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Abstract: The industrial sector has a large presence in world energy consumption and CO2 emissions,
which has made it one of the focal points for energy and resource efficiency studies. However,
large investments are required to retrofit existing industrial plants, which remains the largest barrier
to implementing energy saving solutions. Process integration methods can be used to identify
the best investments to improve the efficiency of plants, yet their timing remains to be answered
using an optimisation approach. Even more critically, such decisions must also account for future
investments to avoid stranded or regretted investments. This paper presents a method incorporating
investment planning over long time horizons in the framework of process integration. The time
horizon is included by formulating the problem using multiple investment periods. Investment
planning is conducted using a superstructure approach, which permits both commissioning and
decommissioning of units in the beginning of each period. The method is applied to a large case study,
with an industrial cluster neighbouring an urban centre to also explore options of heat integration
between industries and cities. Compared to the business-as-usual operation, optimal investment
planning improves the operating cost of the system by 27% without budget constraints and 16–26%
with constraints on budget and investment periods, which is reflected as an increase in net present
value and a decrease in CO2 emissions. In all cases, the operating cost benefits pay off the investment
in less than two years. The present work is efficient in finding energy saving solutions based on the
interest of industries. This method adds additional perspectives in the decision-making process and
is adaptable to various time horizons, budgets and economic constraints.

Keywords: process integration; investment planning; long time horizons; energy efficiency; MILP

1. Introduction

Final energy use and direct CO2 emissions in industry accounted for ~150 EJ and ~12 Gt in
2017, respectively, corresponding to 37% of global final energy consumption [1] and 34% of global
CO2 emissions [2]. Industry uses large quantities of coal and oil, consuming 60% of global coal and
28% of global oil production. Industrial final energy use has grown by 65% since 1971; consequently,
CO2 emissions are expected to increase 1.7 times by 2030 [3]. In the long term, this will result in a
2.7 °C increase in the global average temperature by 2100, which could be seen as an improvement
compared to the business as usual scenario, prior to the Paris agreement, but is still not enough to
prevent the possibility of dangerous changes in climate [4]. Thus, to confine the rise in the temperature
below 2 °C, as targeted within the Paris agreement, more aggressive energy efficiency improvement
strategies are needed. As one of the biggest energy consuming and CO2 emitting actors, industry is in
the spotlight of such strategies.

According to the IEA’s efficient world scenario, industry has a potential to produce nearly twice
as much value per unit of energy used compared to the current state [5]. Reaching this potential
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depends on the deployment of best available techniques and energy efficiency measures on industrial
sites. Energy efficiency and penetration of renewable energy technologies are two key elements
toward reaching the environmental targets. Energy intensive industrial sectors such as petrochemicals,
cement and steel have been subject to regulations in the past decade. Nevertheless, contributions
from all industrial producers are required to achieve long-term targets, because most “easy” solutions
have already been implemented and low-energy industries, such as food and textile manufacturing,
represent 70% of the energy saving potentials in industry [5].

Developing countries account for 49% of the final energy used in industry, followed by developed
countries with 40% [6]. This shows that improvements in the industrialised countries are important,
as they are large contributors to the overall consumption and can change the state of the art for the
developing countries. In general terms, the energy efficiency of an existing industrial plant or cluster
can be improved following a wide variety of technical actions, including

• maintaining and/or refurbishing existing equipment to restore their efficiency;
• replacing and retiring obsolete equipment and production processes with the best available

techniques; and
• using waste management measures such as insulation and sharing excess heat and material from

one process to another.

These retrofitting actions come with investment, the biggest barrier to improving energy
efficiency [7]. Energy efficiency investments are subject to rigorous criteria such as payback time
lower than 12 months, thus they have to compete for capital and short-termism [8]. Conversely, it is
often overlooked that current equipment on plants have a limited lifetime and investment would
eventually be required, regardless of resistance to capital expenditures. Therefore, considering long
time horizons provides investments in energy efficiency improvements better ground for competition
over just replacing the equipment which reach their end of lifetime (EoL). Nevertheless, this adds
another layer of complexity, as not only the question of “what to invest in”, but also when to make the
investment must be answered.

To answer these questions, this paper presents a novel method for simultaneous optimisation
of investment planning and process integration. Section 2 covers the investment planning methods
available in the literature, Section 3 illustrates the formulation and its detailed explanation, Section 4
presents the case study, Section 5 discusses the results and Section 6 draws the conclusions of this work.

2. State-Of-The-Art

Process integration (PI) is a domain in chemical engineering, which emerged due to the energy
crisis in the 1970s and has been developed since, with the motivation of addressing environmental
concerns, regulations and agreements. PI is based on mass and energy balances and aims to improve
existing processes, decrease material and energy losses and reduce operating and investment costs,
as well as environmental impact. The methods developed in the domain of PI can be considered in two
main groups: graphical methods based on pinch analysis (PA) [9] and mathematical programming (MP)
methods [10]. MP methods formulate PI in the form of mixed integer linear programming (MILP) [11]
or mixed integer nonlinear programming (MINLP) [12] problems. In addition, the optimisation of
several plants and industrial clusters [13] as well as single plants [14] has been addressed.

The applications of PI cover a wide range of industrial processes. Porzio et al. developed a PI
method based on evolutionary algorithm for better integration of steel plants, focusing on process
gases and their recovery [15]. Hansen et al. used PI to reduce the fresh water consumption of a
petrochemical plant employing mathematical programming and following a set of heuristics [16].
Tilak and El-Halwagi studied the optimal integration of calcium looping in cement production, while
considering potential symbiosis options with chemical plants [17]. However most PI methods, instead
of addressing a specific industrial sector, are generic and focus on the configuration of the utility
systems. Abikoye et al. proposed a flowsheeting superstructure to optimise the share of solar thermal
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energy systems coupled with heat storage in low temperature industrial processes [18]. Elsido et al.
developed a method for simultaneous optimisation of heat exchanger networks and utility system
integration, such as organic Rankine cycles [19]. The problem was solved using a novel decomposition
algorithm with integer cuts. Similarly, Kermani et al. developed a holistic and generic method,
which solves heat and mass integration, heat exchanger network design and improves the industrial
processes by organic Rankine cycle integration [20]. The method proposed in this work is based on
a PI method [21], which introduces location aspects, such as heat losses and piping costs between
plants. A comprehensive summary of the PI methods available in the literature can be found in [21].
The literature review in this work, therefore, focuses on investment planning approaches.

Investment planning has been applied in different fields, such as energy planning, carbon capture,
urban systems planning and production of chemicals and pharmaceuticals. One of the branches of
energy planning that has been extensively studied is generation expansion planning (GEP), which
determines the type, siting, sizing and timing of new plant additions. Grigorios et al. developed an
MILP GEP model using small periods (i.e., months), which results in better scheduling, as mid-term
decisions are permitted [22]. They also included the cost of refurbishment of the existing units which
helped with the problem convergence. Pereira et al. incorporated long and short time horizons in
GEP [23]. Although the investment planning of renewable energy system penetration in electricity
generation was carried out for a time horizon of 10 years, every year was evaluated in hourly time steps
to investigate the short term impact of the investment decisions. It was concluded that high dependence
on renewables increases the system’s sensitivity to the seasonality of resources, which is often neglected
in methods working only with yearly averages. The main gaps in GEP have been highlighted as
not including the transmission system in the analysis and considering only centralised systems [22].
A long-term expansion planning method was developed by Zhang et al. [24] to optimise an energy
hub, taking into account the transmission system. The objective was to find the system with the lowest
cost of satisfying the hub requirements. The units considered for investment included generating
units, transmission lines, natural gas furnaces and combined heat and power units. Botterud et al.
proposed a stochastic dynamic optimisation model for investments in power generation embodying
both centralised and decentralised decision-making [25]. Instead of minimising the total cost as
most methods in literature, they maximised either investor profits or social welfare in the system.
Energy planning models can be computationally expensive, especially when detailed time resolution
is considered. Bakken et al. treated model complexity by dividing it into operational and investment
sub-problems [26]. The operational planning model included alternative supply structures for multiple
energy carriers such as electricity, natural gas, liquid natural gas, oil, biomass and district heating and
their scheduling using hourly time steps. Afterwards, the planning of investment was carried out for a
long time horizon using an investment model, in the form of dynamic programming.

