L)](2,U)

f , which provides the 2nd-order contributions,
is given by the following expression:

[E(L)](2,U)

f =
1
2

G∑
g=1

I∑
i=1

∂2L(α)

∂σ
g
f ,i∂σ

g
f ,i

(
sg

f ,i

)2
, G = 30, I = 6 (161)

In Equation (161), the quantity sg
f ,i denotes the standard deviation associated with the imprecisely

known model parameter σg
f ,i.

2. Taking into account contributions solely from the group-averaged uncorrelated and
normally-distributed microscopic fission cross sections (which will be indicated by using the superscript

“(U,N)” in the following equations), the expression for computing the variance, denoted as [var(L)](U,N)

f ,
of the PERP leakage response has the following form:

[var(L)](U,N)

f = [var (L)](1,U,N)

f + [var (L)](2,U,N)

f , (162)

where the first-order contribution term, [var (L)](1,U,N)

f , to the variance [var(L)](U,N)

f is defined as

[var (L)](1,U,N)

f ,
G∑

g=1

I∑
i=1

∂L(α)

∂σ
g
f ,i


2(

sg
f ,i

)2
, G = 30, I = 6, (163)

while the second-order contribution term, [var (L)](2,U,N)

f , to the variance [var(L)](U,N)

f is defined as

[var (L)](2,U,N)

f ,
1
2

G∑
g=1

I∑
i=1

 ∂2L(α)

∂σ
g
f ,i∂σ

g
f ,i

(
sg

f ,i

)2


2

, G = 30, I = 6. (164)

3. Taking into account contributions solely from the group-averaged uncorrelated
normally-distributed fission microscopic cross sections, the third-order moment, [µ3(L)]

(U,N)

f , of
the leakage response for the PERP benchmark takes on the following form:

[µ3(L)]
(U,N)

f = 3
G∑

g=1

I∑
i=1

∂L(α)

∂σ
g
f ,i


2
∂2L(α)

∂σ
g
f ,i∂σ

g
f ,i

(
sg

f ,i

)4
, G = 30, I = 6. (165)

As Equation (165) indicates, if the 2nd-order sensitivities were unavailable, the third moment
[µ3(L)]

(U,N)

f would vanish and the response distribution would by default be assumed to be Gaussian.

4. The skewness, [γ1(L)]
(U,N)

f , due to the variances of microscopic fission cross sections in the
leakage response, L, is defined as follows:

[γ1(L)]
(U,N)

f = [µ3(L)]
(U,N)

f /
{
[var(L)](U,N)

f

}3/2
(166)

The effects of the first- and, respectively, second-order sensitivities on the response’s expected
value, variance and skewness can be quantified by considering typical values for the standard deviations
for the uncorrelated group-averaged isotopic fission cross sections, using these values together with
the respective sensitivities computed in Section 2 in Equations (161)–(166). The results thus obtained
are presented in Table 27, considering uniform parameter standard deviations of 1%, 5%, and 10%,
respectively. These results indicate that the effects of both the 1st- and 2nd-order sensitivities on the
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expected response value, standard deviation and skewness are small, which is not surprising in view
of the small values for the 1st- and 2nd-order sensitivities already presented in Tables 2 and 3.

Table 27. Comparison of Response Moments Induced by Various Relative Standard Deviations
Assumed for the Parameters σg

f ,i, i = 1, 2; g = 1, . . . , 30.

Relative Standard Deviation 10% 5% 1%

[E(L)](2,U)
f 3.7191× 104 9.2976× 103 3.7191× 102

L
(
α0

)
1.7648× 106 1.7648× 106 1.7648× 106

[E(L)] f = L
(
α0

)
+ [E(L)](2,U)

f 1.8020× 106 1.7741× 106 1.7652× 106

[var (L)](1,U,N)
f 9.5932× 1010 2.3983× 1010 9.5932× 108

[var (L)](2,U,N)
f 5.4830× 108 3.4269× 107 5.4830× 104

[var(L)](U,N)
f = [var (L)](1,U,N)

f + [var (L)](2,U,N)
f 9.6480× 1010 2.4017× 1010 9.5938× 108

[µ3(L)]
(U,N)
f 3.5136× 1015 2.1960× 1014 3.5136× 1011

[γ1(L)]
(U,N)
f = [µ3(L)]

(U,N)
f /

{
[var(L)](U,N)

f

}3/2
0.1172 5.8999× 10−2 1.1824× 10−2

The relative effects of uncertainties in the fission cross sections can be compared to the
corresponding effects stemming from the total and, respectively, scattering cross sections, by considering
standard deviations of 10% for all of these cross sections and by comparing the corresponding results
shown in Table 27 with the corresponding results presented in Table 25 of Part I [1] and Table 19 of Part
II [2]. This comparison reveals that the following relations hold:

[E(L)](2,U)
s = −1.3473× 104 < [E(L)](2,U)

f = 3.7191× 104
� [E(L)](2,U)

t = 4.5980× 106,

[var (L)](1,U.N)
s = 1.2379× 1010 < [var (L)](1,U,N)

f = 9.5932× 1010
� [var (L)](1,U,N)

t = 3.4196× 1012,

[var (L)](2)s = 4.3207× 107
� [var (L)](2)f = 5.4830× 108

� [var (L)](2)t = 2.8789× 1013,∣∣∣∣[γ1(L)]
(U,N)
s

∣∣∣∣ = 3.5595× 10−3
� [γ1(L)]

(U,N)

f = 0.1172 < [γ1(L)]
(U,N)
t = 0.3407.

The above relations indicate that the contributions to the leakage response moments stemming
from the group-averaged uncorrelated microscopic fission cross sections are much smaller than the
corresponding contributions stemming from the group-averaged uncorrelated microscopic total cross
sections but are much greater than the corresponding contributions stemming from the group-averaged
uncorrelated microscopic scattering cross sections.

It is important to note that the results presented in Table 27 consider only the standard deviations
of the group-averaged microscopic fission cross sections, since correlations between these parameters
are unavailable. On the other hand, the results presented in Section 3 indicated that the largest values
are displayed by several mixed 2nd-order sensitivities of the leakage response with respect to the total
and fission cross sections, which are by several times larger than the values of the unmixed sensitivities.
Recall that the following sensitivities have absolute values larger than 1.0: (a) 11 elements of the

matrix S(2)
(
σ

g
f ,1, σg′

f ,1

)
, g, g′, h = 1, . . . , 30, presented in Table 4, in which only one of them is included

in the above computations; (b) 35 elements of the matrix S(2)
(
σ

g
f ,1, σg′

t,1

)
, g, g′, h = 1, . . . , 30, presented

in Table 5; (c) 1 elements of the matrix S(2)
(
σ

g
f ,1, σg′

t,5

)
, g, g′, h = 1, . . . , 30, as listed in Table 5; (d) 48
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elements of the matrix S(2)
(
σ

g
f ,1, σg′

t,6

)
, g, g′ = 1, . . . , 30, presented in Table 5. However, the effects of

these sensitivities on the uncertainties in the response distribution can be taken into account only if the
corresponding correlations among the various model parameters were available.

