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Abstract: There has been an increasing trend of integrating photovoltaic power plants (PVs). One of 
the important challenges for distribution system operators is to evaluate the total installed power of 
a PV that a particular network can host (or PV hosting capacity) while keeping voltage and element 
constraints within required limits. The major drawback of the existing methods for calculating PV 
hosting capacity is that they use the same installed power of the PV systems for all simulated PVs, 
as these methods do not use external data sources about building roofs. As a consequence, this has 
a significant impact on the final accuracy of the results. This paper presents a probabilistic 
methodology for calculating the PV hosting capacity in low voltage (LV) networks. The main 
contribution of this paper is the improved modeling of PV generation using actual building roof 
data when calculating the PV hosting capacity, as every building is treated according to its actual 
solar potential. Monte Carlo simulations with incorporated stochastic consumption and PV 
generation models are utilized for load flow calculations of the actual LV network. The simulation 
results presented in this paper prove that the proposed methodology increases the accuracy of the 
final PV hosting capacity calculations. 
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1. Introduction 

There has been an increasing trend of installed photovoltaic power plants (PVs) in the European 
Union (EU) due to various national subsidies and net-metering schemes. Solar energy has great 
potential, mainly due to unutilized building roof surfaces. High distributed generation penetration, 
however, can cause overloads and voltage violations. Therefore, it is important to analyze different 
network development scenarios in advance [1–3]. 

Regulation in many countries promotes new smart grid technologies that enable higher PV 
penetration in the network, so assessment of the most appropriate technology for a particular 
network has become crucial. Calculating network hosting capacity is important for the comparison 
of benefits introduced by different smart grid technologies [4–6]. 

PV hosting capacity is a special case of network hosting capacity, where different PV penetration 
scenarios are analyzed. The PV hosting capacity can be interpreted as the maximum installed power 
of PVs (or a maximum number of consumers with PVs) that a particular network can host while still 
keeping voltage and element constraints within the required limits. A major benefit of the PV hosting 
capacity concept is the clear criteria for the PV penetration assessment, which makes the PV hosting 
capacity concept specific, measurable, and practical [6]. In order to statistically assess the PV hosting 
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capacity, various scenarios must be calculated for different PV locations and penetrations. This can 
provide a statistical description of the possible levels of PV penetration while voltages and element 
loadings are still within the required range. 

Many papers have dealt with this kind of problem. The obtained results are usually presented 
as a network violation probability, depending on the number of consumers with installed PVs or total 
nominal power of PVs in the network. The paper [7] described low voltage (LV) network planning 
based on the Monte Carlo approach, taking into account different random distributed generation 
(DG) locations. The probabilities of voltage levels and the maximum PV penetration limits were 
assessed. The study in reference [8] proposed a similar approach, where the PV hosting capacity was 
evaluated considering the probability of voltage limit violation occurrences at the customer level, 
according to different PV power factors. The approach developed by the Electric Power Research 
Institute (EPRI) [9] also proposed a stochastic approach when creating PV deployment scenarios. The 
stochastic nature of the analysis takes into account the uncertainty in the size and location of the 
future PV systems [9]. In reference [10], the work proposed a Monte Carlo-based technique to assess 
the impacts of different PV penetrations on LV networks, in order to estimate their corresponding 
hosting capabilities. Similarly, the authors in reference [11] proposed a probabilistic methodology for 
evaluating the impacts of PVs, electric heat pumps, micro combined heat and power units, and 
electrical vehicles on network operation states. The authors in reference [12] studied how to improve 
PV hosting capacity with a battery storage system. They developed a method to select the optimal 
size of the battery and converter unit, as well as the optimal placement of an LV-central battery 
storage system. PV hosting capacity increase potential for different local Volt/var control strategies 
and the associated grid losses for various types of LV feeders have been analyzed and compared in 
reference [13]. The authors in reference [14] proposed and demonstrated an integrated planning 
model that allowed distribution PV network hosting capacity constraints to be included in long-term 
grid planning. They demonstrated the impact of integrating a large amount of distributed small-scale 
storage batteries for use as hosting capacity enhancement in the distribution network in order to 
quantify its benefit in terms of overall system costs. In reference [15], a probabilistic-based framework 
to determine the maximum integration limits of DGs considering the voltage rise and voltage 
deviation constraints was proposed. This framework required the use of the hosting capacity model, 
which was formulated as a non-linear optimization problem. The authors in reference [16] performed 
extensive sensitivity studies to quantify the effects of several factors on the PV hosting capacity. The 
effects of number of customers with PV generators, PV power factor, voltage magnitude on the 
medium voltage system, load level, and conductor impedances were investigated. The authors in 
reference [17] addressed the applicability of PV hosting capacity, studying the methodologies of 
harmonic voltage distortion caused by PV. The voltage rise due to harmonic injection was analyzed 
and discussed, with the aim of validating the discussed model and also putting forward 
recommendations for connecting PV generators across other network systems. The authors in 
reference [18] studied the impact of single-phase PVs on PV hosting capacity by utilizing different 
percentages of PVs per phase and, consequently, studying the voltage unbalance. Similar approaches 
to those mentioned above were also presented in references [19–23]. Finally, comprehensive literature 
reviews have been provided in References [24,25]. 