Most of the methods present in literature use an economic objective, as the main focus is the
investment. Although decreasing the cost indirectly helps reducing CO2 emissions, there are a few
methods explicitly targeting improvements in environmental impact. Mirzaesmaeeli et al. proposed a
method to select the optimal mix of energy supply sources to meet the current and future electricity
demand in Ontario, while minimising the cost of electricity [27]. The model also included constraints
on CO2 emissions, so that the selected power generation systems do not violate the regulations on
emissions that are in place. Fripp created a multi-period stochastic linear programming model called
Switch to reduce the environmental impact of power generation by choosing optimal portfolios for
renewable energy deployment [28]. The model was able to decide how much capacity to build in
different load zones, as well as how much power transfer capacity to install between them. Another
novelty in the model was the flexibility of using existing systems or turning them off for a period of
time, to decrease the operating and maintenance costs. Cristobal et al. studied CO2 mitigation by CO2

capture systems. They proposed a stochastic MILP model to retrofit a coal power plant and choose
between buying CO2 allowance and installing a CO2 capture system, as well as to determine the
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optimal time for investment [29]. Stochasticity was introduced with the variations in the future CO2

allowance prices.
Investment planning in urban energy systems is generally carried out at two different scales,

namely, building and district. Cano et al. developed an energy systems planning model for buildings
to decide which technologies to install, as well as the time of the investments [30]. They considered
ageing of technologies and its impact on system performance. A time horizon of 15 years with
12 monthly profiles and hourly time steps was considered. This way, variations in the availability
of some technologies, such as PV, were taken into account. A district-level, multistage stochastic
programming model was proposed by Lambert et al. [31] for optimal phasing of district heating
networks. In the first step, the optimal selection of pipe diameters was conducted, minimising capital
cost and heat losses. In the second step, the optimal deployment of district heating network pipes was
determined, over a long time horizon.

Industrial applications of investment planning include areas of waste management, utility
systems, process design and capacity expansion. Chakraborty et al. proposed a long-term operation
and investment planning method for waste management [32]. Although the investment decisions
were optimised for a five-year period, the optimal operation of the plant was carried out for
another 20 years, to correctly asses the long-term impact of investment decisions. The method was
extended, by introducing a dynamic view of designing optimal waste management strategies under
uncertainty [33]. Wickart and Madlener developed a method to optimally choose between investing in
an industrial boiler or a CHP unit and the appropriate investment time [34]. The effect of uncertainty
was considered for fuel and electricity prices. It was concluded that if the operational risks are high,
investors are likely to prefer a less capital-intensive option, i.e., investing in the steam boiler.

Sahinidis et al. studied a capacity expansion problem consisting of a network of existing and new
processes with forecasts for prices and demands within a long range horizon [35]. They formulated the
problem as a MILP model to optimise the net present value (NPV) and determine how much of each
chemical is produced in each period, the capacity expansion and shut-down decisions. This model was
extended, by including flexible processes, which could operate in both continuous and batch modes [36].
Norton and Grossmann further extended the method, by adding raw material flexibility on top of
product flexibility [37]. Raw material flexibility included using different chemical feedstocks, as well as
supplying them from different sources. Jain and Grossmann worked on long-term scheduling of tests
in new product development in the pharmaceutical industry [38]. They proposed a method which
considered the trade-off between greater product sales from a shorter-term test in parallel configuration
and lower expected value of total cost from longer sequential tests. This was an extension of the work
from Schmidt and Grossmann [39], considering resource limitations. Maravelias and Grossmann [40]
combined the scheduling [38] and planning [37] efforts in the literature to predict which products
should be tested and determine the detailed test schedules, production profiles and design decisions.
The selection of the product portfolio was added as an additional decision variable and disjunctive
programming was used to solve the problem.

The literature on investment planning has addressed a broad range of issues; however, the focus
of research was directed mostly towards energy planning and expansion of electricity generation
systems. Only a few methods in the literature propose methods for industrial problems, and even those
consider processes as simple input–output models, neglecting detailed flows. PI offers an effective
approach to such problems, incorporating heat cascade and mass balance constraints. A PI method
targeting industrial investment over a long time horizon has not been proposed. The work presented
in this paper combines the strength of investment planning and PI. This way, investments in industrial
plants and clusters can be optimally planned, without compromising on the level of detail of the
processes or energy conversion systems.
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3. Method

The method proposed in this work is an MILP framework for simultaneous optimisation of process
integration and long term investment planning (PIIP). Figure 1 illustrates a simple graphical overview
of the method. The problem consists of multiple investment periods (p ∈ P), each representing an
opportunity to modify plant configuration for the next periods (e.g., one period representing one year
in a time horizon of 20 years). Each period consists of single or multiple time steps (t ∈ TTp), which
are used to divide their corresponding period into smaller time segments (e.g., seasons, months, days,
etc.), representing different operational modes. Investment decisions are made at the beginning of
each period and the system is operated within the boundaries of those decisions in the time steps of
the period.

Figure 1. Overview of the PIIP method.

The objective function is selected as the NPV of the system, as given in Equation (1). NPV is the
sum of the cash flows in the periods, discounted by the expected interest rate. Including the interest
rate in the calculations makes it possible to distinguish investments in different periods.

min NPV (1)

NPV = ∑
p∈P

[
C c f

p(
1 + i

)p

]
(2)

where C c f
p is the cash flow in period p ∈ P and i is the expected interest rate. Although the PI model is

adapted from [21], a novel formulation for investment planning and economic analysis is proposed and
integrated to PI. Thus, the main focus in this section is describing the equations governing investment
planning and economic analysis. For a clear representation of the method, the PI model is discussed
briefly, followed by a detailed description of the investment planning formulation and economic model.

3.1. Process Integration

The PI model is based on energy and resource balances. Demand and supply of energy and
resources are modelled using units. The system includes two types of units in terms of their operation,
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namely process units (pu ∈ PU) and utility units (uu ∈ UU). Process units represent manufacturing
of products, and therefore have fixed size and operation, whereas utility units satisfy demands from
process units and have flexible size and operation. The units in the system are clustered with respect
to their locations (lc ∈ LC). The heat balance is closed within each location with hot (h ∈ HSlc) and
cold (c ∈ CSlc) streams from the units. Heat cascade constraints are added to ensure that heat flows
from hot streams to cold streams in each temperature interval (k ∈ Klc), and from higher to lower
temperature. Resource balances are closed within each location and for each layer (ly ∈ L) representing
the resource type. The electricity balance, in contrast, is closed for the overall system—simulating that
all units are connected to each other through the electrical grid. Heat and resource exchanges between
locations are possible, but subject to heat losses, temperature and pressure drop, and requiring the
associated infrastructure. Heat sharing from a location (lc ∈ LC) to another location (ol ∈ OLlc) can be
via two different transfer types (tr ∈ TR) (underground or above-ground), whereas resource sharing is
assumed to take place only through underground pipes. Heat and resource stream splitting constraints
ensure that heat and resource balances are not violated for inter-location exchanges. Figure 2 illustrates
the main equations of the PI model. Further details on it can be found in [21].

Figure 2. Formulation of the PI problem in [21].
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3.2. Investment Planning Model

The investment planning model consists of a set of constraints, which ensure that investment
actions are logical. Such actions include commissioning and decommissioning of units as well as
installation of pipes for heat and resource sharing between sites. As process units (pu ∈ PU) have fixed
operation, they cannot be bought or sold, which excludes them from investment analysis. The other
units are classified into main groups from the investment perspective, defined as sets in the formulation:

• BU: The set of base case units. These units exist in the initial system in which the plants are
operated business as usual. Thus, they do not need to be purchased initially.

• NU: The set of new units. This set consists of units that can potentially improve the efficiency
of the plants (e.g., heat pumps), but currently do not exist on the sites. Therefore, they must be
purchased before using them.

• IU: The set of investment units. This set includes base case and new units and it present to
simplify the formulation, ∴ IU ⊂ UU = BU∪NU.

At the beginning of each period (p ∈ P), an investment unit u ∈ IU can be commissioned
or decommissioned. Commissioning refers to the purchase and installation of the unit, whereas
decommissioning can either reflect selling the unit or using it until the end of its lifetime. Each of
these actions are modelled with binary decision variables zb

u,p for purchasing, zs
u,p for selling and zd

u,p
for reaching EoL, respectively. For a given time horizon, these actions can happen more than once.
For example, a unit can be repurchased if it is has been decommissioned at the beginning of the same
period or before. It is also possible to take a commissioning and decommissioning action on the same
unit in the same period. This gives flexibility to the system to repurchase units which recently reached
EoL or were sold.