10. Uncertainties in the PERP Leakage Response Stemming from Uncertainties in the Average
Number of Neutrons per Fission

The correlations between the average number of neutrons per fission are unknown, so these
parameters will be assumed to be uncorrelated, since this assumption is the least biased, according
to the maximum entropy principle [9] in avoiding the introduction of spurious information in the
uncertainty quantification computations. Similar to those formulas presented in Section 9, upto
2nd-order response sensitivities, the expected value, [E(L)]ν, of the leakage response L(α) has the
following expression:

[E(L)]ν = L
(
α0

)
+ [E(L)](2,U)

ν , (167)

where the subscript “ν” and superscript “U” indicate contributions solely from the group-averaged
uncorrelated parameters underlying the average number of neutrons per fission, and where the term [E(L)](2,U)

ν ,
which provides the 2nd-order contributions, is given by the following expression:

[E(L)](2,U)
ν =

1
2

G∑
g=1

I∑
i=1

∂2L(α)

∂ν
g
i ∂ν

g
i

(
sg

v,i

)2
, G = 30, I = 6. (168)

In Equation (168), the quantity sg
ν,i denotes the standard deviation associated with the imprecisely

known model parameter νg
i .

Considering contributions solely from the group-averaged uncorrelated parameters underlying
the average number of neutrons per fission, the expression for computing the variance, denoted as
[var(L)](U,N)

ν , of the PERP leakage response has the following form:

[var(L)](U,N)
ν = [var (L)](1,U,N)

ν + [var (L)](2,U,N)
ν . (169)

In Equation (169), the term [var (L)](1,U,N)
ν denotes the first-order contributions to the variance

[var(L)](U,N)
ν and is defined as follows:

[var (L)](1,U,N)
ν ,

G∑
g=1

I∑
i=1

∂L(α)

∂ν
g
i

2(
sg
ν,i

)2
, G = 30, I = 6, (170)

while the second-order contribution term, [var (L)](2,U,N)
ν to the variance [var(L)](U,N)

ν is defined
as follows:

[var (L)](2,U,N)
ν ,

1
2

G∑
g=1

I∑
i=1

∂2L(α)

∂ν
g
i ∂ν

g
i

(
sg
ν,i

)2
2

, G = 30, I = 6. (171)

Again, taking into account contributions solely from the group-averaged uncorrelated parameters
underlying the average number of neutrons per fission, the third-order moment, [µ3(L)]

(U,N)
ν , of the

leakage response for the PERP benchmark takes on the following form:

[µ3(L)]
(U,N)
ν = 3

G∑
g=1

I∑
i=1

∂L(α)

∂ν
g
i

2
∂2L(α)

∂ν
g
i ∂ν

g
i

(
sg
ν,i

)4
, G = 30, I = 6. (172)

As Equation (172) indicates, if the 2nd-order sensitivities were unavailable, the third moment
[µ3(L)]

(U,N)
ν would vanish and the response distribution would need, by default, to be assumed to
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be Gaussian. The skewness, [γ1(L)]
(U,N)
ν , of the leakage response, L, which indicates the degree of

the distribution’s asymmetry with respect to its mean, due to the variances of the average number of
neutrons per fission, is defined as follows:

[γ1(L)]
(U,N)
ν = [µ3(L)]

(U,N)
ν /

{
[var(L)](U,N)

ν

}3/2
(173)

Table 28 shows the results computed using Equations (167)–(173) together with the 1st- and
2nd-order respective sensitivity values presented in Section 5.3, for uniform parameter standard
deviations of 1%, 5%, and 10% of νg

i , i = 1, 2; g = 1, . . . , 30, respectively.

Table 28. Comparison of Response Moments Induced by Various Relative Standard Deviations
Assumed for the Parameters νg

i , i = 1, 2; g = 1, . . . , 30.

Relative Standard Deviation 10% 5% 1%

[E(L)](2,U)
ν 1.0659× 105 2.6647× 104 1.0659× 102

L
(
α0

)
1.7648× 106 1.7648× 106 1.7648× 106

[E(L)]ν = L
(
α0

)
+ [E(L)](2,U)

ν 1.8714× 106 1.7915× 106 1.7659× 106

[var (L)](1,U,N)
ν 1.8649× 1011 4.6623× 1010 1.8649× 109

[var (L)](2,U,N)
ν 2.9566× 109 1.8479× 108 2.9566× 105

[var(L)](U,N)
ν = [var (L)](1,U,N)

ν + [var (L)](2,U,N)
ν 1.8945× 1011 4.6807× 1010 1.8652× 109

[µ3(L)]
(U,N)
ν 1.5540× 1016 9.7125× 1014 1.5540× 1012

[γ1(L)]
(U,N)
ν = [µ3(L)]

(U,N)
ν /

{
[var(L)](U,N)

ν

}3/2
0.1885 9.5909× 10−2 1.9291× 10−2

The relative effects on the leakage response of uncertainties in the average number of neutrons per
fission can be compared to the corresponding effects stemming from the fission and total cross sections.
A final comparison, with corresponding conclusions, will be made after all of the 2nd-order sensitivities
of the PERP leakage response to the PERP benchmark’s underlying nuclear data are obtained. Thus,
comparing the results shown in Table 28 for standard deviations of 10% with the corresponding results
presented in Table 27 for the fission cross sections and Table 25 of Part I [1] for the total cross sections
reveals that:

[E(L)](2,U)

f = 3.7191× 104 < [E(L)](2,U)
ν = 1.0659× 105

� [E(L)](2,U)
t = 4.5980× 106,

[var (L)](1,U,N)

f = 9.5932× 1010 < [var (L)](1,U,N)
ν = 1.8649× 1011

� [var (L)](1,U,N)
t = 3.4196× 1012,

[var (L)](2)f = 5.4830× 108 < [var (L)](2,U,N)
ν = 2.9566× 109

� [var (L)](2,U,N)
t = 2.8789× 1013,

[γ1(L)]
(U,N)

f = 0.1172 < [γ1(L)]
(U,N)
ν = 0.1885 < [γ1(L)]

(U,N)
t = 0.3407.

The above comparisons indicate that the contributions to the leakage response moments stemming
from the group-averaged uncorrelated parameters underlying the average number of neutrons per
fission are much smaller than the corresponding contributions stemming from the group-averaged
uncorrelated microscopic total cross sections but are bigger than the corresponding contributions
stemming from the group-averaged uncorrelated microscopic fission cross sections. Again, it is
important to note that the results presented in Table 28 consider only the standard deviations of the
uncorrelated parameters underlying the average number of neutrons per fission, since correlations
between these parameters are unavailable. On the other hand, the results presented in Sections 5–7
indicated that the largest values are displayed by several mixed 2nd-order sensitivities of the leakage
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response with respect to ν and σt, and with respect to ν and σ f , which are much larger than the values
of the unmixed sensitivities. Recall that the following sensitivities have absolute values larger than

1.0: (a) 52 elements of the matrix S(2)
(
ν

g
1 , νg′

1

)
, g, g′, h = 1, . . . , 30, as summarized in Table 15; only 6 of

these are included in the computations leading to the results shown in Table 28; (b) 72 elements of the

matrix S(2)
(
ν

g
1 , σg′

t,1

)
, g, g′, h = 1, . . . , 30, presented in Table 17; (c) 7 elements of the matrix S(2)

(
ν

g
1 , σg′

t,5

)
,

g, g′ = 1, . . . , 30 as listed in Table 18; (d) 99 elements of the matrix S(2)
(
ν

g
1 , σg′

t,6

)
, g, g′ = 1, . . . , 30

presented in Tables 19 and 20; (e) 1 element of the matrix S(2)
(
ν

g
2 , σg′

t,6

)
, g, g′ = 1, . . . , 30 presented in

Section 6.3.4; and (f) 28 elements of the matrix S(2)
(
ν

g
i=1, σg′

f ,k=1

)
, g, g′ = 1, . . . , 30 presented in Table 26.