The above overviewed methods, however, did not leverage building roof data when randomly 
allocating PVs in the network. Therefore, when performing simulations, buildings that had high PV 
potential and buildings that did not have PV potential were treated equally. As a consequence, the 
final results of PV hosting capacity were significantly impacted, which has also been shown in 
reference [7]. The method proposed in this paper utilizes roof data and outperforms these other 
methods, which is shown in the use-case section. 

In comparison with other approaches, the proposed method extends the current input data with 
actual building roof data. This has become possible with the availability of new data sources. With 
3D-point cloud data derived from light detection and ranging (LIDAR) and land register geographic 
information system (GIS) data, it is possible to form 3D roof models. Further, the solar irradiance for 
every roof can be determined by using actual tilts and orientations of particular roof surfaces. This 
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enables the calculation of PV system nominal power and stochastic generation for every roof from 
solar irradiance measurements. 

The main contribution of this paper is the improved modeling of PV generation using actual 
building roof data when calculating the PV hosting capacity, as every building is treated according 
to its actual solar potential. 

The structure of the paper is as follows: in Section 2, the proposed methodology is thoroughly 
described. In Section 3, the proposed methodology is demonstrated in a real LV network, using actual 
LIDAR and GIS data of an analyzed village. Finally, the discussion and conclusion are given in 
Sections 4 and 5, respectively. 

2. Methodology 

The PV hosting capacity is the maximum installed power of PVs that a particular network can 
host while still keeping network constraints within the required limits. It depends on a location and 
installed power of PV systems. We cannot predict the location nor the installed power of future PVs, 
so the problem can be formulated as follows: given the LV network with N number of consumers, 
the PV hosting capacity can be evaluated by examining all possible combinations of locations and 
installed power of PV systems. Calculating load flow for all possible combinations is computationally 
almost impossible, so we leverage the Monte Carlo method for solving this problem. 

The proposed methodology includes three steps. The first (and the most time-consuming) step 
is the acquisition and preprocessing of data from various sources, as shown in Figure 1. The second 
step is stochastic modeling of consumption and solar generation, which is used for probabilistic load 
flow calculations. The third and final step is the improved calculation of the PV hosting capacity 
using actual building roof data and leveraging Monte Carlo simulations, which is also the major 
contribution of this paper. 

 
Figure 1. Photovoltaic power plant (PV) generation modeling. 

2.1. Input Data Preparation 

Input data preparation is an important part of the proposed methodology. The required input 
data sources are 

• electrical network data; 
• measurements from smart meters (not essential); 
• LIDAR; 
• GIS (land register); and 
• solar irradiance data. 
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Network data are collected and pre-processed for a selected middle voltage (MV) feeder and 
corresponding LV grid. Low voltage consumers are modeled using smart metering data. In the 
absence of such data, stochastic models for similar areas can be used [7]. 