Investment decisions are chronological and interdependent. For instance, a new unit (u ∈ NU)
has to be commissioned before it is decommissioned. Another binary variable, ze

u,p, is introduced to
the problem to define units’ existence and govern the relationship between the investment decisions.
If a unit exists, it cannot be repurchased before decommissioning it. This also prevents progressive
installation and phasing out of a unit.

A new unit (u ∈ NU) exists (i.e., ze
u,p = 1) if it has been purchased and has not yet been

decommissioned. The same applies to the base case units (u ∈ BU), except that they already exist in the
beginning of the project. These existence constraints are imposed by Equations (3) and (4), respectively.

ze
u,p = ∑

pp∈{1..p}
(zb

u,pp − zs
u,pp − zd

u,pp) ∀ u ∈ NU, p ∈ P (3)

ze
u,p = 1 + ∑

pp∈{1..p}
(zb

u,pp − zs
u,pp − zd

u,pp) ∀ u ∈ BU, p ∈ P (4)

An investment unit (u ∈ IU) in a period (p ∈ P) can be decommissioned only if it exists in the
previous period (see Equation (5)). This constraint applies to all periods except the first. In the first
period, a new unit (u ∈ NU) cannot be decommissioned (see Equation (6)), because it either does
not exist or has just been purchased. Conversely, a base case unit can be decommissioned in the first
period (see Equation (7)).

zd
u,p + zs

u,p ≤ ze
u,p−1 ∀ u ∈ IU, p ∈ P : p 6= 1 (5)

zd
u,p + zs

u,p = 0 ∀ u ∈ NU, p ∈ P : p = 1 (6)

zd
u,p + zs

u,p ≤ 1 ∀ u ∈ BU, p ∈ P : p = 1 (7)

In PI, utility units are sized according to the requirements of process units. When a utility unit is
defined, it has a reference size (e.g., 100 kW boiler), which is scaled with respect to the demand, using
a continuous variable, fu,p [21]. The same method is used to determine the real size of the investment
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units; they are defined with reference sizes and scaled with continuous variables (f ) to determine the
size of the equipment that is commissioned or decommissioned. Although f is literally a scaling factor,
it is referred to as size in this formulation, for simplicity.

The purchase size of a unit, f b
u,p, must be within a logical range, which reflects the minimum and

maximum sizes of the technology available in the market. This is enforced by Equation (8), which also
links the binary and continuous variables unit procurement.

zb
u,p · F min

u ≤ f b
u,p ≤ zb

u,p · F max
u ∀ u ∈ IU, p ∈ P (8)

The available size of an investment unit (u ∈ IU) changes throughout periods because of
investment decisions. For example, a unit available with a certain size might be sold in a period and
purchased again with a larger size in a subsequent period. A continuous variable, f e

u,p, is introduced in
the formulation to obtain the existing size of a unit in a given period. The base case units (u ∈ BU)
are defined with an initial size (F init

u ) according to the actual capacity of the equipment on the site,
as they exist in the beginning, whereas the initial size of new units is zero (i.e., F init

u = 0 ∀ u ∈ NU).
In the first period, the existing size is equal to the sum of the initial size and the difference between the
commissioned and decommissioned sizes.

f e
u,p = F init

u + f b
u,p − ( f s

u,p + f d
u,p) ∀ u ∈ IU, p ∈ P : p = 1 (9)

where f s
u,p and f d

u,p are decommissioned sizes for selling and dying, respectively. In the other periods,
the existing size is equal to the sum of what remained from the previous period and the difference
between the commissioned and decommissioned sizes (Equation (10)).

f e
u,p = f e

u,p−1 + f b
u,p − ( f s

u,p + f d
u,p) ∀ u ∈ IU, p ∈ P : p 6= 1 (10)

As progressive decommissioning is not allowed, the size that is phased out by decommissioning
( f s

u,p or f d
u,p) is equal to the size that existed before. In the first period, only the base case units (u ∈ BU)

can be decommissioned. Equations (11) and (12) ensure that the decommissioned size takes the value
of the initial size if one of the decommissioning actions is taken.

f s
u,p = F init

u · zs
u,p ∀ u ∈ BU, p ∈ P : p = 1 (11)

f d
u,p = F init

u · zd
u,p ∀ u ∈ BU, p ∈ P : p = 1 (12)

In the other periods, the decommissioned size is equal to the existing size from the previous
period. This constraint is expressed in nonlinear terms in Equations (13) and (14) and linearised in
Appendix A.

f s
u,p = f e

u,p−1 · zs
u,p ∀ u ∈ IU, p ∈ P : p 6= 1 (13)

f d
u,p = f e

u,p−1 · zd
u,p ∀ u ∈ IU, p ∈ P : p 6= 1 (14)

A unit can be used only as long as its lifetime. The remaining life (lu,p) is defined as an integer
variable which also depends on investment decisions. The constraints given in Equations (15)–(21)
govern the relationship between the unit life and the rest of the formulation:

• A unit can exist only if it has a remaining life (Equation (15)).
• Only the existing units have a remaining life (Equation (16)).
• In the first period, the remaining life is equal to either the life span (for new units) or the difference

between the life span and the initial age (base case units) (Equation (17)).
• In the other periods, the remaining life decreases compared from the previous period by one

period. In addition, buying actions increase the remaining lifetime while selling decreases it
(Equation (18)).

• A unit can be purchased again only after it is decommissioned (Equation (19)).
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• A unit dies only if its lifetime in the previous period is one year (Equation (20)).
• A unit can be sold only if its lifetime in the previous period is two years or more (Equation (21)).

ze
u,p ≤ lu,p ∀ u ∈ IU, p ∈ P (15)

lu,p ≤ ze
u,p · LI lt

u ∀ u ∈ IU, p ∈ P (16)

lu,p =
(

zb
u,p · LI lt

u

)
+
(

LI lt
u − LI init

u

)
·
(

1− zs
u,p − zd

u,p

)
∀ u ∈ IU, p ∈ P : p = 1 (17)

lu,p = lu,p−1 − ze
u,p−1 +

(
LI lt

u · zb
u,p

)
− ls

u,p ∀ u ∈ IU, p ∈ P : p 6= 1 (18)

lu,p−1 − ls
u,p ≤

(
1− zb

u,p

)
· LI lt

u + 1 ∀ u ∈ IU, p ∈ P : p 6= 1 (19)

lu,p−1 ≤
(

1− zd
u,p

)
· LI lt

u + 1 ∀ u ∈ IU, p ∈ P : p 6= 1 (20)(
1− ze

u,p−1

)
· LI lt

u +
(

1− zs
u,p−1

)
· LI lt

u + lu,p−1 ≤ 2 ∀ u ∈ IU, p ∈ P : p 6= 1 (21)

where LI lt
u is the unit life span, LI init

u is the initial age and ls
u,p is the life of the unit at the period it is

sold. ls
u,p is equal to the remaining life of the unit if it is sold, and zero otherwise. This is ensured by

Equations (22)–(24):

ls
u,p ≥ lu,p−1 − ze

u,p−1 −
(

1− zs
u,p−1

)
· LI lt

u ∀ u ∈ NU, p ∈ P : p 6= 1 (22)

ls
u,p ≤ lu,p−1 − ze

u,p−1 ∀ u ∈ NU, p ∈ P : p 6= 1 (23)

ls
u,p ≤ zs

u,p−1 · LI lt
u ∀ u ∈ NU, p ∈ P : p 6= 1 (24)

A unit can be used only if it exists and as much as its existing size. Equations (25) and (26) impose
such existence constraints and connect the investment planning model with PI.

yu,p ≤ ze
u,p ∀ u ∈ IU, p ∈ P (25)

fu,p ≤ f e
u,p ∀ u ∈ IU, p ∈ P (26)

where yu,p is a binary decision variable for whether a unit is used or not and fu,p is a continuous
decision variable reflecting the used capacity. Investment planning constraints for heat and resource
sharing pipes are similar to those for units, though with a few added constraints to reflect industrial
reality. Pipelines are long-lasting and, once installed, are used until the end of their useful service.
The formulation for pipelines therefore eliminates the possibility of decommissioning and the lifetime
is considered to extend beyond the planning horizon. Thus, investment decisions on pipes can be
reduced to a decision on procurement alone. Detailed equations governing the investment planning
for pipes are given in Appendix A.