However, the effect of these large sensitivities on the uncertainties in the response distribution cannot
be considered presently because the corresponding correlations among the various model parameters
are not available.

11. Conclusions

This work has presented results for the first-order sensitivities, ∂L(α)/∂σ f , and the second-order
sensitivities ∂2L(α)/∂σ f∂σ f of the PERP total leakage response with respect to the group-averaged
microscopic fission cross sections, and the mixed second-order sensitivities ∂2L(α)/∂σ f∂σt and
∂2L(α)/∂σ f∂σs of the leakage response with respect to the group-averaged microscopic fission/total
cross sections and corresponding fission and scattering cross sections. In addition, this work has
also presented results for ∂L(α)/∂ν and ∂2L(α)/∂ν∂ν, i.e., the first- and, respectively, second-order
sensitivities of the PERP total leakage response with respect to the parameters underlying the
benchmark’s average number of neutrons per fission, as well as results for the mixed second-order
sensitivities for ∂2L(α)/∂ν∂σt, ∂2L(α)/∂ν∂σs, and ∂2L(α)/∂ν∂σ f .

For the sensitivities with respect to the fission cross sections, the following conclusions can be
drawn from the results reported in this work:

1. The 1st-order relative sensitivities of the PERP leakage response with respect to the group-averaged
microscopic fission cross sections for the two fissionable PERP isotopes are positive, as shown in
Tables 2 and 3, signifying that an increase in σg

f ,i, i = 1, 2; g = 1, . . . , 30 will cause an increase
in the PERP leakage response L (i.e., more neutrons will leak out of the sphere). The 2nd-order
unmixed relative sensitivities of the PERP leakage response with respect to the group-averaged
microscopic fission cross sections are positive for the energy groups g = 7, . . . , 15, but are negative
for the other energy groups;

2. Comparing the results for the 1st-order relative sensitivities to those obtained for the 2nd-order
unmixed relative sensitivities for isotope 1 (239Pu) indicates that the values of the 2nd-order
sensitivities are close to, and generally smaller than, the corresponding values of the 1st-order
sensitivities for the same energy group, except for the 12th energy group, where the 2nd-order
relative sensitivity is larger. For isotope 2 (240Pu), the values for both the 1st- and 2nd-order
relative sensitivities are very small, and the values of the 2nd-order unmixed relative sensitivities
are at least an order of magnitude smaller than the corresponding values of the 1st-order ones.
The largest values of the 1st-order and 2nd-order relative sensitivities are always related to the
12th energy group for both isotopes 239Pu and 240Pu;

3. The 1st-order relative sensitivities with respect to the fission cross sections are up to 50% smaller
than the corresponding values with respect to the total cross sections, and are approximately one
order of magnitude larger than the corresponding 1st-order relative sensitivities with respect
to the 0th-order scattering cross sections for isotope 239Pu. Likewise, the absolute values of the
2nd-order unmixed relative sensitivities with respect to the fission cross sections are 50–90%
smaller than the corresponding values with respect to total cross sections but are approximately
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one to two orders of magnitudes larger than the 2nd-order sensitivities corresponding to the
0th-order scattering cross sections for 239Pu;

4. The 2nd-order mixed sensitivities ∂2L(α)/∂σ f∂σ f are mostly positive. Among the Jσ f × Jσ f (=

60 × 60) elements in the matrix S(2)
(
σ

g
f ,i, σ

g′

f ,k

)
, i, k = 1, 2; g, g′ = 1, . . . , 30, 11 elements have

relative sensitivities greater than 1.0. All of these 11 large sensitivities belong to the submatrix

S(2)
(
σ

g
f ,1, σg′

f ,1

)
, and involve the 12th energy group of the fission cross sections of isotope 239Pu; the

largest of these sensitivities is S(2)
(
σ12

f ,1, σ12
f ,1

)
= 1.348. The values of the mixed 2nd-order relative

sensitivities involving the fission cross sections of isotope 240Pu are all smaller than 1.0;
5. The 2nd-order mixed sensitivities ∂2L(α)/∂σ f∂σt are mostly negative. Among the Jσ f × Jσt (=

60× 180) elements of the matrix S(2)
(
σ

g
f ,i, σ

g′

t,k

)
, i = 1, 2; k = 1, . . . , 6; g, g′ = 1, . . . , 30, 84 elements

belonging to the submatrices S(2)
(
σ

g
f ,1, σg′

t,1

)
, S(2)

(
σ

g
f ,1, σg′

t,5

)
and S(2)

(
σ

g
f ,1, σg′

t,6

)
have absolute values

greater than 1.0. These 84 large sensitivities involve the fission cross sections of isotope 239Pu,
and the total cross sections of isotopes 239Pu, C and 1H. The largest (negative) relative sensitivity

is S(2)
(
σ12

f ,1, σ30
t,6

)
= −13.92. The mixed 2nd-order relative sensitivities involving the fission cross

sections of the isotope 240Pu or the total cross sections of isotopes 240Pu, 69Ga and 71Ga have
absolute values smaller than 1.0;

6. The Jσ f × Jσs (= 60 × 21, 600) dimensional matrix S(2)
(
σ

g
f ,i, σ

g′→h
s,l,k

)
comprises more elements

having positive (rather than negative) values when involving even-orders (l = 0, 2) scattering
cross sections, and vice-versa when involving odd-orders (l = 1, 3) scattering cross sections.
Overall, however, the total number of positive elements in this matrix is comparable to that
of negative elements in the sensitivity matrix. As shown in Tables 8–11, in each submatrix of

S(2)
(
σ

g
f ,i, σ

g′→h
s,l,k

)
, l = 0, . . . , 3; i = 1, 2; k = 1, . . . , 6; g, g′, h = 1, . . . , 30, the largest absolute values

of the 2nd-order relative sensitivities corresponding to even-order scattering parameters are all
positive, while those corresponding to odd-orders scattering parameters are all negative;

7. The absolute values of all the Jσ f × Jσs (= 60 × 21, 600) elements of the matrix S(2)
(
σ

g
f ,i, σ

g′→h
s,l,k

)
are less than 1.0, and the vast majority of them are very small; also, the higher the order
of scattering cross sections, the smaller the absolute values of these sensitivities. Also, it is
observed that the largest absolute value of the 2nd-order relative sensitivities in each submatrix

of S(2)
(
σ

g
f ,i, σ

g′→h
s,l,k

)
, l = 0, . . . , 3; i = 1, 2; k = 1, . . . , 6; g, g′, h = 1, . . . , 30, generally involve the

fission cross sections for the 12th energy group of isotopes 239Pu or240Pu, and the self-scattering
cross sections in the 12th or 7th energy group for all isotopes. The largest sensitivity comprised

in S(2)
(
σ

g
f ,i, σ

g′→h
s,l,k

)
is S(2)

