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Abstract: In this paper, montmorillonite inhibitors modified with polyhydroxy functional groups by
gluconic acid (GA) were successfully prepared. The particle size distribution, composition, surface
functional groups, and pyrolysis characteristics of the pure montmorillonite powders (Mt) and the
gluconic acid modified powders (G-Mt) were analyzed by using a laser particle analyzer, X-ray
diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetry–differential scanning
calorimetry (TG-DSC), respectively. The suppression effect of Mt and G-Mt on the 9.5% methane–air
premixed gas was tested in a 20 L spherical explosion device and a 5 L pipeline experimental system.
The results show that G-Mt displays a much better suppression property than that of Mt. The optimal
explosion suppression effect concentration of Mt or G-Mt powders is about 0.25 g·L−1. In this
concentration, for G-Mt, the maximum explosion pressure declined by 26.7%, the maximum rate of
pressure rise declined by 74.63%, and the time for the flame front to reach the top of the pipe was
delayed by 242.5%. On the basis of the experimental data, the better suppression effect of G-Mt than
Mt might be attributed to the presence of more hydroxyl groups on the surface.

Keywords: methane explosion suppression; montmorillonite powders; hydroxyl functional groups;
suppression effect

1. Introduction

As is well known, a methane–air mixture is a type of explosive gas and is the main component of
natural gas, biogas, and coalbed methane. It is a high-quality clean fuel as well as an important raw
material for the manufacture of syngas, as well as many chemical products that are usually transported
through the pipeline network [1]. However, it can lead to extremely serious consequences because
of its explosiveness. Thus, in order to prevent or reduce the damage caused by methane explosions,
many inhibitors have been developed such as inert gases, water mist, aerosol, powder inhibitors,
and so on [2–6]. Chemical powders—especially inorganic powders— have attracted many studies
owing to the advantages of their easy storage, low cost, high dispersion, and being environmentally
benign. As reported by Luo, Liu and Zhang [7–9], diatomite, quartz, rock dust, and palygorskite
powders presented certain explosion suppression effects on methane explosions. Sun, Ni, and Wang
obtained novel composite powder inhibitors by NaHCO3 powders with porous kaolinite, zeolite, and
red mud, respectively [10–12]. Hu modified Mg(OH)2 powders by the use of 9,10-dihydro-9-oxygen
mixed-10-phosphaphenanthrene-10-oxide, and the results showed that the pyrolysis fragments could
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directly react with flame free radicals to achieve an excellent explosion suppression effect [13]. His
research also indicated that the development of modified inorganic mineral powders which can react
with active free radicals (·H, ·HO2, ·CH, ·CH3 and ·HCO) [14–18] of the methane explosion is an
effective methane explosion suppression method.

Montmorillonite is a kind of 2:1 layered structure clay [19]. Because of its special structure, it is
often used for functional modification [20]. Ca2+-montmorillonite is usually treated with acids to
replace the divalent calcium cations with monovalent hydrogen ions, with the aim of altering the
smectite layers and increasing the specific surface area and porosity [21]. Gluconic acid is a type of
low carbon polyhydroxy acid, and the hydroxyl groups on saturated carbon are easily removed after
protonation. Therefore, using gluconic acid to modify montmorillonite may increase the amount of the
montmorillonite surface hydroxyl groups; thus, the modified montmorillonite may exhibit greater gas
explosion suppression performance.

In this study, montmorillonite was modified by gluconic acid, and montmorillonite powders
with polyhydroxyl functional groups were obtained. Then, the explosion inhibition effects of
the montmorillonite powders with polyhydroxyl functional groups on methane explosions were
investigated using a 20 L stainless steel spherical vessel and a 5 L pipeline experimental system. Based
on the experimental results, a possible suppression mechanism was discussed.