For modeling the solar irradiance on a building roofs, a digital elevation model (DEM) has to be 
obtained from 3D point cloud data, where the 3D point cloud data can be derived from LIDAR. 
LIDAR provides unstructured 3D point cloud data consisting of millions of points with x, y, and z 
components. LIDAR data preprocessing has been described, in detail, in reference [26]. Further, the 
tilt and orientation have to be calculated for every grid cell and converted into a vector polygon 
format. GIS data from the land register is used for extracting building roofs from LIDAR and linking 
the roofs to the LV network. The output of the LIDAR and GIS data preparation are polygons of 
building roofs, with tilt and orientation information for every grid cell of 1 m × 1 m (step A in Figure 
1) and are further represented in a matrix form. 

Next, all possible combinations of tilt and orientation using 5° step are calculated, where tilt goes 
from 0° to 90° and orientation goes from 0° to 180°. A final number of combinations is denoted as n, 
which is 648. Finally, A is area matrix of roof surfaces in m2 for every tilt-orientation combination and 
for every building roof polygon, where r is the number of roofs in LV network. The following matrix 
represents tilt-orientation information for every roof: 

𝑨 =  ൥𝑎ଵ,ଵ … 𝑎ଵ,௥⋮ ⋮ ⋮𝑎௡,ଵ … 𝑎௡,௥൩ ,𝑤ℎ𝑒𝑟𝑒 𝑨  ∈ 𝑹௡௫௥ (1) 

For the stochastic modeling of PV generation, hourly measurements of global horizontal 
irradiance (GHI) and diffuse horizontal irradiance (DHI) have to be obtained from the nearest 
weather station. The two input solar irradiance time-series vectors (which will be used in the later 
analysis) are defined as follows: 
• 𝑰𝒎  ቂ ௐ௠మቃ represents the GHI measurements; and 

• 𝑰𝒎,   𝒅  ቂ ௐ௠మቃ  represents the DHI measurements, for the last few years and with an hourly 
resolution. 

Next, these two vectors have to be transposed and stacked vertically in order to form a solar 
irradiance measurements dataset matrix X. 𝑿 =  ቈ 𝑰𝒎𝑻𝑰𝒎,   𝒅𝑻 ቉ ,𝑤ℎ𝑒𝑟𝑒 𝑿 ∈ 𝑹ଶ௫௠ (2) 

In the equation above, m denotes the number of observations. 
GHI and DHI measurements, together with tilt and orientation information for every roof, are 

essential for modeling PV solar generation in further calculations and will be described in the next 
section. 

2.2. Consumption and PV Generation Modeling 

Deterministic load flow analyses are not appropriate for modeling the LV network operating 
conditions due to the stochastic nature of consumers and PVs [3,27,28]. Instead, probabilistic load 
flow analyses must be carried out, taking into account the stochastic modeling of demand and 
generation. The proposed approach relies on the already developed stochastic load models derived 
from smart metering data in Slovenia, which have been described in Reference [7]. 

The most important step of the proposed methodology is the stochastic PV generation modeling 
of the building roofs, having different tilts and orientations. 

A detailed PV generation modeling is important for two reasons, 

• selecting roofs with high PV potential; and 
• accurate modeling of stochastic PV generation on different roof surfaces. 

First, the variables that will be used in the further analysis are presented in Table 1. 
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Table 1. Solar irradiance variables. 

Variable name  Unit Explanation 

Irradiance 𝐼 ൤𝑊𝑚ଶ൨ radiant flux received by a surface per unit area; 

Radiant exposure 𝐻 ൤𝑊ℎ𝑚ଶ ൨ radiant energy received by a surface per unit area. 

2.2.1. Solar Irradiance on Tilted and Oriented Surfaces 

Different buildings have differently oriented and tilted roofs; thus, this has to be incorporated 
when modeling solar irradiance. Solar irradiance measurements from weather stations usually 
include global and diffuse solar irradiance data on a horizontal surface [29,30]. Therefore, there are 
various models which are able to predict irradiance on a tilted and oriented surface (hereafter 
denoted by 𝐼୘) from measured GHI and DHI. In order to calculate solar irradiance on a particular 
roof surface from 𝑰𝒎 and 𝑰𝒎,   𝒅 weather station measurements, the well-known model developed by 
Klucher [29] was be used. The Klucher model is defined by the following equation [29,30]: 𝐼୘ = 𝐼୦,ୠ𝑅ୠ + 𝐼୦,ୢ ൬1 +  cos𝛽2 ൰  ൤1 +  𝐹ᇱ sinଷ ൬𝛽2൰൨   ሾ1 + 𝐹ᇱ cosଶ 𝜃 sinଷ 𝜃୸ሿ+ 𝐼୦ρ ൬1 −  cos𝛽2 ൰   (3) 