(
σ

g=12
f , 1 , σ12→12

s,l= 0,1

)
= 3.03 × 10−1, i.e., the 2nd-order mixed sensitivity of

the PERP leakage response with respect to the 12th energy group of the fission and 0th-order
self-scattering cross sections of isotope 239Pu;

8. The alternative paths for computing the mixed 2nd-order sensitivities, which are due to the
symmetry of these sensitivities, provide multiple reciprocal “solution verifications” possibilities,
ensuring that the respective computations were performed correctly. However, one of the
alternative paths is much more efficient computationally than the other. For example, computing
∂2L(α)/∂σ f∂σt is around 3 times more efficient than computing alternatively the symmetric
sensitivities ∂2L(α)/∂σt∂σ f . Also, computing ∂2L(α)/∂σ f∂σs is about 60 times more efficient
than computing alternatively the sensitivities ∂2L(α)/∂σs∂σ f ;

9. Many mixed 2nd-order sensitivities of the leakage response to the group-averaged fission and total
microscopic cross sections are significantly larger than the unmixed 2nd-order sensitivities of the
leakage response with respect to the group-averaged fission microscopic cross sections. Therefore,
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it would be very important to obtain correlations among the various model parameter, since the
correlations among the respective fission and total cross sections could provide significantly larger
contributions to the response moments than the standard deviations of the fission cross sections.

For the sensitivities with respect to the parameters underlying the average number of neutrons
per fission, the following conclusions can be drawn from the results reported in this work:

10. The 1st-order relative sensitivities of ∂L(α)/∂ν for the two fissionable PERP isotopes are positive,
as shown in Tables 13 and 14, signifying that an increase in νg

i , i = 1, 2; g = 1, . . . , 30 will cause
an increase in the PERP leakage response L. The 2nd-order unmixed relative sensitivities of the
leakage response with respect to the average number of neutrons per fission are also positive;

11. Comparing the results for the 1st-order relative sensitivities of ∂L(α)/∂ν to those 2nd-order
unmixed relative sensitivities for isotope 1 (239Pu) indicate that, for energy groups g = 7, . . . , 14,
the values of the 2nd-order unmixed sensitivities are significantly larger than the corresponding
values of the 1st-order sensitivities for the same energy group, and they are smaller for other energy
groups. For isotope 2 (240Pu), the values for both the 1st- and 2nd-order relative sensitivities are
all very small, and the values of the 2nd-order unmixed relative sensitivities are at least an order
of magnitude smaller than the corresponding values of the 1st-order ones. The largest values of
the 1st-order and 2nd-order unmixed relative sensitivities are always related to the 12th energy
group of the parameters underlying the average number of neutrons per fission for both isotopes
239Pu and 240Pu;

12. The 1st-order relative sensitivities of ∂L(α)/∂ν are comparable to the corresponding values
with respect to the total cross sections for energy groups g = 7, . . . , 12, but for energy groups
g = 13, . . . , 22, they are considerably smaller. On the other hand, the 1st-order relative sensitivities
of ∂L(α)/∂ν are 30% to 50% larger than the corresponding values to ∂L(α)/∂σ f for 239Pu.
Likewise, the values of the 2nd-order unmixed relative sensitivities with respect to the average
number of neutrons per fission are significantly smaller than the corresponding values with
respect to total cross sections, but larger than the corresponding values with respect to fission
cross sections;

13. The 2nd-order mixed sensitivities ∂2L(α)/∂ν∂ν are all positive. Among the Jν × Jν = (60× 60)

elements in the matrix S(2)
(
ν

g
i , νg′

k

)
, i, k = 1, 2; g, g′ = 1, . . . , 30, 52 elements have relative

sensitivities greater than 1.0. All of these 52 large sensitivities belong to the submatrix S(2)
(
ν

g
1 , νg′

1

)
,

and involve the parameters underlying the average number of neutrons per fission of isotope
239Pu. The largest of these sensitivities is S(2)

(
ν12

1 , ν12
1

)
= 2.963. The values of the mixed 2nd-order

relative sensitivities involving the parameters underlying the average number of neutrons per
fission of isotope 240Pu are all smaller than 1.0;

14. The 2nd-order mixed sensitivities ∂2L(α)/∂ν∂σt are mostly negative. Among the Jν × Jσt (=

10, 800) elements of the matrix S(2)
(
ν

g
i , σg′

t,k

)
, i = 1, 2; k = 1, . . . , 6; g, g′ = 1, . . . , 30, there are 179

elements belonging to the submatrices S(2)
(
ν

g
1 , σg′

t,1

)
, S(2)

(
ν

g
1 , σg′

t,5

)
and S(2)

(
ν

g
1 , σg′

t,6

)
which have

absolute values greater than 1.0; 178 of these large sensitivities involve the parameters underlying
the average number of neutrons per fission of isotope 239Pu, and the total cross sections of isotopes
239Pu, C and 1H. The largest (negative) relative sensitivity is S(2)

(
ν12

1 , σ30
t,6

)
= −19.29. In addition,

the mixed 2nd-order relative sensitivities involving isotopes 240Pu, 69Ga and 71Ga generally have
absolute values smaller than 1.0;

15. The Jν × Jσs (= 60× 21, 600) dimensional matrix S(2)
(
ν

g
i , σg′→h

s,l,k

)
comprises more elements having

positive (rather than negative) values for even-orders ( l = 0, 2) scattering cross sections and
vice-versa when involving odd-orders (l = 1, 3) scattering cross sections. Overall, however, this
matrix contains about as many positive elements as negative ones. As shown in Tables 21–24,
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in each submatrix of S(2)
(
ν

g
i , σg′→h

s,l,k

)
, l = 0, . . . , 3; i = 1, 2; k = 1, . . . , 6; g, g′, h = 1, . . . , 30,

the largest absolute values of the 2nd-order relative sensitivities corresponding to even-order
scattering parameters are all positive, while those corresponding to odd-orders scattering
parameters are all negative;

16. The absolute values of all the Jν × Jσs (= 60× 21, 600) elements of the matrix S(2)
(
ν

g
i , σg′→h

s,l,k

)
are

less than 1.0, and the vast majority of them are very small; also, the higher the order of scattering
cross sections, the smaller the absolute values of these sensitivities. Furthermore, it is observed

that in each submatrix of S(2)
(
ν

g
i , σg′→h

s,l,k

)
, l = 0, . . . , 3; i = 1, 2; k = 1, . . . , 6; g, g′, h = 1, . . . , 30

the largest 2nd-order relative sensitivities generally involve νg
i for the 12th energy group of

isotopes 239Pu or240Pu, and the self-scattering cross sections in the 12th or 7th energy group for all

isotopes. The largest 2nd-order sensitivity comprised in S(2)
(
ν

g
i , σg′→h

s,l,k

)
is S(2)

(
ν

g=12
1 , σ12→12

s,l= 0,k=1

)
=

4.65× 10−1;
17. The 2nd-order mixed sensitivities ∂2L(α)/∂ν∂σ f are mostly positive. Among the Jν × Jσ f (=

60 × 60) elements in the matrix S(2)
(
ν

g
i , σg′

f ,k

)
, i, k = 1, 2; g, g′ = 1, . . . , 30, 28 elements have

relative sensitivities greater than 1.0. All of these 28 large sensitivities belong to the submatrix

S(2)
(
ν

g
i=1, σg′

f ,k=1

)
, and relate to the average number of neutrons per fission of isotope 239Pu.

