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Abstract: All over the world the reduction of greenhouse gas (GHG) emissions, especially in the
transportation sector, becomes more and more important. Electric vehicles will be one of the key
factors to mitigate GHG emissions due to their higher efficiency in contrast to internal combustion
engine vehicles. On the other hand, uncoordinated charging will put more strain on electrical
distribution grids and possible congestions in the grid become more likely. In this paper, we analyze
the impact of uncoordinated charging, as well as optimization-based coordination strategies on
the voltage stability and phase unbalances of a representative European semi-urban low voltage
grid. Therefore, we model the low voltage grid as a three-phase system and take realistic arrival
and departure times of the electric vehicle fleet into account. Subsequently, we compare different
coordinated charging strategies with regard to their optimization objectives, e.g., cost reduction
or GHG emissions reduction. Results show that possible congestion problems can be solved by
coordinated charging. Additionally, depending on the objective, the costs can be reduced by more
than 50% and the GHG emissions by around 40%.

Keywords: electric vehicles; optimization; grid model; grid integration; coordinated charging

1. Introduction

Over the last few decades, the environmental issues have increased at an alarming rate leading to
governmental actions and policies towards the protection of the environment. The German Federal
Government has set demanding goals related to the reduction of greenhouse gas (GHG) emissions
with the German Climate Action Plan 2050 (Klimaschutzplan 2050) which is an implementation
of the Paris Agreement. Aiming at decreasing GHG emissions by 2050 to 20% compared to the
level of 1990, substantial measures must be taken in every emission producing sector to achieve this
objective [1]. Examples of sectors with GHG emissions are energy industries, manufacturing industries
and construction, transport and households.

Focusing on transport, conventional cars are responsible for around 11% of the total CO2 emissions
in Germany. Besides its contribution to global warming, road transportation is responsible for 30%
of NOX and 12% of particulate matter emissions, which have shown to have a significant impact on
human life expectancy [2]. Electric vehicles (EVs) are an emerging clean technology, with battery
EVs generating zero direct CO2 emissions in the atmosphere. So far, EVs have been in the center
of most strategies to mitigate GHG emissions and reach the set climate targets. Since EVs create no
tailpipe emissions, these hazardous pollutants can be reduced, especially in urban areas. Supported by
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incentive programs, the number of EVs has risen to three million units in 2017, an increase of 50% in
comparison to 2016 [3]. According to the Global EV Outlook [3], the number of EVs worldwide could
exceed 130 million by 2030 under the assumption that government policies continue supporting the
expansion of electromobility.

However, the expected growing number of EVs does not only offer advantages. EVs have high
loads especially with their increasing battery capacities and charging rates. Since drivers tend to
change in times when electrical grids are already highly loaded, for example after going back home
from work, EVs can cause considerable congestion in electrical networks [4,5], especially in residential
areas. EV charging load when uncontrolled may be added to pre-existing peak load overloading grid
components such us transformers or causing poor power quality [6]. The EV high penetration in the
next years can have even worse consequences for the electric grid, posing significant challenges for
distribution system operators.

One way to mitigate these consequences is charging scheduling strategies or grid services (voltage
regulation, frequency regulation, reserves, etc.) from parked idle EVs [7,8]. Both charging strategies
and grid services support high introduction of EVs, decrease electrical grid impact, and allow higher
penetration of renewable generation. Different charging scheduling schemes can be devised based on
different objectives either related to costs or to renewable energy consumption or other.

This paper contributes to the state of the art by providing a comprehensive impact study of
uncoordinated, as well as coordinated, EV charging on a European semi-urban low voltage grid
considering the effects on voltage stability, load flow, and phase unbalances. We model the low
voltage grid as a three-phase system and use a validated stochastic availability model for EVs
based on statistical data to simulate the impact of EV charging. Subsequently, we show the impact
of uncoordinated charging and develop optimal charging strategies based on different objectives,
including strategies to achieve low energy cost and to reduce GHG emissions. Finally, we analyze
different output parameters of our low voltage grid model in detail.

This work is structured as follows. In Section 2, related work is reviewed. The methodological
approach of this work is presented in Section 3, which includes the automated generation of the
simulation model. In Section 4, the results are discussed. Section 5 gives a conclusion and an outlook
on future work.

2. Related Work

This section describes previous studies that focus on modeling of low voltage grids, as well as
charging strategies, for the optimized integration of EVs into the grid.

