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Abstract: Embedding household appliances with smart capabilities is becoming common practice
among major fabric-care producers that seek competitiveness on the market by providing more
efficient and easy-to-use products. In Vertical Axis Washing Machines (VA-WM), knowing the
laundry composition is fundamental to setting the washing cycle properly with positive impact both
on energy/water consumption and on washing performance. An indication of the load typology
composition (cotton, silk, etc.) is typically provided by the user through a physical selector that,
unfortunately, is often placed by the user on the most general setting due to the discomfort of manually
changing configurations. An automated mechanism to determine such key information would thus
provide increased user experience, better washing performance, and reduced consumption; for
this reason, we present here a data-driven soft sensor that exploits physical measurements already
available on board a commercial VA-WM to provide an estimate of the load typology through a
machine-learning-based statistical model of the process. The proposed method is able to work in a
resource-constrained environment such as the firmware of a VA-WM.

Keywords: household appliances; machine learning; regularization; soft sensors; sustainability;
vertical axis washing machines

1. Introduction

Household appliances became extremely popular during the last century thanks to mass
production and the consequent affordable prices [1]. Efficiency and usability of such appliances have
dramatically improved during the years; however, there are still many challenges for manufacturers,
especially in the context of sustainability and user experience of such products. In recent years,
embedding smart capabilities (e.g., speech recognition and automatic decision making) into household
devices is becoming more and more popular [2] and essential to be competitive on the market, a trend
that has the potential to revolutionize the way we use and interact with such products. On the
other hand, strict environmental laws push manufacturers to develop innovative solutions to limit
the impact of their product on the environment. Both in the European and American markets, it is
mandatory to apply an Energy Label/Energy Star sticker on every product that indicates its energy
efficiency so that customers can make an informed choice of the products their are buying. Of course,
Energy Label/Energy Star influences consumer choice in making a purchase [3], making it extremely
important for the manufacturers to get high scores on such rankings.

In fabric-care appliances—washing machines (WM), tumble dryers (TD), and washer dryers
(WD)—the impact on the environment is mainly determined by energy and water consumption; hence,
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manufacturers put considerable effort into optimizing washing/drying cycles. In this regards, the
type of laundry (e.g., cotton, synthetic, etc.) that the user loads in WMs and WDs plays a fundamental
role in determining the optimal washing cycle configuration due to the different water absorption
properties and resistance of the fabric that, in a worst-case scenario, may be even damaged when
washed incorrectly (e.g., high temperature). We remark that the main source of variability in drying
and washing processes is represented by the laundry inserted in the appliance. Most of the WMs and
WDs available on the market require this information to be provided by the user through a physical
selector that is often left on the most general settings in order to avoid this manual operation with
undesirable consequences on the washing performance. For this reason, automating the process of
load detection would have considerable impact on the product efficiency and usability, making it more
appealing on the market. However, load typology is a quality that cannot be measured by a physical
sensor; it is thus necessary to exploit indirect measures that provide information on physical properties
of the laundry related to its typology (e.g., water absorption). A Soft Sensor (SS) [4] is a technology
that allows for the estimation of the value of a quantity that is too costly or even impossible to measure
from indirect sensor measurements, making it well suited for the typology detection task at hand.
In literature, SSs are typically divided into two categories [5]:

• Model driven—SSs that exploit the physical model of the process to perform the prediction.
• Data driven—SSs that build a statistical model of the process by leveraging historical data. Here

Machine Learning (ML) methodologies are often exploited.

In this paper, due to the complexity of the physical process at hand, we propose a data-driven
SS for laundry typology detection. As a reference-use case, we have developed such SS for a Vertical
Axis WM (VA-WM), the typical WM of the American market. The SS exploits measurements already
available on-board a commercial VA-WM, in particular, speed and torque from the electric engine,
without the need to equip the machine with other physical sensors that would be unfeasible in terms
of production costs. The proposed SS is based on supervised-learning [6] methods where a set of
input data (sensors measurements) with the associated correct output (laundry typology) is available;
a predictive function is then fit to such data by minimizing the opportune loss function on a training
set. In our work, a set of laboratory tests have been performed with known load in order to collect the
required data.