2. Experimental

2.1. Materials and Preparation Procedures

The montmorillonite (purity > 95%) was obtained from Zhejiang Sanding Technology Co., Ltd.
Gluconic acid (C6H12O7, 99%) was purchased from Nine-Dinn Chemistry (Shanghai) Co., Ltd. All of
the raw chemical reagents used in the experiments were of analytical-grade purity and were used
directly without further purification.

The procedure used to prepare the modified montmorillonite inhibitors was as follows. Firstly, a
solution of 0.5 mol/L gluconic acid was prepared and 10 g of montmorillonite powders were mixed
with 40 mL of acid solution under a liquid–solid ratio of 4:1. Then, the mixture was stirred for two
hours at a constant temperature of 298 K in a heat-collecting thermostatic heating magnetic agitator.
Afterwards, it was rinsed 4–5 times using deionized water and then pumped with a filter pump
3–4 times to obtain precipitation. The mixture was dried for one week in a vacuum drying oven at 313
K. Finally, the powders for testing were collected through a 200-mesh sieve screen.

2.2. Powder Characterisation Methods

X-ray powder diffraction (XRD) analysis was performed by a Bruker AXS D8 advance
diffractometer (AXS D8, Bruker, Madison, WI, USA) with Cu/Kα radiation, at 40 kV and
25 mA, in a scanning range of 5–80◦ (2θ). A Malvern Sizer 2000 (Mastersizer2000, Marvin
instruments Ltd, Worcestershire, UK) was used to test the powder specification. The Fourier
transform infrared (FTIR) spectrum of the KBr wafer was recorded using a Nicolet 6700 Fourier
Transform Spectrometer (TENSOR-37, Brook spectroscopic instruments Ltd, Ettlingen, Germany).
Thermogravimetry-differential scanning calorimetry (TG-DSC) analysis was conducted using a
Simultaneous Thermal Analyser (NETZSCH, Selb, Germany) in a flow of air (20 mL·min−1) at a
heating rate of 10 ◦C·min−1. In this process, the starting temperature was 25 ◦C and the termination
temperature was 800 ◦C.

2.3. Powder Suppression Explosion Experiments

The explosion pressure parameters of the methane explosion, suppressed by different
concentrations of Mt and G-Mt, were tested by using the 20 L spherical explosion instrument, and the
flame propagation behavior was measured in the pipeline test system, which had a cross-sectional
area of 100 × 100 mm2 and a length of 500 mm. It has been shown that the dust dispersion inside
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the 20 L sphere used for explosion experiments is not uniform [22], and also that dust particles may
undergo fragmentation when passing through the nozzle of the 20 L spherical vessel [23]. The same
is true in the pipeline test system. In order to ensure the accuracy and reproducibility of the results,
each experiment was repeated at least three times. Fortunately, the experimental results showed that
the experimental data in this study are repeatable. The physical properties of the montmorillonite
powders and the palygorskite powders were similar; thus, the test parameters of each system were the
same as those used in previous research [9].

3. Results and Discussion

3.1. Characterisation of Mt and G-Mt

The XRD patterns of Mt and G-Mt are shown in Figure 1. It can be seen that the diffraction peaks
of the two samples match the Mt standard pattern (JCPDS: 13–0135). The three principal peaks at
2θ = 5.887◦, 17.688◦, and 19.712◦ correspond to the (001), (003), and (100) planes of Mt, respectively [24].
Moreover, the value of d001 of the (001) crystal is 1.535 nm, indicating that the sample is typical calcium
montmorillonite [25]. Compared with d001 of the (001) crystal peak of Mt, the value of d001 of G-Mt
decreases slightly. This is because the structure of Mt is destroyed by GA [26]. An obvious peak is
observed at 2θ = 26.639◦, which agrees with SiO2 (JCPDS: 13–0135). Thus, it can be inferred that a
small amount of quartz is included in the Mt.
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Figure 1. XRD patterns of Mt and G-Mt.