2.1. Modeling of Low Voltage Grids

An essential part of an EV impact study on the electrical grid is the distribution grid modeling.
The grid models used and the depth of the grid simulations vary greatly throughout literature.
Many previous studies, such as [5,9,10], model the grid as a perfectly balanced three phase system.
These approaches often omit the voltage unbalances which occur between the power lines in real-world
systems resulting in lack of representativeness. Additionally, the most commonly used grid models
(e.g., [11]) are test feeders provided by the Institute of Electrical and Electronics Engineers (IEEE) [12],
which were originally designed to stress load flow algorithms [12,13]. These models are less suitable
for EV impact studies as the overall design and data available were published for specific issues [14].

On the other hand, there are some publications which use model-based real grids [15–17].
These grids can be used to study the impact of low carbon technologies on a specific area or
neighborhood, however this approach limits the representative character of the case studies. The size
of the network should be considered in order to have reliable results because small-scale networks
miss heterogeneity [14]. Hence, in this study, we focus on a semi-urban low voltage grid which serves
as a representative grid in Europe.
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2.2. Charging Strategies

A substantial number of contributions address the optimized charging of EVs with different
objectives, e.g., cost-minimizing. Linear Programming is commonly found to tackle optimization
problems. For instance, in the Edison Project [18], linear programming is utilized to charge EVs as
cost-efficient as possible. In [18], Aabrandt et al. discussed the mathematical models for EV aggregators
in detail. In Jin et al. [19], a linear program was formulated to maximize profits of aggregators.
Lui et al. [20] present a chance-constrained mixed-integer programming solution for aggregator
based scheduling of EVs. Grid constraints are included with the help of flexible energy pricing.
The overall objective is the minimization of the cost of energy. In Jin et al. [21], the authors applied
mixed-integer linear programming to schedule EV charging from an electricity market perspective
with consideration for energy trading in real-time and in the day-ahead market. The objective in [21] is
revenue maximization of the aggregators. Distributed offline and online algorithms are proposed
in Mukherjee and Gupta [22] to schedule EVs in a multi aggregator market. The authors formulate
a bi-objective optimization problem to maximize both the profit of the aggregators, as well as the
total number of EVs charged. Besides linear optimization, Hutterer et al. [23] employ evolutionary
computation in a multi-agent distributed algorithm. The evolutionary computation enables the
EVs energy demand, as well as the criterion of secure power grid operation, to be satisfied, under
consideration of uncertainties. A similar optimization approach is taken by Lee et al. [24]. The work
aims at minimizing the load at a charging station with genetic optimization and was able to reduce
the peak load of a charging task by up to 4.9%. In Yang et al. [25] quadratic programming is used
in a centralized framework to schedule EVs so that they are charged with electricity provided by
wind power.

To sum up, there is a lot of literature available for the modeling of low voltage grids and optimized
charging strategies. Nevertheless, we identified some research gaps, as a lot of papers, like ([19,22,24]),
omit the grid as a limiting factor when it comes to the charging of EVs. Our paper has the following
main goals:

• Model a realistic and representative semi-urban low voltage grid in a simulation environment.
• Evaluate the impact of uncoordinated charging on low voltage networks realistically and as

representatively as possible using criteria such as voltage drop, voltage unbalance, and thermal
rating of cables used in the grid.

• Use the representative grid model to test and asses different optimized strategies, based on
different objectives, such as cost reduction or grid-friendliness.

3. Methodology

To evaluate the grid impact of uncoordinated charging (UC) and different optimized charging
strategies, called coordinated charging (CC), we model a representative low voltage grid. In this
context, we define UC as the process where EV users arrive home, plug in their vehicle, the charging
process starts immediately, and the vehicle charges until it is full or used again. EV buyers and users
are predominately middle-aged people in a technical profession, with high socioeconomic status,
who are living in a suburban or rural multi-person household with high-income [26]. Therefore,
we have chosen grid #13, a semi-urban European low voltage grid published by the Distribution
System Operator Observatory (DSOO) [12].

Figure 1 depicts the single line diagram of the network, which consists of one transformer,
115 buses and 108 consumers at the 230 V level. As we aimed at studying different scenarios, regarding
the penetration rates of EVs and photovoltaics (PVs) installations, the development of the grid model
was automated in MATLAB Simulink.
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Figure 1. Single line diagram of the Distribution System Operator Observatory (DSOO) semi-urban
low voltage grid #13 [12].