3.3. Economic Model

The economic model comprises constraints to calculate cash flows and thus serves as a link
between the investment planning model and the objective function. At the beginning of each period,
investment actions are taken to either commission or decommission units and purchase pipes for heat
and resource sharing between sites. Investment in units and pipes is considered as negative cash flow,
whereas decommissioning actions are reflected as positive cash flow, as even at EoL, units retain some
monetary value (i.e., scrap value). In addition, units are operated during each period, consuming
resources, such as natural gas and electricity, which are reflected as negative cash flow. With retrofit
investments within and between sites, the current operating bill is reduced which is considered as
a positive cash flow. The net cash flow in a given period is calculated by summing the positive and
negative flows as in Equation (27).
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C c f
p =

(
C s

p + C sc
p − C inv

p

)
+
(

c opcur − C op
p

)
∀ p ∈ P (27)

where C s
p and C sc

p represent income from selling units and scrap, C op
p and C inv

p are the investment and
operating costs and c opcur is the current operating bill without any energy efficiency improvement.
The operating cost is calculated using Equation (28) accounting for fixed cost (e.g., maintenance)
associated with the activation of the units and variable cost associated with the unit sizes.

C op
p = ∑

u∈U

[
∑

t∈TTp

(
c op1

u · yu,p + c op2
u · fu,p

)
· ∆t op

t

]
∀ u ∈ U, p ∈ P (28)

where c op1
u and c op2

u are fixed and variable operating costs and ∆t op
t is the operating time. According

to the guidelines suggested in [41], the investment cost of a unit corresponds to the bare module cost,
which comprises the purchase cost of the equipment, materials (e.g., fittings), labour, freight, overhead
and engineering costs. For piping cost, a function including trenching is used [21]. Details of the
piping economic calculations are given in Appendix A. Equation (29) is used to calculate the total
investment cost in a given period. The investments are, when applicable, constrained with overall and
annual budget limits which is explained in detail in Appendix A as well.

C inv
p = ∑

u∈IU

(
C b

u,p + C mt
u,p + C lr

u,pC f r
u,p + C oh

u,p + C en
u,p

)
+ C ph

p + C pr
p ∀ p ∈ P (29)

where C b
u,p, C mt

u,p , C lr
u,p, C f r

u,p, C oh
u,p and C en

u,p are the purchasing, materials, labor, freight, overhead

and engineering costs of the units, respectively, and C ph
p and C pr

p are heat and resource piping costs,
respectively. Purchase cost is calculated based on the investment decisions z b

u,p and f b
u,p in Equation (30).

All the other components of the bare module cost are calculated as a fraction of the purchase cost
in Equations (31)–(35). In the case of re-buying a unit, although investment on the equipment itself,
labour, freight and overhead is required again, reinvesting in materials and engineering can be avoided.
Thus, materials and engineering costs apply only to new units, u ∈ NU, when they are purchased for
the first time.

C b
u,p = c inv1

u · z b
u,p + c inv2

u · f b
u,p ∀ u ∈ IU, p ∈ P (30)

C mt
u,p = C b

u,p · F mt
u ·

(
1− z bb

u,p

)
∀ u ∈ NU, p ∈ P (31)

C lr
u,p = C b

u,p · F lr
u ∀ u ∈ IU, p ∈ P (32)

C f r
u,p = C b

u,p · F fr
u ∀ u ∈ IU, p ∈ P (33)

C oh
u,p = C b

u,p · F oh
u ∀ u ∈ IU, p ∈ P (34)

C en
u,p = C b

u,p · F en
u ·

(
1− z bb

u,p

)
∀ u ∈ NU, p ∈ P (35)

where F mt
u , F lr

u , F fr
u , F oh

u and F en
u are cost factors for materials, labour, freight, overhead and

engineering, respectively; c inv1
u and c inv2

u are fixed and variable investment cost parameters related
to the existence and size of the units, respectively; and z bb

u,p is a binary variable which is activated if a
unit has been previously purchased. Although the cost factors are adapted from [41], the investment
cost parameters are derived using equipment cost functions. Equations (31) and (35) are nonlinear
equations, replaced by a set of linear constraints; the details of which are given in Appendix A.
The binary variable z bb

u,p takes the value 1 if its corresponding unit has been purchased in one of the
previous periods and 0 otherwise. This is ensured by Equations (36)–(38).

z bb
u,p = 0 ∀ u ∈ NU, p ∈ P : p = 1 (36)
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z bb
u,p ≤ ∑

pp∈{1..p−1}
z b

u,pp ∀ u ∈ NU, p ∈ P : p 6= 1 (37)

z bb
u,p ≥ zb

u,pp ∀ u ∈ NU, p ∈ P, pp ∈ {1..p− 1} : p 6= 1 (38)

After a unit is purchased, it starts to lose its economic value. A double declining depreciation
method is used in this work, as it is more realistic compared to straight line depreciation [41]. In the
first period, only the base case units have remaining value, whereas this value is zero for new units
(Equations (39) and (40)). In the other periods, remaining value and depreciation are calculated with
respect to each other and the investment decisions (see Equations (41) and (42)).

C rv
u,p = cb

u ·
(

1− 2 · rdep
u

)LI init
u ∀ u ∈ BU, p ∈ P : p = 1 (39)

Crv
u,p = 0 ∀ u ∈ NU, p ∈ P : p = 1 (40)

C rv
u,p =

(
C b

u,p−1 − C sv
u,p−1 − C dv

u,p−1

)
+ C rv

u,p−1 − C dep
u,p−1 ∀ u ∈ IU, p ∈ P : p 6= 1 (41)

C dep
u,p =

[(
C b

u,p − C sv
u,p − C dv

u,p

)
+ C rv

u,p

]
· rdep

u ∀ u ∈ IU, p ∈ P (42)

C rv
u,p, C dep

u,p , C sv
u,p and C dv

u,p are the remaining, depreciated, sold and EoL values, respectively;

cb
u is the purchase cost of the base case units; and rdep

u is the depreciation rate. C dv
u,p and C sv

u,p are
continuous variables that take the remaining value of the unit if it reaches EoL or is sold, respectively.
The relationship between them and the remaining value is enforced by Equations (43) and (44).
The conversion of these nonlinear equations into a set of linear constraints is explained in Appendix A.

C sv
u,p = C rv

u,p · z s
u,p ∀ u ∈ IU, p ∈ P (43)

C dv
u,p = C rv

u,p · z d
u,p ∀ u ∈ IU, p ∈ P (44)

It is assumed that if a unit reaches EoL it retains its salvage value (csal
u ), which is typically a

small fraction of the initial investment (see Equation (45)). Conversely, if it is sold before reaching
EoL, the remaining value is the maximum of C sv

u,p and the salvage value, as given in Equation (46).
The maximum function is nonlinear; however, it can be converted to a set of linear equations, as
explained in Appendix A.

C sc
u,p = csal

u · z d
u,p ∀ u ∈ IU, p ∈ P (45)

C s
u,p = max

(
C sv

u,p, csal
u

)
∀ u ∈ IU, p ∈ P (46)

3.4. Solution Strategy

The MILP model presented in this work can be solved by commercial solvers such as Gurobi [42]
or Cplex [43], using a linear programming-based branch and bound algorithm. However, if a
large industrial case study with several plants is considered, the problem size increases drastically.
This increase is related to the large number of units and to the number of potential connections between
plants for heat and resource sharing purposes. Taking into account these aspects within a multi-period
formulation considering a long time horizon makes the model computationally expensive, even simply
for finding an integer feasible solution. To solve large-scale problems without compromising model
complexity, a solution strategy is proposed. Model testing identified piping between the plants to
be the bottleneck. This can be explained due to the variety of heat and resource sharing media (e.g.,
steam at different pressure levels), directions (i.e., several candidates for excess heat) and modes (i.e.,
underground and above-ground). The suggested solution strategy solves the problem by initially
neglecting plant connections, which provides a feasible integer solution. With this incumbent solution,
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the larger problem becomes tractable and can be solved to optimality within a shorter time frame, as a
result of reduced computational burden. Figure 3 schematically illustrates the solution strategy.