The powder inhibitors used in this study were all sieved through a standard 200-mesh screen.
Then, their particle size distributions were determined using a Malvern Mastersizer 2000 laser particle
analyzer (Mastersizer2000, Marvin instruments Ltd, UK). The results of the two different powders are
shown in Figure 2. The average particle sizes of Mt and G-Mt are 1.84 µm and 5.78 µm, respectively.
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The FTIR spectra of Mt and G-Mt are shown in Figure 3. Bands at 464 and 1039 cm−1 correspond to
the bending vibration of Si-O and the stretching vibration of O-Si-O, respectively [27]. The -OH bending
and stretching vibration are found at 3400–3700 cm−1 [28,29]. It can be seen from Figure 3 that the
-OH absorption peaks of G-Mt are significantly stronger than those of Mt. Comparing the adsorption
peaks of -OH in two samples, the possible intercalation and grafting of -OH within the clay could be
predicted when the increase of the relative intensities of the aforementioned peaks was observed [30].
Therefore, the 1643 and 3000–4000 cm−1 bands were processed by peak-splitting fitting [31], and the
corresponding results are shown in Figure 4. As can be seen from Table 1, the 1643 cm−1 νOH can be
attributed to the interlayer water with a variety of orientations and interactions [32–34]. The peak
area value in peak 1 between Mt and G-Mt is similar, which might exclude the interference of water.
However, νOH and δOH, belonging to the structural hydroxyl of G-Mt at 3000–4000 cm−1, increases
about twice as much as for Mt.
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Table 1. The hydroxyl peak fitting area of Mt and G-Mt.

Sample Peak 1 Peak 2 Peak 3

Mt 6.24 96.45 7.62
G-Mt 8.74 184.29 10.15
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Figure 4. Curve-fitted FTIR spectrum of the 3000–4000 cm−1 bands for Mt and G-Mt.

Figure 5 presents the TG-DSC curves of Mt and G-Mt. It can be seen from Figure 5 that the
decomposition process of Mt begins at 70 ◦C and ends at 250 ◦C. The mass loss is 12.17%, which is
attributed to the loss of intercalated moisture [19]. From 250 to 800 ◦C, the TG curve of Mt becomes
steady and shows little change with further increases in temperature. In addition, a small endothermic
peak of the Mt DSC curve from 250 to 800 ◦C, with a mass loss of 4.15%, can be observed, which could
be attributed to the removal of -OH from the crystal structure of Mt [35]. For the TG curve of G-Mt,
a large gradual mass loss of 5.63% occurs after 250 ◦C, and the total weight loss (Table 2) of G-Mt
is larger than that of Mt, but the total endothermic quantity of G-Mt is smaller. The reason for the
smaller endothermic quantity of G-Mt can be attributed to the closely distributed hydroxyl groups on
the surface of G-Mt, which can form H-bonded hydroxyl groups that are gradually removed at high
temperatures [8,35].
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Table 2. The TG-DSC parameters of Mt and G-Mt.

Sample Total Weight Loss (%) Total Endothermic Quantity (J·g−1)

Mt 16.32 1143
G-Mt 19.66 570.30
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3.2. Suppression Effect of Mt and G-Mt

The explosion pressure parameters were tested in a 20 L spherical vessel. The effects of Mt and
G-Mt on the 9.5% methane explosion are presented in Figure 6. As can be seen from Figure 6a,b, both
the maximum explosion pressure (Pmax) and the maximum rate of explosion pressure rise ([dP/dt]max)
decrease after the addition of Mt or G-Mt. Meanwhile, the time for the pressure to reach a maximum
value (Tmax) obviously increases, as shown in Figure 6c. On increasing the concentration of Mt or
G-Mt, both Pmax and [dP/dt]max decrease and Tmax increases. However, on further increasing the
concentration of Mt or G-Mt, Pmax and [dP/dt]max no longer decrease and Tmax no longer increases,
indicating that an optimal inhibitory effect concentration of Mt or G-Mt exists. According to Figure 6a–c,
it can be found that the optimal concentration is about 0.25 g·L−1. Furthermore, comparing the results
of Pmax, [dP/dt]max, and Tmax, the inhibitory effect of G-Mt is more significant than Mt with the addition
of the same mass concentration powders.
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In order to compare the suppression effect of Mt or G-Mt more clearly, the explosion pressure
curves of the 9.5% methane mixed with Mt and G-Mt, respectively, with a concentration of 0.25 g·L−1,
are shown in Figure 6d. It can be seen that the methane explosion could be divided into two main
stages. The first is the pressure increase stage, in which the pressure increases rapidly with time.
The heat released from combustion exceeds the heat lost to the surroundings. The second stage is
the pressure decay process [10]. For 9.5% methane, the Pmax, [dP/dt]max and Tmax are 0.654 MPa,
87.648 MPa/s and 0.138 s, respectively, as shown in Table 3. As the G-Mt with a concentration of
0.25 g·L−1 is added, the Pmax and [dP/dt]max decrease by 26.7% and 74.63% respectively, and Tmax