Due to the limited resources available in the VA-WM firmware, our approach relies on simple
regularization techniques. We also propose a more advanced solution based on hierarchical
classification methods that, even if computationally unfeasible for our application, can be of interest
with future hardware configurations.

Data-driven SS are common in industrial environments such as semiconductor
manufacturing [7,8], chemical [9–11], and automotive [12,13]. The methodologies employed
in the literature usually vary from simple regression/classification techniques such as linear
regression [14] and Bayesian Networks [11] to more complex neural-network-based algorithms [7].
However, in fabric-care home appliances, the application of SSs is limited to load quantity [15–18] and
humidity estimation [19,20] and the resource constrained environment makes the problem challenging
and the possible solution limited to simple ones.

The most discriminative property of different laundry typologies is the quantity of water absorbed
during the washing cycle; however, this is affected also by the quantity of clothes inserted in the WM.
For this reason, in Reference [18], we proposed a SS for load-weight estimation that provided accurate
predictions exploiting on-board sensor measurements. In this work, we assume the weight to either be
known or estimated through another load-weight SS.

The reminder of this paper is organized as follows: In Section 2, we describe the methodologies
employed in the development of our SS; in Section 3, we briefly introduce VA-WM and their washing
cycle; in Section 4, we detail the proposed algorithm; and we show the results in Section 5. In Section 6,
we draw the conclusions and discuss future works.
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All the data employed in the development of this work have been provided by Electrolux Italia
S.p.A. and cannot be shared for confidentiality reasons.

2. Methodologies

Supervised-learning techniques have been extensively studied in the past thanks to their
straightforward applicability to many prediction problems where a “labeled” dataset is available [21].
Given a set of input data xi ∈ Rp i ∈ {1, · · · , n}, where p is the number of features or predictors and
n is the number of available observations, with the associated correct output label yi that can either
be real yi ∈ R or categorical yi ∈ {0, · · · , K− 1} (respectively if the output is continuous or belongs
to a finite set of classes, as in the case of load typology), the goal of supervised learning is to find a
function y = fθ(x) parametrized by θ that approximates the real input–output relation of the data,
providing an estimation model that can be used to estimate the output for previously unseen input
values. Typically, in simple supervised methods, the data are organized in a design matrix X ∈ Rn×p

where each row corresponds to an observation; this allows to express optimization algorithms in a
convenient vectorial form. The simplest classification algorithm for binary output values yi ∈ {0, 1} is
called logistic regression and is at the foundation of the proposed soft sensor.

2.1. Logistic Regression and Regularization

Logistic regression models the input–output relation by means of the so-called logistic function
y = 1

1−eθT x
that assumes values in the open interval (0, 1) and, hence, provides a probabilistic

interpretation of the model that can be viewed as an estimate of the conditional probability p(y = 1|x).
Typically, the classification is performed by placing a threshold on the output value in order to assign
every element to either class 0 or 1. Training the model requires finding the value for the parameters
vector that minimizes the cross entropy loss [6] defined as follows:

`(θ) =
n

∑
1

yilog(ŷi) + (1− yi)log(1− ŷi) (1)

Here, yi and ŷi are respectively the real and predicted output. Minimization is usually achieved
through iterative algorithms such as Gradient Descent [22].

The simple logistic regression algorithm as explained above suffers from high variance whenever
the number of features is higher than the number of data available or substantial collinearity is present
in the data. This phenomena is often referred to as overfitting and happens whenever the model fits
very well the training set but fails at predicting accurately previously unseen data, making it useless
for any real application. To mitigate this phenomenon, regularization techniques that encourage the
model towards simpler but more general functions are employed in the optimization procedure. This
is achieved by adding a regularization term R(θ) that penalizes the norm of the parameters vector.
The most common regularization techniques are as follows:

• Ridge [23], that penalizes the L2 norm of the parameters vectorR(θ) = ||θ||2;
• Least Absolute Shrinkage and Selection Operator (LASSO) [24], that penalized the L1 norm of the

parameters vectorR(θ) = ||θ||1
Typically, the penalty is weighted by a hyperparamenter λ that allows to tune the amount of

regularization in order to find the best trade off between prediction error on the training set and
prediction capabilities on unseen data. The optimization problem solved in this case is

argmin
θ

`reg(θ) = argmin
θ

`(θ) + λR(θ) (2)

While both the methods are effective at reducing overfitting, they present substantial differences,
the most relevant being that LASSO introduces sparsity in the solution, meaning that a lot of parameters
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are equal to 0 (see Figure 1 for a graphical explanation of this phenomenon) and, hence, they can be
removed from the model with the associated predictor. This is desirable in a resource-constrained
environment since inference becomes much faster and the model needs less memory to be stored.
Minimizing the LASSO-regularized loss presents some challenges due to the non-differentiability of
the L1 norm. Instead of applying sub-gradient descent methods, the Alternating Direction Method
of Multipliers (ADMM) [25] algorithm has proven to be very effective and is employed in most
commercial tools. The idea of ADMM is to express the problem in Equation (2) in the following form:

argmin
x

`(x) + λR(z)

s.t. x = z
(3)

The optimization is then performed in an alternating fashion by minimizing with respect to
x, z, and the dual variables u the following scaled augmented Lagrangian (for more details, see
Reference [25]):

L(x, z, u) = `(x) + λR(z) + ρ

2
||x− z + u||2 − ρ

2
||u||2 (4)

The iterative algorithm then becomes

xk+1 = argmin
x
L(xk, zk, uk)

zk+1 = argmin
z
L(xk+1, zk, uk)

uk+1 = uk + xk+1 − zk+1

An interesting property of this methods is that, using subdifferential calculus [25], we can find a
closed form solution for the minimization zk+1 = argmin

z
L(xk, zk, uk):

zk+1 = Sρ/λ

(
xk+1 − uk

)
(5)

Here, Sε(·) is the soft thresholding operator defined as

Sε(a) =


a− ε, if a > ε

0, if |a| ≤ ε

a + ε, if a < −ε

(6)

It is now clear how sparsity is obtained; in fact, the soft thresholding operator assigns value 0 to
elements in absolute value less than the threshold ε. Note the soft thresholding is applied element
wise on vectors zk.

2.2. Multiclass Extensions of Logistic Regression

Logistic regression provides a simple method to perform binary classification; however, in the
presence of more than 2 classes, the method cannot be applied. For this reason, various extensions have
been proposed that either exploit multiple binary classifiers or define a different function that is able to
handle multiple classes. The most common approaches are i) One vs All and ii) softmax regression.

(i) One vs All can be used to extend any binary classifier to a multiclass setting; K different binary
classifiers fθk(x) are trained on the available data such that the kth classifier distinguishes the kth class
from all the other together. The classification is then performed by assigning every element to the class
of which the predictor has the higher value, i.e., ŷ(x) = argmax

k
fθk(x). Unfortunately, this approach

loses the probabilistic interpretation that was previously available in the binary set up.



Energies 2019, 12, 4080 5 of 13

(ii) Softmax regression defines the softmax function fk(x) = eθT
k x

∑K
i=1 eθT

i x
to model the multinomial

probability distribution of the multiclass problem (note that with K = 2 the softmax function is equal
to the logistic one). As before, the model is trained by minimizing the cross entropy loss through
iterative optimization methods. Remarkably, the probabilistic interpretation here is still valid since
∑K

1 fk(x) = 1 ∀x.
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Figure 1. Graphical explanation of the sparsity induced by the lasso. In red are the contour lines of the
standard loss while in blue is the region where ||θ||1 < 2; during optimization, the optimal point often
ends up being on a vertex of the hyper cube.