where 𝐼୘ denotes solar irradiance on a tilted surface, 𝐼୦,ୠ denotes the direct-normal component of 
solar irradiance on the horizontal surface, 𝑅ୠ denotes a variable geometric factor which is the ratio 
of tilted and horizontal solar beam irradiance, 𝐼୦,ୢ  denotes the global diffuse horizontal solar 
irradiance, 𝛽 denotes surface tilt angle from horizon, 𝜃 denotes incident angle of the surface, 𝜃୸ 
denotes the zenith angle, 𝐼୦  denotes global horizontal solar irradiance, and ρ  denotes the 
hemispherical–hemispherical ground reflectance. 

The Klucher model is crucial in the proposed methodology and can be understood as a function 
mapping GHI and DHI weather station measurement to global irradiance (GI) on a desired tilted and 
oriented surface (step B in Figure 1). 

2.2.2. Selecting Roofs with High PV Potential 

Different roofs are characterized with different surfaces and, consequently, different solar 
potentials. This section describes how to extract the most suitable surfaces for every roof (e.g., north-
facing surfaces for a particular roof will not be used in a model). 

First, mean annual irradiance vectors IA,m and IA,m,d are calculated from Im and Im,d, transposed 
and stacked vertically. 𝑿𝑨 =  ቈ 𝑰𝑨,   𝒎𝑻𝑰𝑨,   𝒎,   𝒅𝑻 ቉ ,𝑤ℎ𝑒𝑟𝑒 𝑿𝑨  ∈ 𝑹ଶ௫଼଻଺଴ (4) 

The resulting matrix XA has 8760 columns, as analyzed data have hourly resolution and columns 
in a matrix XA represent annual data (365 days × 24 h). 

Next, the Klucher model is applied to XA for all possible combinations of tilt and orientation 
using 5° step (n combinations). 

𝑰𝑨 =  ቎𝑖஺,   ଵ,ଵ … 𝑖஺,   ଵ,଼଻଺଴⋮ ⋮ ⋮𝑖஺,   ௡,ଵ … 𝑖஺,   ௡,଼଻଺଴቏ ,𝑤ℎ𝑒𝑟𝑒 𝑰𝑨  ∈ 𝑹௡௫଼଻଺଴ (5) 

In the last step, values in a matrix IA are summarized for every row separately to obtain annual 
solar radiant exposure for every tilt-orientation combination. The result is represented as a column 
vector H. 
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𝑯 = ෍ 𝑰𝑨,  ∶,𝒋଼଻଺଴
௝ୀଵ ,𝑤ℎ𝑒𝑟𝑒 𝑯 ∈ 𝑹௡௫ଵ (6) 

Further, vector H is normalized. 𝑯𝒏𝒐𝒓𝒎 = 𝑯𝒎𝒂𝒙(𝑯) (7) 

Next, Hnorm is further changed in such way that only surfaces having normalized annual solar 
radiant exposure greater than 0.8 are selected, which means that in further simulations PV systems 
will be placed only on the most suitable roof surfaces. This vector represents a metric of the PV 
potential for every surface (n combinations) depending on how much annual solar radiant exposure 
a particular surface receives. 

It is not optimal to cover the whole roof surface with PVs, and in some cases, a roof does not 
have any potential. It turns out that using a threshold of 0.8 leads to the installed power of PV panels 
being similar to those actually used in our country. This means that only roof surfaces with tilt-
orientation combinations greater than 80% of the optimal annual radiant exposure are selected for 
PV placement in our further calculations. 

Next, Boolean column vector Hmetric is calculated from Hnorm having n rows for all tilt-orientation 
combinations and equals to 1 for all suitable tilt-orientation combinations and to zero for other 
surfaces. The resulting vector Hmetric serves as a metric for selecting only the most suitable roof 
surfaces in further analysis (step C and D in Figure 1). 

After selecting roofs with high PV potential, stochastic PV generation for various weather 
scenarios on different roofs must be developed. 