Figure 3. Strategy for solving the problem in two steps; initialisation and optimisation.

3.5. Systematic Generation of Multiple Solutions

Finding a single optimal solution in real industrial problems may be problematic, as there are
often practical constraints that cannot be accounted for in the mathematical programming framework.
In such cases, it is beneficial to provide multiple solutions for industries to select that which best
fits their interest. Parametric optimisation is a technique used to generate multiple solutions in a
systematic way aiming at optimising more than one objective function (see Equation (47)) [44].

min f (x, y), g(x, y) (47)

The multi-objective optimisation problem is reformulated, such that one of the objective function
is optimised while the other one is constrained (see Equations (48) and (49)) above or below
certain parameters (i.e., ε), which are increased or decreased systematically, resulting in a pool of
optimal solutions.

min f (x, y) (48)

g(x, y) ≤ ε (49)

Although the solution strategy presented in Section 3.4 decreases the computation time, it is not
sufficient for parametric optimisation in which several optimisation runs are carried out. To solve
the problem effectively and generate multiple interesting solutions, a different strategy is followed.
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First, the parametric optimisation problem is solved using the method in [21], without considering
investment planning, setting the objective as the sum of the annual operating and annualised utility
investment costs while the annualised piping cost is constrained with ε. This results in an initial
solution pool with investment targets on piping between the plants as well as energy conversion
technologies. Based on those targets, the binary variables to invest in pipes and units are fixed, as well
as the sizes of the pipes, and PIIP is solved for each solution in the initial pool to determine the
optimal timing for investments considering yearly and overall investment budgets. Figure 4 depicts
the parametric optimisation solution strategy.

Figure 4. Parametric optimisation solution strategy: targeting and optimising.

4. Case Studies and Utility Systems

The case study is adapted from the authors of [21] and consists of nine locations. In eight of
the locations there are industrial plants operating at their business as usual state, while a district is
placed in one of the locations, representing part of a city close to the corresponding industrial cluster.
Energy and resource balances are closed within each location at the current state. Thus, all locations
have access to the resources required for their operations (e.g., natural gas and electricity) as well as
energy conversion systems (e.g., boiler) to provide the required services. As the focus of this work
is energy consumption, the industrial plants and the district are modelled only using their energy
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flows, i.e., their electricity, and hot and cold streams. The resources considered are, therefore, linked to
provision of energy services, such as natural gas, electricity and water.

The models of the industrial plants are adapted from [45,46] and scaled with the flowrate of the
main product. The district model includes the demand for district services, such as space heating,
domestic hot water, cooling, refrigeration and electricity, representing a potential symbiosis with
the industry by heat sharing. This model is adapted from [47] and scaled with a population of
50,000 people, representing a typical medium-sized district. Figure 5 illustrates the overview of the
case study with the locations and sizes of the sites.

Figure 5. Layout of the industrial cluster neighbouring a district.

Assuming consistent industrial production, the industrial plants are modelled with fixed
production rates. In addition, production capacity expansion throughout the studied time horizon is
not considered. Seasonal variations are considered in the district model, as the demand for the district
services change drastically throughout a year. The population of the district is assumed to remain
constant during the evaluated project time. A time horizon of 20 years is evaluated with each year
corresponding to a period in the mathematical formulation.

4.1. Utility Systems and Resources

Utility systems include energy conversion technologies that currently exist on the sites, u ∈ BU,
and the ones which can be integrated to improve the system, u ∈ NU. The utility systems of all the
sites are included in the mass and energy balance analysis, but several are excluded from investment
planning:
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• Site 4: The heating utility of the cement site is kiln, whereas cooling is carried out by air. Recovering
the excess heat from the cement site and using it in other sites is not considered, as the technologies
required are not mature enough. Thus, improvements in the utility system of the cement plant is
not included in investment planning.

• Site 8: The waste incineration plant has a symbiosis potential by heat sharing with the other sites;
however, improving the plant itself by integrating more efficient technologies is not studied in
this work.

• Site 9: The district model is added in the case study to extend the potential of symbiosis. Except for
sharing industrial excess heat with the district using a pipeline, improvements in the district
utility system are not examined.

4.1.1. Existing Technologies on the Plants

Each plant is currently operated with conventional energy conversion technologies, such as
boilers, steam networks, cooling circuits and towers. The existing technologies have the advantage that
the investment has already been made, and therefore do not require an initial investment. However,
they are aged equipment and are often less efficient than the competitors available in the market
(alternative technologies or more efficient, modern replacements).

Boilers

Boilers are the most common technology used in industrial plants to convert chemical energy into
heat by combustion. All industrial plants in the case study, except for cement, have boilers, which
currently supply their heating requirements. The boilers in this case study are modelled according to
the guidelines suggested in [11]. Table 1 depicts the investment parameters (c inv1, c inv2) as well as the
initial size (F init) and age (LI init) of the boilers. The fixed and variable investment costs are calculated
according to [48] and the life span is considered as 20 years, according to the authors of [49].

Table 1. Existing boilers and their investment parameters.

Location F init (-) c inv1 (ke) c inv2 (ke) LI init (years)

Site 1 7 388 13 16
Site 2 62 388 13 12
Site 3 30 388 13 11
Site 5 19 388 13 9
Site 6 11 388 13 6
Site 7 190 388 13 8

Steam Networks

Steam networks are used to distribute high temperature heat generated in boilers to the processes
on site. Distributing heat using a steam network is advantageous, not only because steam is a good
heat transfer fluid but also as electricity is co-generated by expanding high-pressure steam through
turbines. The steam network model of each site is built as a super-structure, following the method
of [50].

Steam networks consist of turbines and steam production and distribution levels, called headers,
which are simply pipelines. As the pipelines are already installed on the sites and have a long lifetime,
it is assumed that only the turbines are involved in the investment planning decisions. The existing
turbines and their investment parameters are depicted in Table 2. The investment cost parameters are
calculated according to the method in [41] and linearised to fit the MILP framework. The life span of
turbines is assumed to be 20 years [49].
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Table 2. Existing steam network turbines and their investment parameters.

Location Inlet (bar) Outlet (bar) F init (-) c inv1 (ke) c inv2 (ke) LI init (years)

Site 1 45 24 1.3 64 22 16
Site 1 45 8 1.6 153 19 16
Site 2 45 24 12.2 64 22 12
Site 2 45 8 12.4 153 19 12
Site 3 45 2 13 232 16 11
Site 5 45 2 8 232 16 9
Site 6 45 4 5 195 18 6
Site 7 45 24 24 64 22 8
Site 7 45 8 14 153 19 8
Site 7 45 4 50 195 18 8

Cooling Towers

The main cooling media in industrial plants are air and water. While heat from processes is
discharged to the environment directly from aero-coolers, cooling water circuits first collect the excess
heat in water and then release it to the environment via cooling towers. The cooling tower model
in this work is adapted from that in [51]. Table 3 outlines the investment parameters of the cooling
towers in the system. The life span of cooling towers is estimated to be 25 years [49] and the investment
cost parameters are calculated according to the method in [48].

Table 3. Existing cooling and their investment parameters.

Location F init (-) c inv1 (ke) c inv2 (ke) LI init (years)

Site 1 9 82 13 15
Site 2 57 82 13 10
Site 3 22 82 13 3
Site 5 5 82 13 14
Site 6 2 82 13 6
Site 7 150 82 13 4

4.1.2. Additional Technologies

Energy conversion technologies that can potentially improve the efficiency and operating cost
of the system are considered as additional technologies. Although they are more efficient than the
technologies already installed on the plants, they require investment, which might pose a barrier to
their purchase and installation. Appropriate additional technologies are selected based on the grand
composite curves (GCCs) of the plants given in Appendix A.

Heat Pumps

Heat pumps (HPs) are used to recover low temperature excess heat and upgrade it to a higher
temperature. Site 1, 2, 5 and 7 have a potential for HP integration, as they have a pinch temperature at
which HPs can operate and heat recovery is possible with a small temperature lift. The investment
cost of HPs is calculated according to the method in [41], considering that the main contributors are
two heat exchangers (i.e., evaporator and condenser) and a compressor. The life span of the HPs is
estimated as 15 years, according to the method in [49]. Table 4 summarises the investment parameters
of the HPs.
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Table 4. Potential heat pumps and their investment parameters.