3.1. Modeling Framework

Figure 2 shows our conceptual approach with input and output data of our grid model. The EV
data like the capacity of the battery or the maximum charging rate is based on the manufactures
specifics. The investigated fleet is based proportionally on the EV sales in Germany since 2010 [27].
The state of charge (SOC) of the EVs is calculated according to the energy consumption rate (ECR)
measured by the German Automotive Club [28] which includes also heating, ventilation and air
conditioning (HVAC). The availability of EVs is based on arrival and departure times. In general, every
EV can have more than one departure and arrival time per day based on statistical data. The detailed
modeling approach of arrival and departure times can be found in Schlund et al. [29]. Since data of EV
usage, in general, is sparse, usage profiles are based on a survey of conventional traffic conducted by
the German federal ministry of transportation. The availability mode of EVs is validated together with
domain experts. Furthermore, the coincidence factors for different charging power levels of our model
are in perfect agreement with figures found in literature [30].

Electrical Grid Model
SOC, Capacity

Charging Power

EV Arrival and 
Departure times

Household Loads

PV Feed-In

Voltages and 
Currents, Magnitude 

and Phase 

Figure 2. Conceptual approach, with input and output data and models employed. SOC = state of
charge; EV = electric vehicles; PV = photovoltaics.

To model household loads, we work with synthesized load profiles generated with the load
profile generator [31]. As we are modeling a semi-urban low voltage grid, we assume all consumers
to be either single-family homes or a mixture between single-family homes and duplex homes based
on the evaluated scenario. We define two load cases; the heavy load case consists of 78 single-family
homes and 30 duplex homes placed randomly into the grid, while the light load case is composed
of 108 single-family homes. We incorporate PV systems in our model because other studies found
a high affinity for renewable energy among EV users [32]. The PV feed-in data is generated using the
Photovoltaic Geographical Infractions System [33], with Erlangen (Germany) as the selected location.
Electricity prices and electricity generation are taken from the SMARD database [34]. All data has
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a resolution of 15 min. For our simulation, we choose one summer and one winter week to study the
seasonal difference regarding the impact of EV charging on the electric grid model.

3.2. Electrical Grid Model

The semi-urban low voltage grid is modeled as a three-phase system in the Simpscape Electrical
environment of MATLAB. The model runs as a quasi-steady model; therefore, transient states are
omitted, while it is still operating in a time-domain environment. The automated creation of our
network is based on a script provided by Mathworks [35]. The model is built with ideally grounded
bus bars, as recommend by Olivier et al. [36]. We omit the capacitance between lines and between line
and earth because distribution networks are relatively small and therefore, the overall capacitance can
be neglected (c.f. [37,38]). At every bus bar and in every line of the network we measure magnitude
and phase of voltage and current. The simulation method allows us to capture phenomena at a selected
frequency; we conduct our studies at the nominal frequency for Europe, 50 Hz. The automated
development of our model is able to distribute a selected quantity of PV installations, as well as EVs,
throughout the electrical network. Furthermore, the phase connection of load and the distribution of
loads throughout the network can be varied.

3.3. Charging Strategies

We assume that the charging of the EV in the residential setting is only limited by the maximum
charging rate of the vehicle. The time frame in which a vehicle is able to charge is set by its arrival time
and the next departure time. We study a number of different charging strategies, as there are different
participants in the electrical charging process with different interests:

• End consumers, who want to charge as much self-produced electricity as possible. Additionally,
they possibly want to minimize the GHG emissions of the energy mix which is used for
charging EVs.

• Distribution system operators, who have to ensure safe operating conditions and want to minimize
network losses.

• Aggregators, who want to maximize their profits by obtaining energy as cheaply as possible.

We assume perfect foresight for all our charging strategies, meaning within our optimization
horizon of one week all the arrival and departure times of our vehicles are known beforehand.
Therefore, we also know the state of charge of the vehicles when they arrive at home. The parameters
and functions used in the optimizations are as follows.