The largest of these sensitivities is S(2)
(
ν12

1 , σ12
f ,1

)
= 3.225. The values of the mixed 2nd-order

relative sensitivities involving isotope 240Pu are all smaller than 1.0;

18. Many mixed 2nd-order relative sensitivities in the matrices S(2)
(
ν

g
i , νg′

k

)
, S(2)

(
ν

g
i , σg′

t,k

)
and

S(2)
(
ν

g
i , σg′

f ,k

)
are significantly larger than the unmixed 2nd-order sensitivities of the leakage

response with respect to the parameters underlying the average number of neutrons per fission.
Therefore, it would be very important to obtain correlations among the average number of
neutrons per fission, total and fission cross sections, so that significantly larger contributions from
those mixed sensitivities to the response moments can be accounted for.

Subsequent works [10,11] will report the values and effects of the 1st-order and 2nd-order
sensitivities of the PERP’s leakage response with respect to the group-averaged source parameters,
fission spectrum, and isotopic number densities, along with the overall conclusions and implications
of this pioneering and uniquely comprehensive 2nd-order sensitivity analysis and uncertainty
quantification of the PERP reactor physics benchmark.
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Appendix A. Definitions of PERP Model Parameters

As presented in Part I [1], the components of the vector of 1st-order sensitivities of the leakage
response with respect to the model parameters, denoted as S(1)(α), was defined as follows:

S(1)(α) ,

[
∂L(α)
∂σt

;
∂L(α)
∂σs

;
∂L(α)
∂σ f

;
∂L(α)
∂ν

;
∂L(α)
∂p

;
∂L(α)
∂q

;
∂L(α)
∂N

]†
. (A1)

The symmetric matrix of 2nd-order sensitivities of the leakage response with respect to the model
parameters, denoted as S(2)(α), was defined as follows:

S(2)(α) ,



∂2L(α)
∂σt∂σt

∗ ∗ ∗ ∗ ∗ ∗

∂2L(α)
∂σs∂σt

∂2L(α)
∂σs∂σs

∗ ∗ ∗ ∗ ∗

∂2L(α)
∂σ f ∂σt

∂2L(α)
∂σ f ∂σs

∂2L(α)
∂σ f ∂σ f

∗ ∗ ∗ ∗

∂2L(α)
∂ν∂σt

∂2L(α)
∂ν∂σs

∂2L(α)
∂ν∂σ f

∂2L(α)
∂ν∂ν ∗ ∗ ∗

∂2L(α)
∂p∂σt

∂2L(α)
∂p∂σs

∂2L(α)
∂p∂σ f

∂2L(α)
∂p∂ν

∂2L(α)
∂p∂p ∗ ∗

∂2L(α)
∂q∂σt

∂2L(α)
∂q∂σs

∂2L(α)
∂q∂σ f

∂2L(α)
∂q∂ν

∂2L(α)
∂q∂p

∂2L(α)
∂q∂q ∗

∂2L(α)
∂N∂σt

∂2L(α)
∂N∂σs

∂2L(α)
∂N∂σ f

∂2L(α)
∂N∂ν

∂2L(α)
∂N∂p

∂2L(α)
∂N∂q

∂2L(α)
∂N∂N



. (A2)

As defined in Equation (1), the vectorα ,
[
σt;σs;σ f ;ν; p; q; N

]†
denotes the “vector of imprecisely

known model parameters”, with vector-components σt, σs, σ f , ν, p, q and N, comprising the various
model parameters for the microscopic total cross sections, scattering cross sections, fission cross sections,
average number of neutrons per fission, fission spectra, sources, and isotopic number densities, which
have been described in Part I [1]. For easy referencing, the definitions of these model parameters will
be recalled in the remainder of this Appendix.

The total cross section Σg
t for energy group g, g = 1, . . . , G, is computed for the PERP benchmark

using the following expression:

Σg
t =

M=2∑
m=1

Σg
t,m; Σg

t,m =
I∑
i

Ni,mσ
g
t,i =

I∑
i

Ni,m

σg
f ,i + σ

g
c,i +

G∑
g′=1

σ
g→g′

s,l=0,i

, m = 1, 2, (A3)

where m denotes the materials in the PERP benchmark; σg
f ,i and σg

c,i denote, respectively, the tabulated
group microscopic fission and neutron capture cross sections for group g, g = 1, . . . , G. Other nuclear
reactions are negligible in the PERP benchmark. As discussed in Part I [1], the total cross section
Σg

t → Σg
t (t) will depend on the vector of parameters t, which is defined as follows:

t ,
[
t1, . . . , tJt

]†
,

[
t1, . . . , tJσt ; n1, . . . , nJn

]†
, [σt; N]†, Jt = Jσt + Jn, (A4)

where
N ,

[
n1, . . . , nJn

]†
, [N1,1, N2,1, N3,1, N4,1, N5,2, N6,2]

†, Jn = 6, (A5)

σt ,
[
t1, . . . , tJσt

]†
,

[
σ1

t,i=1, σ2
t,i=1, . . . , σG

t,i=1, . . . , σg
t,i, . . . , σ

1
t,i=I, . . . , σ

G
t,i=I

]†
,

i = 1, . . . , I = 6; g = 1, . . . , G = 30; Jσt = I ×G.
(A6)

In Equations (A4)–(A6), the dagger denotes “transposition,” σg
t,i denotes the microscopic total

cross section for isotope i and energy group g, Ni,m denotes the respective isotopic number density, and
Jn denotes the total number of isotopic number densities in the model. Thus, the vector t comprises a
total of Jt = Jσt + Jn = 30× 6 + 6 = 186 imprecisely known “model parameters” as its components.
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The scattering transfer cross section Σg′→g
s (Ω′ → Ω) from energy group g′, g′ = 1, . . . , G into

energy group g, g = 1, . . . , G, is computed using the finite Legendre polynomial expansion of order
ISCT = 3:

Σg′→g
s (Ω′ → Ω) =

M=2∑
m=1

Σg′→g
s,m (Ω′ → Ω),

Σg′→g
s,m (Ω′ → Ω) �

I=6∑
i=1

Ni,m
ISCT=3∑

l=0
(2l + 1) σ

g′→g
s,l,i Pl(Ω

′
·Ω), m = 1, 2,

(A7)

where σg′→g
s,l,i denotes the l-th order Legendre-expanded microscopic scattering cross section from

energy group g′ into energy group g for isotope i. In view of Equation (A7), the scattering cross
section Σg′→g

s (Ω′ → Ω)→ Σg′→g
s (s; Ω′ → Ω) depends on the vector of parameters s, which is defined

as follows:
s ,

[
s1, . . . , sJs

]†
,

[
s1, . . . , sJσs ; n1, . . . , nJn

]†
, [σs; N]†, Js = Jσs + Jn, (A8)

σs ,
[
s1, . . . , sJσs

]†
,

[
σ

g′=1→g=1
s,l=0,i=1 , σg′=2→g=1

s,l=0,i=1 , . . . , σg′=G→g=1
s,l=0,i=1 , σg′=1→g=2

s,l=0,i=1 , σg′=2→g=2
s,l=0,i=1 , . . . , σg′→g

s,l,i , . . . , σG→G
s,ISCT,i=I

]†
,

l = 0, . . . , ISCT; i = 1, . . . , I; g, g′ = 1, . . . , G; Jσs = (G×G) × I × (ISCT + 1).
(A9)

The expressions in Equations (A7) and (A3) indicate that the zeroth order (i.e., l = 0) scattering
cross sections must be considered separately from the higher order (i.e., l ≥ 1) scattering cross sections,
since the former contribute to the total cross sections, while the latter do not. Therefore, the total number
of zeroth-order scattering cross section comprise in σs is denoted as Jσs,l=0, where Jσs,l=0 = G×G× I;
and the total number of higher order (i.e., l ≥ 1) scattering cross sections comprised in σs is denoted as
Jσs,l≥1, where Jσs,l≥1 = G×G× I × ISCT, with Jσs,l=0 + Jσs,l≥1 = Jσs. Thus, the vector s comprises a total
of Jσs + Jn = 30× 30× 6× (3 + 1) + 6 = 21606 imprecisely known components (“model parameters”).