2.2.3. Stochastic PV Generation Modeling using Actual Roofs Surfaces 

This section presents the development of stochastic PV generation models for differently 
oriented and tilted roofs and for various weather scenarios (step E in Figure 1). The main contribution 
of this paper is the improved modeling of PV generation using actual building roof data, as described 
below. 

PV generation is calculated from the solar irradiance for every surface of a particular roof. This 
brings a new challenge, as solar irradiance and, consequently, daily profiles are different for every 
tilt and orientation of the roof. Consequently, PV stochastic modeling in such cases is more complex, 
as the stochastic generation should be modeled for every tilt-orientation combination separately and, 
then, aggregated for every roof. 

The following solar irradiance matrix I is calculated from X using the Klucher model for all n 
tilt-orientation combinations and only for summer days (the highest solar irradiance in Slovenia is in 
summer), where s denotes the number of summer days in a dataset X 

𝑰 =  ቎𝑖ଵ,ଵ … 𝑖ଵ,௦⋮ ⋮ ⋮𝑖௡,ଵ … 𝑖௡,௦቏ ,𝑤ℎ𝑒𝑟𝑒 𝑰 ∈ 𝑹௡௫௦ (8) 

where i1,1 is the GI on a tilt 0° and an orientation 0° for first summer solar irradiance measurement, 
whereas in,s is the GI on a tilt 90° and an orientation 180° calculated from the last summer solar 
irradiance measurement. 

PV generation for a chosen hour in the Monte Carlo simulations is acquired as follows: 

1. Randomly choose one column for a previously chosen hour from matrix I. Here we utilize 
random sampling with replacement from a finite population, which means that one column can 
be selected more than once. The result is a vector 𝑫 ∈ 𝑹௡௫ଵ holding irradiance for every tilt-
orientation combination on a particular day and represents one weather scenario. 

2. Select roofs with high PV potential using Hmetric and utilize PV systems (μPV) and inverter 
efficiency (μinverter) to derive PV generation for all tilt-orientation combinations from vector D (Pg 
has unit [W/m2]) 
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𝑷𝒈 = 𝜇௉௏ · 𝜇௜௡௩௘௥௧௘௥ · 𝑯𝒎𝒆𝒕𝒓𝒊𝒄 · 𝑫,𝑤ℎ𝑒𝑟𝑒 𝑷𝒈 ∈ 𝑹௡௫ଵ (9) 

PV systems’ and inverters’ efficiencies of 15% and 95% are utilized in the calculations to obtain 
actual PV generations. 

3. Let matrix B represent a subset of matrix A, where B holds only the selected columns (randomly 
chosen roofs during PV hosting capacity calculations) and the total number of chosen roofs is 
denoted as i. For every column j in a matrix B (every selected roof), we calculate 

𝑷𝒈,   𝒓𝒐𝒐𝒇,   𝒋 = ෍൫𝑩௜,௝  · 𝑷𝒈൯௡
௜ୀଵ ,𝑤ℎ𝑒𝑟𝑒 𝑷𝒈,   𝒓𝒐𝒐𝒇,   ௝ ∈  𝑹 (10) 

4. Which means that PV generation is summarized for all surfaces in a particular roof to create PV 
generation on a particular day. 
After calculating PV generation for every roof in step 3, the results are stacked vertically to create 
a PV generation vector. 

𝑷𝒈,   𝑷𝑽 =  ቎𝑷𝒈,   𝒓𝒐𝒐𝒇,   𝟏⋮𝑷𝒈,   𝒓𝒐𝒐𝒇,   ௜ ቏ ,𝑤ℎ𝑒𝑟𝑒 𝑷𝒈,   𝑷𝑽 ∈  𝑹௜௫ଵ (11) 

5. Output of the procedure in step 4 is PV generated power for every chosen roof on a particular 
day, which is further used in load flow calculations. 

2.3. Calculating PV Hosting Capacity Using the Monte Carlo Method 

This section explains how the final load flow calculations are performed using the Monte Carlo 
method in order to calculate the PV hosting capacity. 