increases by 55.8%. For Mt, these percentage values are 11.6%, 50.77%, and 50.74% respectively, which
are much lower than those of G-Mt. Thus, the inhibition effect of G-Mt is much better than that of Mt.
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Table 3. The explosion parameters of CH4–air premixed gas with Mt and G-Mt.

Sample Concentration
(g·L−1)

Maximum Pressure
(MPa)

Time of Pressure
Peak (s)

Rate of Maximum-Pressure
Rise (MPa·s−1)

No powders 0 0.654 0.138 87.648
Mt 0.25 0.578 0.183 43.144

G-Mt 0.25 0.479 0.215 22.235

The flame propagation characteristics of ma ethane explosion with inhibitors are also important
evaluation parameters. Hence, experiments were performed in the 5 L pipeline experimental system.
The flame propagation images of the methane explosions with no powder, Mt and G-Mt are shown
in Figure 7. It can be seen that the flame front of the methane explosion with no powder reaches the
upper end 20 ms after ignition. However, when Mt or G-Mt are added, the explosion flame darkens
and slows down. Simultaneously, an uneven flame structure appears, which can be attributed to the
nonuniformity of the dust dispersion or dust particle fragmentation. Figure 8a,b presents the variation
in the flame front position (FFP) for the 9.5% methane explosion with different concentrations of Mt and
G-Mt, respectively. As can be seen from Figure 8a, the time to the upper end of the methane explosion
flame (Te) gradually lengthens when Mt with the concentrations of 0.05 to 0.25 g·L−1 being added, and
Te is prolonged from 20 ms to 42.5 ms with the addition of 0.25 g·L−1 Mt (Figure 9). However, with
further increases in the concentration of Mt, once more, the flame propagates quickly in Figure 8b,
and the Te of G-Mt with different concentrations shows a similar trend of initially increasing and then
decreasing with Te being prolonged from 20 ms to 68.5 ms with the addition 0.25 g·L−1 G-Mt (Figure 9).
Thus, 0.25 g·L−1 might still be the optimal inhibitory effect concentration for Mt or G-Mt in the 5 L
pipeline experimental system.

Figure 10a shows the FFP of the 9.5% methane explosion with Mt and G-Mt at the concentration
of 0.25 g·L−1. Compared with the methane explosion with no powder, the Te value of the 9.5%
methane explosion with 0.25 g·L−1 Mt and 0.25 g·L−1 G-Mt is noticeably delayed, by 112.5% and 242.5%,
respectively. The flame propagation velocities (FPV) of the methane explosions with no powder,
0.25 g·L−1 Mt, and 0.25 g·L−1 G-Mt are shown in Figure 10b. The FPV of methane explosion with no
powder shows the trend of initial acceleration followed by a steady propagation that may be due to
the reflected explosion wave [36,37]. The value of FPV significantly decreases with the addition of
0.25 g·L−1 Mt or 0.25 g·L−1 G-Mt. Furthermore, the FPV curve of G-Mt with the same concentration is
below that of Mt, indicating that the suppression property of G-Mt is better than Mt. These test results
are consistent with those obtained in the 20 L spherical explosive device.
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3.3. Suppression Mechanism of Mt and G-Mt

From the experimental results, the methane explosion suppression mechanism can be attributed
to the combined efforts of physical and chemical inhibition effects.