The transport code PARTISN [4] computes the quantity
(
νΣ f

)g
using directly the quantities (νσ)g

f ,i,
which are provided in data files for each isotope i, and energy group g, as follows

(
νΣ f

)g
=

M=2∑
m=1

(
νΣ f

)g

m
;

(
νΣ f

)g

m
=

I=6∑
i=1

Ni,m
(
νσ f

)g

i
, m = 1, 2. (A10)

In view of Equation (A10), the quantity
(
νΣ f

)g
→

(
νΣ f

)g
(f; r) depends on the vector of parameters

f, which is defined as follows:

f ,
[

f1, . . . , fJσ f ; fJσ f +1, . . . , fJσ f +Jν ; fJσ f +Jν+1, . . . , fJ f

]†
,

[
σ f ;ν; N

]†
, J f = Jσ f + Jν + Jn, (A11)

where

σ f ,
[
σ1

f ,i=1, σ2
f ,i=1, . . . , σG

f ,i=1, . . . , σg
f ,i, . . . , σ

1
f ,i=N f

, . . . , σG
f ,i=N f

]†
,

[
f1, . . . , fJσ f

]†
,

i = 1, . . . , N f ; g = 1, . . . , G; Jσ f = G×N f ,
(A12)

ν ,
[
ν1

i=1, ν2
i=1, . . . , νG

i=1, . . . , νg
i , . . . , ν1

i=N f
, . . . , νG

i=N f

]†
,

[
fJσ f +1, . . . , fJσ f +Jν

]†
,

i = 1, . . . , N f ; g = 1, . . . , G; Jν = G×N f ,
(A13)

and where σg
f ,i denotes the microscopic fission cross section for isotope i and energy group g, νg

i denotes
the average number of neutrons per fission for isotope i and energy group g, and N f denotes the
total number of fissionable isotopes. For the purposes of sensitivity analysis, the quantity νg

i , can
be obtained by using the relation νg

f ,i = (νσ)
g
f ,i/σ

g
f ,i, where the isotopic fission cross sections σg

f ,i are
available in data files for computing reaction rates.
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The quantity χg in Equation (3) quantifies the material fission spectrum in energy group g, and is
defined in PARTISN [4] as follows:

χg ,

N f∑
i=1

χ
g
i Ni,m

G∑
g′=1

(
νσ f

)g′

i
f g′

i

N f∑
i=1

Ni,m
G∑

g′=1

(
νσ f

)g′

i
f g′

i

, with
G∑

g=1

χ
g
i = 1, (A14)

where the quantity χg
i denotes the isotopic fission spectrum in energy group g, while the quantity f g

i
denotes the corresponding spectrum weighting function.

Appendix B.

The sensitivities presented in this work have been computed by specializing the general expressions
derived by Cacuci [5] to the PERP benchmark. For easy reference, the equations from Ref. [5] used in
this work are reproduced in the following:

Equation (149) in [5]:

A(1),g(α)ψ(1),g(r, Ω) , −Ω·∇ψ(1),g(r, Ω) + Σg
t (t

g; r)ψ(1),g(r, Ω)

−

G∑
g′=1

∫
4π

dΩ′Σg→g′
s

(
sgg′ ; r, Ω→ Ω′

)
ψ(1),g′(r, Ω′) − νΣg

f (f
g; r)

G∑
g′=1

∫
4π

dΩ′χg→g′
(
pgg′ ; r

)
ψ(1),g′(r, Ω′). (A15)

Equation (150) in [5]:

∂R
(
α,ϕ;ψ(1)

)
∂t j

= −
G∑

g=1

∫
dV

∫
4π

dΩψ(1),g(r, Ω)ϕg(r, Ω)
∂Σt

g(t; r)
∂t j

, j = 1, . . . , Jt. (A16)

Equation (152) in [5]:

∂R(α,ϕ;ψ(1))
∂ f j

=
G∑

g=1

∫
dV

∫
4π dΩψ(1),g(r, Ω′)

G∑
g′=1

∫
4π dΩ′

∂
[
(νΣ f )

g′
(f;r)

]
∂ f j

χg′→g(p; r)ϕg′(r, Ω′) , j = 1, . . . , J f . (A17)

Equations (156) and (157) in [5]:

A(1),g(α)ψ(1),g(r, Ω) =

g∑
d

(
d0; r, Ω

)
, g = 1, . . . , G, (A18)

ψ(1),g(rs, Ω) = 0, rs ∈ ∂V, Ω · n > 0. (A19)

Equation (158) in [5]:

∂2R
∂t j∂tm2

= −
G∑

g=1

∫
dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω)

∂2Σt
g(t;r,Ω)

∂t j∂tm2

−

G∑
g=1

∫
dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t;r,Ω)
∂tm2

,

f or j = 1, . . . , Jt; m2 = 1, . . . , Jt.

(A20)
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Equation (159) in [5]:

∂2R
∂t j∂sm2

=
G∑

g=1

∫
dV

∫
4π dΩψ

(2),g
1, j (r, Ω)

G∑
g′=1

∫
4π dΩ′ψ(1),g′(r, Ω′)

∂Σg→g′
s (s;r,Ω→Ω′)

∂sm2

+
G∑

g=1

∫
dV

∫
4π dΩψ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ′ϕg′(r, Ω′)

∂Σg′→g
s (s;r,Ω′→Ω)

∂sm2
,

f or j = 1, . . . , Jt; m2 = 1, . . . , Js.

(A21)

Equation (160) in [5]:

∂2R
∂t j∂ fm2

=
G∑

g=1

∫
dV

∫
4π dΩψ

(2),g
2, j (r,Ω)

G∑
g′=1

∫
4π dΩ′ϕg′

(
r,Ω

′
)
χg′→g(p; r)

∂
[
(νΣ f )

g′
(f;r)

]
∂ fm2

+
G∑

g=1

∫
dV

∫
4π dΩψ

(2),g
1, j (r,Ω)

∂
[
(νΣ f )

g
(f;r)

]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg→g′(p; r)ψ(1),g′

(
r,Ω

′
)
,

f or j = 1, . . . , Jt; m2 = 1, . . . , J f .