Probabilistic load flow analyses with the Monte Carlo method have been widely used for 
simulating LV networks operating states, considering various DG types [31–36]. In order to perform 
analyses for different seasons, day types, or hours, sequential Monte Carlo has to be used and 
stochastic models have to be made for every calculated sequence separately. The results of the Monte 
Carlo load flow simulations are computed based on repeated random sampling and statistical 
analysis. 

Probabilistic load flow calculations using Monte Carlo methods actually perform deterministic 
load flow calculations for a large number of times using different combinations of nodal load and 
generation values [3]. In further load flow calculations, the load, PV generation and the location of 
consumers with PVs are represented as random variables. The result of the proposed algorithm is a 
set C of possible PV hosting capacity values. Further, the probability distribution for a set C can be 
analyzed and interpreted. 

The proposed algorithm workflow for calculating the PV hosting capacity using actual roof 
surfaces is shown in Figure 2. The term “network violations” in Figure 2 refers to the following 
constraints: The voltage limits considered are in accordance with the SIST EN 50160 standard, which 
defines voltage limits for MV and LV networks within ±10% of the nominal voltage (Un). The 
maximally allowed voltage at MV and LV levels were 110% of Un. The maximally allowed cable 
loading was set to 75% nominal apparent power (Sn; due to cable installation factors) and 100% Sn for 
the transformer. 

The proposed algorithm workflow shown in Figure 2, for every hour, is as follows (numbers in 
the list below refer to Figure 2): 

1 Choose real number K which denotes the number of iterations and equals to a size of a final set 
C. 

2 Set i = 0, where i denotes the total number of chosen roofs and create empty matrix B, which later 
holds the information about the roof data. 

3 Randomly select one column from a matrix A holding roofs data and add a selected column to 
B. Here, we utilize random sampling without replacement, which means that every roof 
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(location) has the same chance of being chosen and that every roof is chosen only once (until the 
network violation occur and all the locations are reset). 

4 Generate stochastic load (described in Section 2.2) for all consumers and form a load matrix Pl 
of size r (number of roofs and consumers). 

𝑷𝒍 =  ቎𝑷𝒍,   𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒓   𝟏⋮𝑷𝒍,   𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒓   𝒓቏ ,𝑤ℎ𝑒𝑟𝑒 𝑷𝒍 ∈  𝑹௥௫ଵ (12) 

5 Generate stochastic PV generation (described in Section 2.2.3) for all chosen roofs and form a PV 
generation matrix Pg,PV using roof matrix B from step 3. 

6 Calculate load flow. Here, we solve the following equations: 

𝑃 ௞ − 𝑃஽௞ = 𝑉௞෍𝑉௝ൣ𝐺௞௝cos൫δ௞ − δ௝൯ + 𝐵௞௝sin(δ௞ − δ௝)൧;    𝑘 = 1,2, …𝑁ே
௝ୀଵ  

𝑄ீ௞ − 𝑄஽௞ = 𝑉௞෍𝑉௝ൣ𝐺௞௝sin൫δ௞ − δ௝൯ − 𝐵௞௝cos(δ௞ − δ௝)൧ே
௝ୀଵ  

𝐺௞௝ + 𝑗𝐵௞௝ = (𝑘, 𝑗) 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑠 𝑎𝑑𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 

 

(13) 

where PGk is active power generation, PDk is active power demand, QGk is reactive power 
generation, QDk is reactive power demand, Vk is voltage, and δk is voltage angle for a particular 
node k in a network. Vj is voltage and δj is voltage angle for a node j which is close to the node k. 
In our case, PGk, PDk, QGk, and QDk are random variables representing consumer demand and PV 
generation. PDk equals to Pl (calculated in step 7), QDk = 0.33 Pl, PGk for every bus equals to Pg,PV 
(calculated in step 8) and QGk = 0. 

7 Check network violations (voltage limits and element loadings). If there are no violations, return 
to a step 3. If there is at least one violation, go to the next step. 

8 Aggregate the nominal power of all PVs in the network without the last one (there were no 
violations until the last PV was added). If Pg,j denotes installed power of j-th added PV system 
in the network and Ck is one value in a set C of PV hosting capacity values then Ck is calculated 
as follows: 𝐶௞ = ෍𝑃௚,௝௜ିଵ

௝ୀଵ  (14) 

9 Add Ck to a set C which holds PV hosting capacities. 
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Figure 2. PV hosting capacity algorithm workflow. 