2.3. Multilevel LASSO

It is common in industrial contexts that the processes involved exhibit a hierarchical structure
that reflects the behavior of the data and the modeling strategies [26–28]. For example, in our case, the
load weight (from 1 kg to 8 kg) is an important discriminator that highly impacts the amount of water
absorbed by the laundry and imposes a hierarchical structure to our problem (Figure 2), where we
have 8 different leaves associated with different load-weight classes. In order to take into account this
structure, one could decide to build a single model for each leaf-node in the hierarchy at the cost of
reducing the amount of data available for training. Alternatively, multilevel approaches have been
exploited as an intermediate solution where some weights are shared between leaf nodes while others
are node specific. Multilevel LASSO [29] belongs to this category. More in detail, a set of features xj

with relative parameters θj are associated to each node of the hierarchy. A path P is then defined as
the set of nodes traversed by an input x in the hierarchy, and the prediction for x is obtained by the
following equation:

ŷ(x) = f (∑
j∈P

θjT
xj) (7)

where f can be any classification function such as logit or softmax. This model can be trained as before
by minimizing the cross entropy; moreover, it provides the flexibility to assign different values of the
hyperparameter λ to different nodes of the hierarchy in order to tune the model thoroughly.
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Figure 2. Hierarchical structure of our problem.

3. Case Study

WMs are extremely common in developed countries, both in domestic and professional
environments. It is possible to distinguish two different categories of WMs: vertical axis (Figure 3)
and horizontal axis. The first one is characterized by the vertical orientation of the drum rotational
axis and is usually popular in the American, Asian, and Australian markets. The second one, instead,
is common in the European market and has the drum oriented horizontally. The washing behavior
has very distinct characteristics due to the different effects that gravity has on the moving parts of the
machines. In particular, when the axis is oriented horizontally, the load moves inside the basket thanks
to the combined action of the rotating drum and gravity. The same does not apply in VA-WM, where
gravity simply keeps the load at the bottom on the basket and there is the need for an agitator that
provides the forces necessary for the load to move inside the drum by rapidly rotating clockwise and
counterclockwise. The agitator can assume two different shapes (Figure 4): the traditional agitator
extends over the entire height of the drum, and the Low Profile Agitator (LPA) instead has a limited
height and it requires a smaller amount of water to obtain the same washing performances. For this
reason, the producers usually adopt the second technology. Both the agitator and the drum are able
to rotate; however, only the agitator is used to wash the clothes while drum movements are used to
balance the load and to drain the water at the end of the cycle. Our soft sensor has been developed for
a VA-WM equipped with an LPA.

VA-WM Washing Cycle

The washing cycle of the VA-WM at hand is composed of three different consecutive phases:

• Warm-Up (WU): During this phase, slow rotations of the drum are performed in order to balance
the load. The agitator is locked and does not move.

• Water loading (WL): During this phase, the water is loaded inside the drum.
• Agitation (AG): Here, the actual washing is performed. The drum remains locked, and the agitator

rapidly moves the water and, consequently, the clothes, causing the dirt to be removed by friction.
The soap is typically added directly inside the drum by the user at the beginning of the cycle.

Our dataset was composed of various laboratory tests performed with different load typologies
and weights, where measurements from the Motor Control Board has been acquired during the entire
duration of the cycle. Of particular interest is the drum torque and drum speed that reflect the inertial
properties of the load and are very informative about its typology. In total, n = 260 tests have been
performed with four load typologies that, for confidentiality reasons, we will call in an anonymized
way types A, B, C, and D. Such tests were performed with laundry weights in [1 kg, 2 kg, . . . , 10 kg].
The size of the available dataset is limited by the time-consuming laboratory tests that require an
entire washing cycle to be performed with known weight and typology of the laundry. However, the
number of predictors is less than number of samples per class available, which makes our method
feasible when combined with regularization methods. In particular, each class has at least 50 tests and
the number of predictors in our problem is 50. Hence, the total dataset size is 5 times the number of
features used in the model.
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In Figure 5, we report an example of time evolution of the drum speed variable. The three washing
phases are clearly distinguishable and easily separable by automatic algorithms.
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Figure 5. Time evolution of the drum speed during a single cycle.