Location c inv1 (ke) c inv2 (ke) LI lt (years)

Site 1 26 52 15
Site 2 556 216 15
Site 5 270 454 15
Site 7 305 217 15

Mechanical Vapor Recompression

Mechanical vapour recompression (MVR) works using a similar principle to HPs, but instead of
using an intermediate fluid, vapor is compressed to a higher pressure and temperature. In this case
study, sites 1, 3, and 6 have a potential for MVR integration when importing 1 bar steam from the other
sites and upgrading it to 2 bar steam. The investment parameters of the MVRs are calculated according
to [41], and the life span is estimated as 15 years [49]. Table 5 shows the investment parameters of
the MVRs.

Table 5. Potential mechanical vapour recompression and their investment parameters.

Location c inv1 (ke) c inv2 (ke) LI lt (years)

Site 1 36 317 15
Site 3 151 261 15
Site 6 9 38 15

Internal Combustion Engines

Internal combustion engines (ICEs) are alternatives to industrial boilers. They have the advantage
of co-generating heat and electricity. However, because of engine cooling water, they are applicable
only for processes with low pinch point. In addition, they are not used for large scale applications.
Hence, they can only partially replace boilers. Based on the preliminary analysis of the GCCs, sites
1, 3, 5 and 6 have a potential for ICE integration. The investment cost parameters of the engines are
adapted from those in [46] as 117 ke and 1169 ke for the fixed and variable cost, respectively. The life
span is estimated as 20 years [49].

5. Results and Discussion

The method is applied to the case study following several scenarios and solution strategies.
Section 5.1 determines investment planning without limitation on the budget, Section 5.2 studies the
impact of seasonality in the investment decisions, Section 5.3 considers restricting the investment
budget as well as the investment period and Section 5.4 considers parametric optimisation to obtain
multiple investment scenarios. Section 5.5 compares the solutions in Sections 5.1 and 5.3 with the
business as usual operations and investments of the industrial cluster.

5.1. Optimal Investment Decisions without Budget Constraints

Optimal investment planning for the system introduced in Section 4 is determined for a horizon
of 20 years, without any budget constraints. The optimal NPV is obtained as 463 Me, considering
operating and investment costs, resulting in 7748 kt savings on CO2 emissions. The investment
decisions can be grouped in two; within the plants on energy conversion systems and between the
plants on piping. The investment cost in the optimal solution totals 107 Me, dominated by investments
in infrastructure within the plants, which represent 79%. Figure 6 depicts the results in terms of
investment cost and the year of investment; to maintain simplicity and clarity, decommissioning is not
included in the figure.
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Figure 6. Optimal investment planning without budget constraints.

Cogeneration engines are installed in Sites 1, 3, 5 and 6 as these sites have relatively low pinch
points and thus allow such integration. In addition, heat pumps are integrated in Sites 1, 2 and 7,
taking advantage of transferring heat across the pinch point with a small temperature lift. As heat
pumps have a life span of 15 years, they reach their EoL before the end of the evaluated project period.
For this reason, recurring investment is be observed; this also implies that their payback time is less
than five years.

In addition to the integration of more efficient energy conversion technologies, the system is
improved by installing steam pipes between the sites. Heat is shared using high-pressure steam (e.g.,
10 bar) from Site 8 to 7 and low-pressure steam (e.g., 2 bar) from Site 8 to 6 and Site 2 to 9. Although Site
9 represents a heat sharing option with a longer distance compared to the other plants, it is still selected
in the optimal solution, as the energy prices are higher for the district compared to the industries.
Thus, replacing a district boiler with excess heat from the industry is more profitable than replacing an
industrial boiler. Site 2 is selected as the main source to provide heat to Site 9, even though the distance
is greater than to Site 8, due to economies of scale (i.e., more heat is available at Site 2 compared to
Site 8) and as the heat from Site 8 is at higher temperature and can be used for other plants. A Similar
phenomenon is observed in the distribution of heat from Site 8 to the other industrial sites; instead
of multiple neighbouring sites (e.g., Site 3 and 5), heat is shared with Site 7, as it requires a higher
amount, but installing only one pipeline.

Chronology of investments show that most occur in the first period. This is logical as investments
yielding economic benefits should be made as soon as possible to take full advantage over the planning
horizon. The few investments made in subsequent periods are replacements for equipment reaching
their EoL. Investment in boilers in Site 1 and 2 are examples of such decisions. However, the boilers
in Site 3 and 7 are repurchased in the first period, which might be related to the age and size of the
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equipment, i.e., as they are currently oversized, selling them before further ageing is more profitable for
the system. However, as the plants would still need heating utilities after the existing boilers are sold,
new ones are purchased in the first period. The piping investment decisions, similar to the equipment
investment, are taken as early as possible, to benefit from corresponding operational savings.

5.2. Impact of Seasonality in the Investment Decisions

The impact of seasonality in investment planning is studied by considering four seasons (i.e.,
time steps) in a 20-year time horizon (i.e., periods), as seen in Figure 7. As stated in Section 4, only
the district demand changes seasonally, which is reflected as a slight decrease in NPV. The most
drastic change occurs in the piping investment decisions. As the district has higher demand in winter
compared to the annual average considered in Section 5.1, the amount of steam transferred from Site 2
increases, even though the piping investment stays the same as the pipe size is large enough to handle
a higher flowrate. In addition, all excess heat available on Site 8 is transferred to Site 9 and Site 2.
In winter, the heat is wholly transferred to the district in the form of low pressure steam; whereas, in
summer, it is shared with Site 2 as high-pressure steam, as the district heating demand is very small
in summer and the chemical site has a constant demand throughout the year. In the other seasons,
the excess heat from Site 8 is shared between the district and the chemical site, giving priority to
the district.

Figure 7. Optimal investment planning considering seasonality in district energy demand.

The impact of seasonality can also be observed in the investments in energy conversion
technologies. Transferring most of the excess heat below the pinch point to the district, Site 2 has a
lower potential for heat pump integration. Moreover, larger investment on boilers occur on Site 6
and 7, as they no longer receive excess heat from Site 8. In terms of investment timing, the results are
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similar to those in Section 5.1; most of the investments occur in the first year, and the rest are for the
repurchasing of equipment that has reached the end of its life span.

5.3. Budget and Investment Constraints

In real industrial retrofit projects, there is always a limitation on the budget, as the companies
involved do not have unlimited resources. In such cases, it is important to spot the investments that
are the most profitable under the project budget. The budget limitation is studied by introducing a
constraint that limits the investments to 75% of the total investment cost of the optimal solution
obtained in Section 5.1 (i.e., 80 Me). In addition, further constraints are applied to limit the
yearly investment.

As a first case, an investment period of five years is considered. This means that all the investment
decisions are taken in the first five years and the system is operated for the rest of the time given
those decisions. It is assumed that the budget is evenly distributed within the investment period (i.e.,
16 Me/year), under the condition that if it is not completely spent in a year, it can be transferred to the
following one. With the investment constraints, NPV and CO2 savings of the system decrease by 5%
and 9%, respectively, compared to the optimal solution in Figure 6. Figure 8 illustrates the investment
decisions and their corresponding year for the optimal solution with five-year investment horizon.
Compared to Figure 6, the type of the technologies and equipment invested in are similar; cogeneration
engines are installed in sites 1, 3, 5 and 6; heat pumps are installed in sites 2 and 7; boilers and turbines
are replaced in almost all sites; and steam pipes are installed between sites 1, 5, 8 and 9. The impact of
the budget restrictions can be seen in the timing of the investments as well as the size of some of the
equipment; instead of purchasing most of the equipment in the first year, investments are spread over
five years. In some of the years (e.g., year 1), the budget allowance is not fully used, either to be able to
transfer some of it to the following year or because it is not sufficient enough for further investment.
This way, large investments such as piping between Sites 8 and 9, which requires larger investments
than the yearly allowance, are still possible. However, very large investments, e.g., 68.6 Me piping
between Sites 2 and 9 (see Figure 6) are not selected, as other options lead to more beneficial results for
the objective function.
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Figure 8. Optimal investment decisions with 5 years of investment and 16 Me annual budget.