3. Case Study 

3.1. Data Preparation 

The proposed methodology was validated on a real LV network using LIDAR and land register 
GIS data of actual buildings. The first step is network modeling. The chosen LV network was supplied 
by a 250 kVA MV/LV transformer, having 7 feeders and 93 consumers. The main feeder lines were 
Al 70 mm2 cables, whereas the side branches were mainly Al 35 mm2 cables. 

The output of the electrical network LIDAR and GIS data preparation was polygons of the 
building roofs, along with tilt and orientation information for every 1 m x 1 m grid cell connected to 
the LV grid, as described in Section 2.1. 

3.2. Solar Potential Results for an Analyzed Village 

After the appropriate network and roof modeling, solar radiant exposure for every roof was 
calculated. This enabled assessment of the solar potential of the analyzed rural network (village) and 
selection of the roofs that had high PV potential, which will be used in further analyses as described 
in Section 2.2. As described in Sections 2.2.2, the normalized column vector Hnorm was calculated. 
Here, the vector Hnorm is reshaped to a matrix having orientation values on x-axis and tilt values on y-
axis, so that the resulting matrix for a chosen area can be plotted (shown in in Figure 3). In order to 
receive as much radiant exposure as possible, it is important to have a slightly west oriented PV 
panel. The optimal position around the analyzed weather station was at azimuth 198 ° and tilt 34 °. 
In order for the surface to receive at least 90% of the maximal yearly radiant exposure (red color), 
there were a wide range of tilt-orientation (azimuth) combinations available. The authors in reference 
[37] performed a national study of solar energy in Slovenia and came up with similar results. 



Energies 2019, 12, 4086 10 of 15 

 

Figure 3. Normalized yearly solar radiant exposure on a tilted and oriented surface for an analyzed 
area, which serves as a basis for selecting appropriate roof surfaces, depending on their solar 
potential. 

The solar potential for the analyzed village for a part of the chosen LV network is presented in 
Figure 4. Every color represents the normalized yearly radiant exposure that a particular polygon 
receives, depending on an optimal yearly radiant exposure, as presented in Figure 3. Red denotes 
that a particular surface has at least 80% of the optimal yearly radiance exposure; thus, those were 
the most suitable roof surfaces (mostly south-facing parts of the roofs), followed by the orange, which 
was within 60–80%. Finally, the light green color indicates the surfaces which were the least suitable 
for PV placement. As defined by the methodology proposed in Section 2.2.2., PV panels were placed 
only on the roof surfaces that were most suitable for PV placement and colored with red in Figure 4. 

 
Figure 4. Solar irradiance on a building roofs enables assessment of the solar potential for an analyzed 
village. 

3.3. PV Hosting Capacity Results 

The last step in the proposed methodology for calculating the PV hosting capacity was to 
perform the load flow simulations using the Monte Carlo method, which enabled assessment of the 
PV hosting capacity. The result of the proposed method is a set C of PV hosting capacity values. Here, 
we utilized kernel density estimation of a set C, which is a non-parametric way to estimate the 
probability density function of a random variable, to plot the results in Figure 5. 
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Figure 5. Results of calculating PV hosting capacity with the proposed methodology. Figure shows 
kernel density estimation of a set C of PV hosting capacity values calculated using the Monte Carlo 
method. 

Since it is easier to examine the quantiles of the sample from a cumulative histogram, we show 
it in Figure 6. The label “actual roofs” refers to our proposed methodology using actual building roof 
surfaces. The median PV hosting capacity is 189 kW. The values on the left part of the graph are 
buildings that are far from the transformer station and have a greater impact on the network voltages 
due to lesser short circuit apparent power. On the other hand, the values on the right of the graph are 
the buildings near the transformer station. 