3.3.1. Physical Inhibition Effect

On the one hand, the evaporation of surface and interlayer water of Mt or G-Mt can absorb
the amount of heat released from the explosion reaction to cool the system down and inhibit the
propagation of the explosion wave [2].

On the other hand, the inhibitor powders, which are widely dispersed in the reaction zone, can
reduce the thermal diffusion coefficient of the unburnt gas as well as the heat transfer from the reaction
zone to the unburnt zone by blocking and absorbing the heat radiation.

3.3.2. Chemical Inhibition Effect

Many studies have shown that there are 325 elementary reactions, involving 53 species, which
occur in the process of a methane explosion [38,39]. The chain reactions are dominated by free
radicals (especially ·O, H·, ·HO2, ·CH3, ·HCO, and ·OH) during the chemical reaction. Montmorillonite
modified by gluconic acid alters the smectite layers and increases the specific surface area and porosity,
which improves the probability of collisions between the surface hydroxyls of Mt or G-Mt and the
active radicals. Therefore, the ·O, H·, and ·OH, et al., of the methane explosion may be eliminated by
the surface hydroxyls of Mt or G-Mt [40,41]. Furthermore, the metal ions such as Ca2+, Mg2+, Al3+

which are generated during the heat dehydration process of Mt or G-Mt can react with the above free
radicals [42,43]. The related reactions are as follows:

M+ + OH·→M(OH) (1)

M(OH) + OH·→MO + H2O (2)

MO + O·→M + O2 (3)

Furthermore, some of the key reactions play an important role in the methane explosion, such as
Equations (4)–(7), et al. [14,17]. Nie confirmed that the formation of free radicals (·O, H·, and ·OH) was
mostly sensitive to the forward reaction of Equation (6) and the reverse reaction of Equation (7) [14].
Therefore, when Mt or G-Mt are added into the methane explosion, a large number of hydroxyl radicals
may be produced in the instantaneous high temperature, and these hydroxyl radicals can reverse the
direction of the key reactions of Equation (6) and Equation (7) that promote the explosion:

O2 + CH2O
 HO2 + HCO· (4)



Energies 2019, 12, 4068 10 of 12

CH3· + O2 
 O· + CH3O· (5)

CH3· + O2 
 OH· + CH2O (6)

2CH3· + (M)
 C2H6 + (M) (7)

According to the TG-DSC curves, the total endothermic quantities of Mt and G-Mt are 1143 J/g
and 570.3 J/g, respectively. The average particle size of G-Mt is obviously larger than Mt, but G-Mt
presents a better explosion suppression efficiency than Mt. These results prove that more hydroxyl
groups of G-Mt exert a better chemical inhibition effect in the methane explosion.

4. Conclusions

In this work, clean, nontoxic and low-cost inhibitors, with polyhydroxy functional groups modified
by gluconic acid, were obtained through a simple stirring method. Montmorillonite powders modified
by gluconic acid had a better explosion suppression capability than the pure montmorillonite powders.
When G-Mt was used as a methane explosion suppression powder material, the maximum explosion
pressure reduced by 26.7%, the maximum rate of pressure rise declined by 74.63%, and the time of
the flame front reaching the top of the pipe was delayed significantly. Based on the characterization
analysis of the powders and the results of methane explosion suppression, it was found that the
hydroxyl functional groups on the surface of Mt and G-Mt present a positive inhibitory effect. However,
the exact mechanism of their action is still unclear. Hence, more work is needed to fundamentally
understand the hydroxyl functional groups’ response to the methane explosion and to complement
the experimental results with molecular reaction simulations. In general, this work has some guiding
potential for the development and preparation of new explosion inhibitors.
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