4. Load Fabric Detection Method

In this Section, we detail the proposed prediction algorithm with the preliminary feature
engineering and extraction phases. As noticeable in Figure 5, the acquired data exhibit a complex
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dynamical structure that cannot be directly handled by simple classification algorithms. For this
reason, a feature extraction is required where a set of meaningful quantities are extracted from such
complex data in order to obtain a set of predictors that can be organized in a design matrix and fed to
the ML algorithms. After the feature extraction, we built two prediction models, a simple one (called
Parsimonious Model) suitable for deployment in the VM firmware and a hierarchical (Hierarchical Model)
one that is more resource demanding.

4.1. Feature Extraction and Analysis

During the feature extraction phase, we determined by visual inspection of the signals some
meaningful quantities that allows to discern the different typology classes; typically, these are related to
properties of the signals or filtered versions of them such as peaks, transient times, temporal averages,
etc. During this process, the water-loading phase has been removed from the data because it depends
on the plumbing system and presents substantial variability from home to home and does not provide
consistent information.

Due to the extremely different behavior between the WU and the AG phases, we treated them
separately. In particular, in the WU phase 4, repeated commutations have analogous dynamics; we
thus extracted the same features from each of these commutation. Also, the AG phase is composed of
repeated movements with a much faster dynamic called “strokes”; here, we decided to extract some
features related to the single strokes and some related to the entire series. In the first case, statistics
over the entire series are then computed to obtain a single value for the total phase. At the end of the
procedure, a total of 50 features has been extracted from the two phases. It is worth remarking that,
only during the AG phase, there is water inside the drum, so we expect this part to be most informative
about the water absorption properties of the load and, hence, for our task of typology estimation. In
Figure 6, we report two examples of features extracted from the AG phase on the drum torque signal
as a function of the weight. It is clearly noticeable the difference between typologies, especially with
high weights. However, types A and B show very similar behaviors; this has been justified by domain
experts who suggested that the two loads have very similar absorption properties. We thus decided to
group together types A and B in a single class called type AB.
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Figure 6. Example of features related to the drum torque as a function of the weight.

4.2. Modeling

As stated above, the 4 WU commutations provide multiple observations of the same features;
hence, it is possible to either employ them on a single model by computing a set of statistics over such
features or by building separate models in a bagging fashion [30] and by performing the classification
by voting. Preliminary results showed that the former solution presents better performance [18]; hence,
we adopted it in all our models.
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(i) The Parsimonious Model (denoted also as "global” model in the following) was built by
employing logistic regression extended with the One vs All method to deal with the multiclass
classification problem. The approach has been combined with LASSO regularization, providing a
sparse solution feasible for deployment in the firmware.

(ii) The Hierarchical Model has been created with the following procedure: since no explicit
hierarchical structure was present in the features, we decided to assign to the root node (Figure 2) the
6 features most correlated with the output while the remaining 44 have been assigned to each of the
leaf nodes. In this way, the features in the root share the weights with all the leaf nodes and provide
most of the information related to the class that can then be refined using the contribution from the
remaining predictors. Moreover, the root model should help the classification in the cases where it is
more challenging (e.g., low weight). To summarize, the features are organized as follows:

• p0 = 6 features at level 0 (root)
• p1 = p2 = · · · = p8 = 44 features at level 1 (leaves)

Each row of the design matrix X is then defined as follows:

xi = [x̄0
i , x̄1

i , . . . , x̄8
i ] (8)

where

x̄j
i =

{
xj

i , if j ∈ Pi

01×pj , if j /∈ Pi
(9)

For a graphical explanation of the design matrix creation see Figure 7.

Features	
level	0	
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level	1	 0	 0	 0	 0	 0	 0	 0	 1kg	
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level	0	 0	 Features	

level	1	 0	 0	 0	 0	
	

0	
	

0	
	 2kg	

Features	
level	0	 0	 0	 Features	

level	1	 0	 0	 0	 0	 0	 3kg	

…	 …	 …	 …	 …	 …	 …	 …	 …	 …
	

Features	
level	0	 0	 0	 0	 0	 0	 0	 0	 Features	

level	1	 8kg	

Figure 7. Design matrix for the multilevel LASSO regression model.