Finally, the proposed methodology was compared with existing ones using the same PV 
installed power for every roof in a model. Since other methods do not utilize LIDAR and GIS data for 
modeling PV generation, those models cannot distinguish between different roofs. Therefore, other 
methods usually utilize the most often installed power of PV systems such as 10 kW or 15 kW. The 
blue line shows results when installed power of PVs is 15 kW, whereas the green shows results when 
installed power is 10 kW. There are two major shortcomings of these approaches. First, all roofs are 
treated equally, which means that roofs having high PV potential and roofs without PV potential are 
modeled the same. Second, the chosen PV installed power such as 10 kW or 15 kW significantly 
impacts the final results, as shown in Figure 6 (median hosting capacity when using 10 kW PVs is 
almost 50% higher than median hosting capacity when using 15 kW). 

.  

Figure 6. Comparison of the proposed PV hosting capacity methodology using actual roof surfaces 
(dashed red line) with existing ones, that use the same PV installed power per roof across all buildings 
(blue and green line). 
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As described in the methodology, the algorithm randomly chose one roof at a time and 
performed load flow analysis sequentially until a network violation occurred. This allows presenting 
the simulation results depending on the total PV installed power in the network, as shown in Figure 
7. 

The maximal voltage in the LV network for every simulation is represented with a circle, which 
is colored depending on violations. Green represents simulations without network violations, and 
red represents the simulations where violations occurred. The sizes of the red circles are correlated 
to the number of violations. It can be seen that violations started to occur when the total installed 
power of PV was around 100 kW. 

All the load flow calculations were performed using the PandaPower Python library [38]. 

 
Figure 7. Umax depending on total PV installed power in the network for all simulations. 

4. Discussion 

It was confirmed that the chosen PV installed power significantly impacted the final results of 
the PV hosting capacity in our case study. It can be seen (from the blue line in Figure 6) that, when 
the chosen PV installed power of all PVs in the network was 15 kW, the median PV hosting capacity 
was 160 kW. When the PV installed power was 10 kW, the median PV hosting capacity was 235 kW 
(the green line in Figure 6). Furthermore, it can be seen that the difference was significant (50%) and 
that the actual PV hosting capacity results (the dashed red line in Figure 6) lay somewhere in between. 

Choosing the single most appropriate PV installed power for modeling all the PVs in the 
network is hard as, in reality, every house will have a different PV panel. The major drawback of 
existing methods is that they use the same installed power for all simulated PVs and, consequently, 
the results can vary a lot, as shown in Figure 6; this problem has already been addressed in reference 
[7]. 

This is the case because distribution system operators do not possess any additional data about 
building roofs, and also as LIDAR data, which are essential for modeling building roofs, are not 
available in all countries. Additionally, combining electrical LV network data with other data sources 
is very hard and time-consuming, as it requires proper data science skills from preprocessing to 
connecting all the data sources. 

Our approach uses actual roof surfaces in load flow calculations, which consequently results in 
the improved accuracy of calculating the PV hosting capacity. Additionally, using actual roof surfaces 
in the calculations complicates stochastic PV generation modeling, due to the fact that generation 
depends on the tilt and orientation of a PV system, as opposed to other approaches in the literature 
where stochastic PV generation modeling is straightforward (where the same orientation and tilt is 
used for all PVs). 
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5. Conclusions 

In this paper, we presented a probabilistic methodology for calculating the PV hosting capacity 
using actual building roof data, which was achieved by combining electrical network, LIDAR, and 
GIS data. Stochastic PV generation models were developed for differently oriented and tilted roofs 
and for various weather scenarios. The proposed methodology was thoroughly described and 
confirmed in a case study. 

The major drawback of existing PV hosting capacity approaches is that they use the same 
installed power of PV systems for all simulated PVs, as these methods do not use external data 
sources about building roofs. Consequently, all roofs are treated equally, which means that roofs 
having high PV potential and roofs without PV potential are modeled the same. Another problem 
with existing methods is that a chosen PV installed power significantly impacts the final result, which 
was also confirmed in our case study. The major motivation behind our paper was to improve PV 
generation modeling by using external data sources. 

The main contribution of this paper is the improved modeling of PV generation using actual 
building roof data when calculating PV hosting capacity, as every building is treated according to its 
actual solar potential. It was confirmed that using actual building roof data is important for accurate 
calculation of PV hosting capacity in our case study by comparing our approach with existing ones. 
Our approach uses actual roof data in simulations, which consequently results in improved accuracy 
of final PV hosting capacity calculations. 
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