As a more conservative investment strategy, a case with a ten-year investment period is evaluated
in Figure 9. As the investment period is broader, the yearly budget reduces to 8 Me, which results in a
13% lower NPV and 12% lower CO2 reduction compared to the optimal solution in Figure 6. Similar to
the previous case, it is assumed that the yearly investment budget, if unused, can be transferred to the
following years. As the annual budget is reduced, the number of simultaneous investments decreases.
The energy conversion system investments are prioritised over piping as they are smaller and can
therefore be be completed earlier. Most of the intra-plant improvements via investing on better energy
conversion systems are carried out in the first year. In the second year, the largest investment is in
the pipeline between sites 2 and 5, as it is within the yearly budget. Following this, large investments
are avoided for two years, to accumulate sufficient budget for piping between sites 8 and 9 (taking
place in year five). Similarly, between year six and eight, investments are not made so as to accumulate
sufficient budget for the large piping investment between sites 2 and 9 in year nine.
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Figure 9. Optimal investment decisions with 10 years of investment and 8 Me annual budget.

5.4. Multiple Scenarios for Investment

The parametric optimisation strategy described in Section 3.5 is utilised to obtain 30 solutions
with different limits on the piping cost, representing multiple scenarios for investment. Figure 10
depicts the multicriteria comparison of the solutions from parametric optimisation as well as the
one in Figure 9, all with 80 Me overall investment budget and investment period of first ten years.
The solutions are sorted with respect to NPV, which is the main objective and the solution in Figure 9,
is highlighted with a bold line.

The solutions with high NPV also yield high CO2 savings, taking the advantage of reduced
operating cost (i.e., natural gas and electricity consumption). The solutions with low limit on piping
investment budget rank the worst in NPV, CO2 savings, operating cost and utility system investment.
Conversely, piping investment does not always bring operational benefits which results in the solutions
at the upper end of “Piping investment” axis having lower NPV than the ones below them. Heat
shared with the district and industries has an inverse relationship, as the quantity of heat is limited
and only its distribution varies between solutions. The solutions in which industrial excess heat is
shared with the district yield better results in terms of NPV as natural gas and electricity prices are
higher for the residential users compared to industries. The solution from Figure 9 ranks worse than
half of the solutions obtained with parametric optimisation in both economic and environmental key
performance indicators (KPIs). This can be explained by the use of a larger optimality gap (i.e., 5%) as
the solution time is longer, and thus the solver does not try to explore better solutions. Despite having
a higher optimality gap, the solution from Figure 9 requires computation time more than ten times
that of the solutions from parametric optimisation.
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Figure 10. Multiple solutions generated by parametric optimisation; the higher the NPV, the colder the
line colour.

5.5. Comparison with Baseline

Comparison of the baseline of the system with the optimal solutions identified (i.e., with and
without budget constraints) is depicted in Figure 11. Baseline represents the current state of the system
when the plants are operated with the energy conversion technologies that already exist on the sites.
The investment cost in this case is required for the equipment reaching the end of their life span, to be
able to continue the plant operation. Therefore, the operating cost remains constant throughout the
twenty years, as nothing is done to improve the system efficiency. Similarly, in the optimal solution
without budget constraints, the operating cost is the same for the span of the project, due to the fact
that all the investments improving the system are carried out at the beginning of the first year. This also
explains the large investment and 27% reduction in the operating cost in the first year compared
to the baseline. When investments are limited to the first five years, the operating cost gradually
improves 16–26% with the investments performed each year and then stabilises at the fifth year until
the rest of the project. The same phenomenon happens for the case with ten years of investment; the
operating cost improves by 16–24% in the investment period and then stays constant for the last ten
years. Considering NPV and environmental impact, optimal investment planning without budget
constraints improves the system by ~463 Me and 7748 kt CO2 in a twenty-year horizon, whereas
investment budget constraints of five and ten years results in 5% and 13% lower NPV, and 9% and
12% lower CO2 savings, respectively, when compared to the unconstrained solution. Although the
investment planning strategy results in large investments, totalling 107 Me, yearly operating cost
savings surpass 50 Me, resulting in a simple payback time of slightly greater than two years.
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(a) Business as usual operation and investments.

(b) Optimal solution without budget constraints.

(c) Optimal solution with 5 years of investment and 16 Me/year budget.

(d) Optimal solution with 10 years of investment and 8 Me/year budget.

Figure 11. Comparison of operating and investment costs of the optimal solutions with the baseline.

6. Conclusions

This work proposes an MILP framework, PIIP, which combines the efforts in process integration
and long-term investment planning. The method takes advantage of PI, by modelling the energy
and resource flows in detail, including heat cascade, mass and energy balances. A novel investment
planning formulation is proposed and integrated with PI, capturing all investment actions, such
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as commissioning and decommissioning of utility systems, while considering external exchanges
via pipeline.

The method is applied to a large case study, with eight industrial plants from different sectors and
a district neighbouring an industrial cluster, for a time horizon of twenty years. When the investment
budget and period are not limited, all investments improving the operating cost are made in the
first year, to maximise benefits from the operating cost savings as long as possible. Heat pumps
and cogeneration engines are preferred over industrial boilers in all sites where their integration is
possible. In inter-plant exchanges, priority is given to heat sharing with the district, as this option is
more profitable because of lower industrial energy prices relative to residential ones. In addition, heat
sharing over long distances with a single pipeline is preferred over investing in multiple pipelines
connecting smaller nearby sites. When seasonality is taken into account, given the variations in
the district demand, the investment decisions change drastically. A larger amount of heat is shared
between the industrial cluster and the district resulting in less heat sharing between the industrial
plants. Based on interactions between plants, different investment options become favourable. Thus,
in the cases where energy demand varies greatly throughout a year, it is crucial to consider seasonality,
to obtain the optimal selection and planning of the investments.

To simulate a more industrially-realistic scenario (i.e., refurbishment planning of plant
infrastructure), an investment budget is imposed and the investment period is restricted to the first five
or ten years, with the possibility of transferring budget from one year to the next. As the yearly budget
does not allow for large early investments, they occur over the whole investment period. Some large
investments found in the optimal solution without budget restrictions no longer appear, as annual
budgets would need to accumulate for several years, making other solutions more attractive. As the
investment strategy becomes more conservative (i.e., lower annual budget in a longer investment
period), competition between investment in energy conversion technologies and inter-plant steam
pipes increases, as parallel investments are not feasible. Although in the studied case, investment in
energy conversion technologies receives priority over pipelines, the solution is dependent on the case
study, energy profiles, prices and distances.

A strategy is proposed to generate multiple investment options using parametric optimisation
by setting an upper limit for piping investment and varying it, and the results are compared with
a single optimal solution. The parametric optimisation strategy not only generates 30 solutions in
shorter time, but also finds solutions with better economic and environmental KPIs. Thus, in the case
of industrial applications, it is better to generate multiple optimal solutions instead of trying to reach
the global optimum. In all solutions ranking highly in economic and environmental KPIs, industrial
excess heat is shared with the district. Thus, it is crucial to consider symbiosis options with a nearby
heat consumers in industrial retrofit applications, which is often overlooked.

The optimal solution using the proposed method without investment restrictions leads to a
~463 Me increase in the NPV of the system and 7748 kt CO2 savings compared to the baseline, owing
to operating cost benefits of investment decisions. Applying a budget limit on the investment cost
with an investment period of five and ten years results in 5% and 13% decrease in NPV and 9% and
12% decrease in CO2 savings compared to the solution without any budget limitation but they still
provide significant improvement compared to the baseline. Although more conservative investment
planning strategies result in slightly lower savings in the operating cost, they still lead to reductions of
~50 Me, or, in other words, a payback time of less than two years for the investments.