Since no data for the type C class was available for 9/10 kg loads, we removed them from the
dataset in the multilevel approach.

5. Results

We report here the experimental results obtained with the proposed approach. To obtain
a statistically significant performance estimation, we employed Monte Carlo Cross Validation
(MCCV) [31] with 100 different test/train splits used to test the performance and 100 train/validation
splits used for hyperparameter tuning. The results are reported in terms of the classification rate
defined as follows: given a test set {(xi, yi) i = 1, . . . , ntest}, we compute the predicted class according
to the model ŷi for every i = 1, . . . , ntest. Then, let nmatch be the number of input values where ŷi = yi;
the classification rate (CR) can be computed as follows:

CR =
nmatch
ntest

· 100 (10)
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5.1. Parsimonious Model

In Figure 8, we report the classification rate as a function of the weight of the Parsimonious
Model. We compare it with simple logistic regression and softmax regression. All three approaches
present a CR that is better than chances for every weight; however, the performance at high weights
is consistently better, not surprisingly. From the feature analysis, it was noticeable how the different
typologies were better distinguishable with heavy loads. Using the estimated weight instead of the real
one causes a performance drop, but the CR remains still acceptable. With such similar performances
between different methods, the LASSO regularized one is always to be preferred because of its sparsity.
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Figure 8. Performance of the proposed model with real weight (a) and estimated weight (b).

5.2. Hierarchical Model

In Figure 9, we report the results for the Hierarchical Model compared with the Parsimonious “global”
Model and with a single model for every weight. We notice that, in this case, the Parsimonious Model
has the best performance overall while the multilevel approach is probably affected by the excessive
number of parameters compared to the available data. However, for low weights, it improves the
CR of the single-load model, meaning that the shared weights of the root node are helping in this
sense. These results highlight the benefit of using a simpler model in cases where a low amount of
data is available; however, the multilevel approach can be an interesting alternative for the hierarchical
problem, especially where an explicit structure is present also in the features instead of being created
artificially, as explained in Section 4.2.

(a) (b)

Figure 9. Performance of the proposed model with real weight (a) and estimated weight (b).
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6. Conclusions

In this paper, we proposed a data-driven soft sensor to detect the laundry typology in VA-WM.
The task is very challenging due to the resource-constrained environment, where the model is designed
to reside, and to the difficulty in determining the value of an unmeasurable quantity as the load
typology. We showed that the drum torque and drum speed variables provide meaningful information
about the absorption properties of the load which is directly related to the composition of its fabric. The
model achieved interesting performances especially at high weights (>4 kg) where the classification
rate was higher than 80% even when the estimated weight was employed. We proposed the use of
LASSO regularization, which provides a simple and sparse solution which is easy to implement in the
firmware of the WM which has limited computational resources. This decision has been taken with the
help of process engineers that are aware of the computational resources available on-board. We showed
an alternative hierarchical approach that, however, was not able to achieve comparable performance
probably because of the limited amount of data compared to the model size or because of imperfect
tuning of the regularization. As shown in the performance comparison, knowing the weight has a
considerable impact on the prediction capabilites of our model. The proposed method can be employed
to improve user experience by allowing the user to automatically start the laundry process without
manually inserting the information about the load and to improve the water/energy consumption by
optimizing the cycle depending on the load detected. Both these aspects have huge impacts on the
appeal of the product on the market. As a future work, it would be interesting to employ multi-task
learning methods where the two estimation models are trained together. For example, an approach
based on neural networks would allow common information coming from intermediate layers to be
shared between the two tasks in order to improve the quality of the predictions. Moreover, in the home
appliances field, there is quite a lot of work in the application of fuzzy control systems [32–35]; hence,
an extension of this work is to explore the possibility to employ them in future solutions.
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