(A22)

Equations (164)–(166) in [5]:

Lg
(
α0

)
ψ
(2),g
1, j (r, Ω) = −ϕg(r, Ω)

∂Σt
g(t; r)
∂t j

, j = 1, . . . , Jt; g = 1, . . . , G, (A23)

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −ψ(1),g(r, Ω)

∂Σt
g(t; r)
∂t j

, j = 1, . . . , Jt; g = 1, . . . , G, (A24)

ψ
(2),g
1, j (rs, Ω) = 0, Ω · n < 0;ψ(2),g

2, j (rs, Ω) = 0, Ω · n > 0; rs ∈ ∂V; j = 1, . . . , Jt; g = 1, . . . , G. (A25)

Equation (167) in [5]:

∂2R
∂s j∂tm2

= −
G∑

g=1

∫
dV

∫
4π dΩ

[
θ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) + θ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t;r,Ω)
∂tm2

,

f or j = 1, . . . , Js; m2 = 1, . . . , Jt.
(A26)

Equation (169) in [5]:

∂2R
∂s j∂ fm2

=
G∑

g=1

∫
dV

∫
4π dΩθ

(2),g
1, j (r,Ω)

∂
[
(νΣ f )

g
(f;r)

]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg→g′(p; r)ψ(1),g′

(
r,Ω

′
)

+
G∑

g=1

∫
dV

∫
4π dΩθ

(2),g
2, j (r,Ω)

G∑
g′=1

∫
4π dΩ′ϕg′

(
r,Ω

′
)
χg′→g(p; r)

∂
[
(νΣ f )

g′
(f;r)

]
∂ fm2

,

f or j = 1, . . . , Js; m2 = 1, . . . , J f .

(A27)

Equations (173) through (175) in [5]:

Lg
(
α0

)
θ
(2),g
1, j (r, Ω) =

G∑
g′=1

∫
4π

dΩ′
∂Σg′→g

s (s; r, Ω′ → Ω)

∂s j
ϕg′(r, Ω′), j = 1, . . . , Js; g = 1, . . . , G, (A28)

A(1),g
(
α0

)
θ
(2),g
2, j (r, Ω) =

G∑
g′=1

∫
4π dΩ′ψ(1),g′(r, Ω′)

∂Σg→g′
s (s;r,Ω→Ω

′

)
∂s j

, j = 1, . . . , Js; g = 1, . . . , G, (A29)

θ
(2),g
1, j (rs, Ω) = 0, Ω · n < 0;θ(2),g2, j (rs, Ω) = 0, Ω · n > 0; rs ∈ ∂V; j = 1, . . . , Js; g = 1, . . . , G. (A30)
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Equation (177) in [5]:

∂2R
∂ f j∂tm2

= −
G∑

g=1

∫
dV

∫
4π dΩ

[
u(2),g

1, j (r, Ω)ψ(1),g(r, Ω) + u(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t;r,Ω)
∂tm2

,

f or j = 1, . . . , J f ; m2 = 1, . . . , Jt.
(A31)

Equation (178) in [5]:

∂2R
∂ f j∂sm2

=
G∑

g=1

∫
dV

∫
4π dΩ u(2),g

1, j (r, Ω)
G∑

g′=1

∫
4π dΩ′ψ(1),g′(r, Ω′)

∂Σg→g′
s (s;r,Ω→Ω′)

∂sm2

+
G∑

g=1

∫
dV

∫
4π dΩ u(2),g

2, j (r, Ω)
G∑

g′=1

∫
4π dΩ′ϕg′(r, Ω′)

∂Σg′→g
s (s;r,Ω′→Ω)

∂sm2
,

f or j = 1, . . . , J f ; m2 = 1, . . . , Js.

(A32)

Equation (179) in [5]:

∂2R
∂ f j∂ fm2

=
G∑

g=1

∫
dV

∫
4π dΩψ(1),g(r,Ω)

G∑
g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg′→g(p; r)

∂2
[
(νΣ f )

g′
(f;r)

]
∂ f j∂ fm2

+
G∑

g=1

∫
dV

∫
4π dΩ u(2),g

1, j (r,Ω)
∂
[
(νΣ f )

g
(f;r)

]
∂ fm2

G∑
g′=1

∫
4π dΩ′χg→g′(p; r)ψ(1),g′(r, Ω′)

+
G∑

g=1

∫
dV

∫
4π dΩ u(2),g

2, j (r,Ω)
G∑

g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg′→g(p; r)

∂
[
(νΣ f )

g′
(f;r)

]
∂ fm2

,

f or j = 1, . . . , J f ; m2 = 1, . . . , J f .

(A33)

Equations (183)–(185) in [5]:

Lg
(
α0

)
u(2),g

1, j (r, Ω) =
G∑

g′=1

∫
4π dΩ′ϕg′(r, Ω′)χg′→g

(
p0; r

)∂[(νΣ f )
g′
(f;r)

]
∂ f j

, j = 1, . . . , J f ; g = 1, . . . , G, (A34)

A(1),g
(
α0

)
u(2),g

2, j (r, Ω) =
∂
[
(νΣ f )

g
(f;r)

]
∂ f j

G∑
g′=1

∫
4π dΩ′ψ(1),g′(r, Ω′)χg→g′

(
p0; r

)
, j = 1, . . . , J f ; g = 1, . . . , G, (A35)

u(2),g
2, j (rs, Ω) = 0, Ω · n > 0; u(2),g

1, j (rs, Ω) = 0, Ω · n < 0; rs ∈ ∂V; j = 1, . . . , J f ; g = 1, . . . , G. (A36)

Nomenclature

Symbols
A(1) adjoint operator
ak, bk parameters used in Watt’s fission spectra approximation for isotope k
B forward operator
Eg boundary of energy group g

[E(L)]α
expected value of the leakage response taking into account contributions from the
uncorrelated parameters α, where α can be t, s, f , ν, respectively

[E(L)](2,U)
α

2nd-order contributions to the expected value [E(L)]α due to uncorrelated parameters
of α, where α can be t, s, f , ν, respectively

FSF
k fraction of isotope k decays that are spontaneous fission events

f j, fm2 parameters in vector σ f indexed by j and m2

G total number of energy groups
I total number of isotopes
Jn total number of parameters in vector N
Jp total number of parameters in vector p
Jq total number of parameters in vector q
Jσ f total number of parameters in vector σ f
Jσs total number of parameters in vector σs
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Jσt total number of parameters in vector σt

Jt total number of parameters in vector t
Jν total number of parameters in vector ν

l
variable for the order of Legendre-expansion of the microscopic scattering cross
sections, l = 1, . . . , ISCT

L(α) total neutron leakage from the PERP sphere
M total number of materials
N f total number of fissionable isotopes
Ni,m atom number density for isotope i and material m

Pl(Ω
′
·Ω)

Legendre and associated Legendre polynomials appropriate for the geometry under
consideration

Qg(r) source term in group g
r spatial variable
rd external radius of the PERP benchmark
Sb outer surface of the PERP sphere
sg

f ,i standard deviation associated with the model parameter σg
f ,i

sg
ν,i standard deviation associated with the model parameter νg

i
s j, sm2 parameters in vector σs indexed by j and m2

t j, tm2 parameters in vector σt indexed by j and m2

u(2),g1, j (r, Ω), u(2),g2, j (r, Ω)
2nd-level adjoint functions in group g at point r in direction Ω associated with the
fission parameter indexed by j (e.g., f j)