The method presented in this work provides a holistic strategy for investment planning of large
industrial cases in long time horizons. Additional constraints can easily be integrated to customise it
according to the limitations of the industrial clusters on the investment budget and periods. Future
work includes adding stochasticity in the energy prices and cost of energy conversion technologies,
as well as in the production capacity of plants and population of districts nearby. In addition,
the objective function can be modified to optimise for an environmental objective instead of using a
purely economic one.
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Appendix A

Decommissioning Size Linearisation

Decommissioning size is the product of binary and continuous variables as given in Equations (13)
and (14) which are linearised with a set of constraints in Equations (A1)–(A3) for selling and
Equations (A4)–(A6)

f s
u,p ≥ f e

u,p−1 − (1− zs
u,p) · F max

u ∀ u ∈ IU, p ∈ P : p 6= 1 (A1)

f s
u,p ≤ f e

u,p−1 ∀ u ∈ IU, p ∈ P : p 6= 1 (A2)

f s
u,p ≤ zs

u,p · F max
u ∀ u ∈ IU, p ∈ P : p 6= 1 (A3)

f d
u,p ≥ f e

u,p−1 − (1− zd
u,p) · F max

u ∀ u ∈ IU, p ∈ P : p 6= 1 (A4)

f d
u,p ≤ f e

u,p−1 ∀ u ∈ IU, p ∈ P : p 6= 1 (A5)

f d
u,p ≤ zd

u,p · F max
u ∀ u ∈ IU, p ∈ P : p 6= 1 (A6)

Piping Investment Planning Model

As pipes cannot be sold and have a longer life span than the other equipment, the investment
decisions for them reduce to buying them or not in a given period p ∈ P. Thus compared to the units,
the investment planning model of pipes is simplified to the following set of rules:

• A pipe exists only if it has been purchased. See Equation (A7) for heat pipes and Equation (A11) for
resource pipes;

• A pipe can be purchased only once. See Equation (A8) for heat pipes and Equation (A12) for resource
pipes;

• A pipe can be used as long as its life span. See Equation (A9) for heat pipes and Equation (A13) for
resource pipes;

• A pipe can be used only if it exists. See Equation (A10) for heat pipes and Equation (A14) for
resource pipes;

z eh
ly,sp,tr,o,p = ∑

pp=1..p−1
z bh

ly,sp,tr,o,pp ∀ ly ∈ L, sp ∈ SP, tr ∈ TR, o ∈ OL, p ∈ P (A7)

∑
p∈P

z bh
ly,sp,tr,o,p ≤ 1 ∀ ly ∈ L, sp ∈ SP, tr ∈ TR, o ∈ OL (A8)

∑
p∈P

y ph
ly,sp,tr,o,p ≤ 50 ∀ ly ∈ L, sp ∈ SP, tr ∈ TR, o ∈ OL (A9)

y ph
ly,sp,tr,o,p ≤ z eh

ly,sp,tr,o,p ∀ ly ∈ L, sp ∈ SP, tr ∈ TR, o ∈ OL, p ∈ P (A10)

z er
ly,lc,o,u,p = ∑

pp=1..p−1
z br

ly,lc,o,u,pp ∀ ly ∈ L, lc ∈ LC, o ∈ OL, u ∈ Ul,lc, p ∈ P (A11)
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∑
p∈P

z br
ly,lc,o,u,pp ≤ 1 ∀ ly ∈ L, lc ∈ LC, o ∈ OL, u ∈ Ul,lc (A12)

∑
p∈P

y pr
ly,lc,o,u,pp ≤ 50 ∀ ly ∈ L, lc ∈ LC, o ∈ OL, u ∈ Ul,lc (A13)

y pr
ly,lc,o,u,pp ≤ z er

ly,lc,o,u,p ∀ ly ∈ L, lc ∈ LC, o ∈ OL, u ∈ Ul,lc, p ∈ P (A14)

Piping cost calculations

The cost of the pipes for heat (C pipeh
p,o,tr ) and resource sharing (C piper

l,u,o ) is calculated according to
Equations (A15) and (A16).

C pipeh
sp,o,tr = ∑

ps∈PS
c pipe

ps · tf · l pipe
lc,o · n

h
sp,o,tr,ps ∀ sp ∈ SP, lc ∈ LC, o ∈ OLlc, tr ∈ TR (A15)

C piper
ly,u,o = ∑

ps∈PS
c pipe

ps · tf · l pipe
lc,o · n

r
ly,u,o,ps ∀ ly ∈ L, u ∈ Ul , lc ∈ LC, o ∈ OLlc (A16)

where n h
p,o,tr,ps and n r

l,u,o,ps are binary variables deciding what size of pipe is used for heat and resource
sharing respectively, tf is the trenching cost factor which is 1 for above-ground pipes (i.e. no trenching)
and 1.3 for under-ground pipes [52] and c pipe

ps is the specific piping cost of the corresponding pipe size.
Further details on piping cost calculations can be found in [21].

The specific piping cost is calculated based on the piping cost functions available in the
literature [53–56]. Standard piping diameters and their corresponding cost are depicted in Table A1.

Table A1. Piping cost for standard piping diameters.

Standard pipe size 1 2 3 4 5 6 7 8 9 10 11 12

Diameter (mm) 20 40 80 100 200 300 400 500 600 800 1000 1500

Specific cost (e/m) 96 166 312 387 775 1180 1588 2008 2434 3304 4192 6474

Budget constraints

Equations (A17) and (A18) constraint the overall and annual investment costs according to
available budget.

∑
p∈P

C inv
p ≤ c ob (A17)

C inv
p ≤ c ab ∀ p ∈ P (A18)

where c ob and c ab are overall and annual investment budgets respectively. When transferring
the investment budget to the following year is allowed, Equations (A18) is replaced with
Equations (A19)–(A21).

C tb
p ≤ c ab ∀ p ∈ P : p = 1 (A19)

C tb
p = c ab + C tb

p−1 − C inv
p−1 ∀ p ∈ P : p 6= 1 (A20)

C inv
p = C tb

p ∀ p ∈ P (A21)

where C tb
p is a continuous variable which decides how much of a yearly budget is transferred to the

following year.
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Materials and engineering cost linearisation

The products of binary and continuous variables in Equations (31)–(35) are linearised in Equations
(A22)–(A24) for materials cost and Equations (A25)–(A27) for engineering cost.

C mt
u,p ≥ C b

u,p · F mt
u − z bb

u,p · c max
u ∀ u ∈ NU, p ∈ P (A22)

C mt
u,p ≤ C b

u,p · F mt
u ∀ u ∈ NU, p ∈ P (A23)

C mt
u,p ≤

(
1− z bb

u,p

)
· c max

u ∀ u ∈ NU, p ∈ P (A24)

C en
u,p ≥ C b

u,p · F en
u − z bb

u,p · c max
u ∀ u ∈ NU, p ∈ P (A25)

C en
u,p ≤ C b

u,p · F en
u ∀ u ∈ NU, p ∈ P (A26)

C en
u,p ≤

(
1− z bb

u,p

)
· c max

u ∀ u ∈ NU, p ∈ P (A27)

where c max
u is the maximum purchase cost of a unit which is used as a big M in the equations.

Selling and dying value linearisation

The product of binary and continuous variables in Equations (43)–(44) is linearised in Equations
(A28)–(A30) for selling value and Equations (A31)–(A33) for dying value.

C s
u,p ≥ C rv

u,p −
(

1− zs
u,p

)
· c max

u ∀ u ∈ IU, p ∈ P (A28)

C s
u,p ≤ C rv

u,p ∀ u ∈ IU, p ∈ P (A29)

C s
u,p ≤ zs

u,p · c max
u ∀ u ∈ IU, p ∈ P (A30)

C d
u,p ≥ C rv

u,p −
(

1− zd
u,p

)
· c max

u ∀ u ∈ IU, p ∈ P (A31)

C d
u,p ≤ C rv

u,p ∀ u ∈ IU, p ∈ P (A32)

C d
u,p ≤ zd

u,p · c max
u ∀ u ∈ IU, p ∈ P (A33)

Linearisation of the max function

The max function in Equations (46) is linearised in Equations (A34)–(A38)

C s
u,p ≥ C sv

u,p ∀ u ∈ IU, p ∈ P (A34)

C s
u,p ≥ z e

u,p−1 · c sal
u ∀ u ∈ IU, p ∈ P : p 6= 1 (A35)

C s
u,p ≤ C sv

u,p +
(

1− n rem
u,p

)
· c max

u ∀ u ∈ IU, p ∈ P (A36)

C s
u,p ≤ z e

u,p−1 · c sal
u +

(
1− n sal

u,p

)
· c max

u ∀ u ∈ IU, p ∈ P (A37)

n rem
u,p + n sal

u,p = 1 ∀ u ∈ IU, p ∈ P (A38)

where n rem
u,p is a binary variable which takes the value of 1 if C sv

u,p is greater than c sal
u and n sal

u,p is binary
variables which takes the value of 1 otherwise.
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Grand composite curves of the sites

The thermal profiles of the industrial sites and the district are depicted in Figure A1 and Figure A2
respectively in the form of GCCs.
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Figure A1. GCCs of the industrial processes in the case study.
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Figure A2. GCCs of the district in four seasons.
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