U(2),g
1, j;0 (r), U(2),g

2, j;0 (r)
zeroth order 2nd-level adjoint flux moments in group g at point r,

U(2),g
1, j;l (r) ,

∫
4π dΩ Pl(Ω)u(2),g1, j (r, Ω), U(2),g

2, j;l (r) ,
∫

4π dΩ Pl(Ω)u(2),g2, j (r, Ω)

U(2),g
1, j;l (r), U(2),g

2, j;l (r)
lth (l = 1, . . . , ISCT) order 2nd-level adjoint flux moments in group g at point r,

U(2),g
1, j;l (r) ,

∫
4π dΩ Pl(µ)u

(2),g
1, j (r, Ω), U(2),g

2, j;l (r) ,
∫

4π dΩ Pl(µ)u
(2),g
2, j (r, Ω)

[var(L)](U,N)
α

variance of the leakage response taking into account contributions solely from the
uncorrelated and normally-distributed parameters α, where α can be t, s, f , ν,
respectively

[var (L)](1,U,N)
α first-order contributions to the variance [var(L)](U,N)

α

[var (L)](2,U,N)
α second-order contributions to the variance [var(L)](U,N)

α

Vectors and Matrices

α vector of imprecisely known model parameters, α ,
[
σt;σs;σ f ;ν; p; q; N

]†
α0 nominal values of the parameters in the vector α
t vector of imprecisely known total parameters, t , [σt; N]†

s vector of imprecisely known scatter parameters, s , [σs; N]†

f vector of imprecisely known fission parameters, f ,
[
σ f ;ν; N

]†
σt vector of imprecisely known total cross sections
σs vector of imprecisely known scattering cross sections
σ f vector of imprecisely known fission cross sections

ν
vector of imprecisely known parameters underlying the average number of neutrons
per fission

N vector of imprecisely known atom number densities
p vector of imprecisely known fission spectrum parameters
q vector of imprecisely known source parameters
S(1) vector of first-order relative sensitivities of the leakage response
S(2) matrix of first-order relative sensitivities of the leakage response
Greek Symbols

[γ1(L)]
(U,N)
α

the skewness due to the variances of parameters α in the leakage response, where α
can be t, s, f , ν, respectively

δ Kronecker-delta functionals

θ
(2),g
1, j (r, Ω),θ(2),g2, j (r, Ω)

2nd-level adjoint functions in group g at point r in direction Ω associated with the
scattering cross section parameter indexed by j (e.g., s j)

Θ(2),g
1, j;0 (r), Θ(2),g

2, j;0 (r)
zeroth order 2nd-level adjoint flux moments in group g at point r,

Θ(2),g
1, j;0 (r) ,

∫
4π dΩθ

(2),g
1, j (r, Ω) and Θ(2),g

2, j;0 (r) ,
∫

4π dΩθ
(2),g
2, j (r, Ω)

λk decay constant for isotope k

[µ3(L)]
(U,N)
α

third-order moment of the leakage response with contributions solely from the
uncorrelated and normally-distributed parameters α, where α can be t, s, f , ν,
respectively
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ν
g
i number of neutrons produced per fission by isotope i and energy group g
νSF

k the spontaneous emission of an average neutrons of an isotope k

ξ
(1) ,g
0 (r) zeroth order of adjoint flux moment in group g at point r

ξ
(1),g
l (r)

lth (l = 1, . . . , ISCT) order adjoint flux moment in group g at point r,

ξ
(1),g
l (r) ,

∫
4π dΩ Pl(Ω)ψ(1),g(r, Ω), l = 1, . . . , ISCT

ξ
(2),g
1, j;0 (r), ξ

(2),g
2, j;0 (r)

zeroth order moments for ξ(2),g1, j;0 (r) ,
∫

4π dΩψ
(2),g
1, j (r, Ω) and

ξ
(2),g
2, j;0 (r) ,

∫
4π dΩψ

(2),g
2, j (r, Ω)

ξ
(2),g
1, j;l (r), ξ

(2),g
2, j;l (r)

lth (l = 1, . . . , ISCT) order 2nd-level adjoint flux moments in group g at point r,

ξ
(2),g
1, j;l (r) ,

∫
4π dΩ Pl(Ω)ψ

(2),g
1, j (r, Ω), ξ(2),g2, j;l (r) ,

∫
4π dΩ Pl(Ω)ψ

(2),g
2, j (r, Ω)

σ cross sections
σ

g
f ,i microscopic fission cross section in group g of isotope i

σ
g′→g
s,l,i

the lth order Legendre-expanded microscopic scattering cross section from energy
group g′ into energy group g for isotope i

σ
g
t,i microscopic total cross section in group g of isotope i

Σg
t (t; r) macroscopic total cross section for energy group g

Σg
f (f; r) macroscopic fission cross section for energy group g

Σg′→g
s (s; r, Ω′ → Ω) macroscopic scattering transfer cross section from energy group g′ into energy group g
ϕg(r, Ω) forward angular flux in group g at point r in direction Ω

ϕ
g
0(r) zeroth order of forward flux moment in group g at point r

ϕ
g
l (r)

lth (l = 1, . . . , ISCT) order forward flux moment in group g at point r,
ϕ

g
l (r) ,

∫
4π dΩ Pl(µ)ϕ

g(r, Ω), l = 1, . . . , ISCT
χg(r) material fission spectrum in energy group g
ψ(1),g(r, Ω) adjoint angular flux in group g at point r in direction Ω

ψ
(2),g
1, j (r, Ω),ψ(2),g

2, j (r, Ω)
2nd-level adjoint functions in group g at point r in direction Ω associated with the total
cross section parameter indexed by j (e.g., t j)

Ω, Ω′ directional variable
Subscripts, Superscripts
f fission
g, g′ energy group variable g, g′ = 1, . . . , G

g j, gm2

energy group associated with parameter indexed by j (e.g., f j, t j and s j) or m2 (e.g., fm2 ,
tm2 and sm2 )

i index variable for isotopes, i = 1, . . . , I

i j, im2

isotope associated with the parameter indexed by j (e.g., f j, t j and s j) or m2 (e.g., fm2 ,
tm2 and sm2 )

j index variable for parameters
k index variable for isotopes, k = 1, . . . , I
l order of Legendre expansion

l j, lm2

order of Legendre expansion associated with the microscopic scattering cross section
parameters indexed by j (e.g., s j) or m2 (e.g., sm2 )

ν number of neutrons produced per fission
m index variable for materials, m = 1, . . . , M
m2 index variable for parameters

m j, mm2

material associated with parameter indexed by j (e.g., f j, t j and s j) s j) or m2 (e.g., fm2 ,
tm2 and sm2 )

t total
s scatter
(1, U, N) first-order contributions from uncorrelated and normally-distributed parameters
(2, U) 2nd-order contributions from uncorrelated parameters
(2, U, N) 2nd-order contributions from uncorrelated and normally-distributed parameters
(U, N) uncorrelated and normally-distributed parameters
Abbreviations
1st
− LASS 1st-Level adjoint sensitivity system

2nd
−ASAM second-order adjoint sensitivity analysis methodology

2nd
− LASS 2nd-Level adjoint sensitivity system

ISCT order of the finite expansion in Legendre polynomial
PERP polyethylene-reflected plutonium
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