Sets and indexes:

Ñ : Number of vehicles
T̃ : Number of discrete time steps
Õ : Number of PV installations
N : Set of vehicles N =

{
1, 2, ..., Ñ

}
T : Set of time steps T =

{
1, 2, ..., T̃

}
Ω : Set of PV installations Ω =

{
1, 2, ..., Õ

}
∆t : Time step length (e.g., 0.25 h)
n : Vehicle index n ∈ N
t : Time step index t ∈ T
o : PV installation index o ∈ Ω
Rn : Number of departures/arrivals of vehicle n ∈ N

Tarr
n : Set of arrival times of vehicle n ∈ N: Tarr

n =
{

0, tarr
n,1, ..., tarr

n,Rn

}
Tdep

n : Set of departure times of vehicle n ∈ N: Tdep
n =

{
tdep
n,0 , ..., tdep

n,Rn

}
Optimization variable:

xn,t : Charging power of n-th vehicle at time step t ∈ T
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Parameters and functions:

cet : Electricity price at time step t ∈ T
bt : Baseload function of aggregated household baseloads at time step t ∈ T
pvo,t : PV feed-in of PV-installation o ∈ Ω at time step t ∈ T
BCn : Battery capacity of vehicle n ∈ N
cot : GHG emissions at time step t ∈ T
lcpn : Charging power rate of vehicle n ∈ N
LT : Transformer apparent power limit/cap
tarr
n,j : j-th arrival time of vehicle n ∈ N : tarr

n,j ∈ Tarr
n

tdep
n,j : j-th departure time of vehicle n ∈ N : tdep

n,j ∈ Tdep
n

SOCtarr
n,j

: State-of-Charge at arrival time tarr
n,j ∈ Tarr

n ; SOCtarr
n,j
∈ [0, 1]

µ : Mean of the sum of the baseload bt and all charging powers xn,t over all time steps t ∈ T

3.3.1. Cost Optimized Strategy

This strategy revolves around the aggregator’s interest to maximize profits. Therefore, charging
scheduling aims to minimize the energy cost for charging, as well as satisfying EV users requirements.
Depending on the regulatory framework, electrical grid constraints have to be considered.

minimize
x

T̃

∑
t=1

Ñ

∑
n=1

xn,t · cet · ∆t (1a)

subject to
tdep
n,j

∑
t=tarr

n,j

xn,t · ∆t = (1− SOCtarr
n,j
) · BCn ∀n ∈ N, ∀j ∈ {0, · · · , Rn}, (1b)

tarr
n,j+1

∑
t=tdep

n,j

xn,t= 0 ∀n ∈ N, ∀j ∈ {0, · · · , Rn − 1}, (1c)

bt +
Ñ

∑
n=1

xn,t ≤ LT ∀t ∈ T, (1d)

xn,t ≤ lcpn ∀t ∈ T, ∀n ∈ N, (1e)

xn,t ≥ 0 ∀t ∈ T, ∀n ∈ N. (1f)

Equation (1) is the linear price objective function in which the sum of all charging demands of all
vehicles at a time step is multiplied by the energy cost at the time step and the length of the time step.
Subsequently, the result is summed up over all time steps. Equation (1b) ensures that every vehicle is
charged fully between the time period of arrival and departure. For every vehicle, the charged energy
equals the difference between 1 and the state of charge at arrival multiplied by the capacity of the
vehicles’ battery. Equation (1c) forces the optimization variables xn,t to be zero if the vehicle is not at
home. Due to grid constraints, we introduce a transformer limit which limits the sum of the baseload
and the aggregated EV charging demand of all vehicles in a given time step (c.f. Equation (1d)).
Equation (1e) assures, that the variable charging power does not exceed the maximum charging rate.
Lastly, Equation (1f) ensures that the charging demand can be not-negative meaning the vehicles are
not allowed feed back into the grid. Please note, this optimization strategy could also be applied
to the end consumer if a tariff with spot price dependent energy prices is provided by an energy
supply company.
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3.3.2. Valley Filling (VF) Optimized Strategy

The objective of this strategy is to avoid congestion at peak times and shift load between 10 p.m.
and 6 a.m. (load shifting method), achieving steady and low utilization of electrical equipment. With its
focus on electrical grid constraints and low network losses, this scheduling process relies on network
data, load information, and EV user data. The minimization of network losses is of great economic
importance to the DSO because, with lower network losses, the margin of profit is increasing. Since
this strategy does not consider any other objectives, the accumulated charging cost can be higher. VF
can be achieved by minimizing the variance of the aggregated load at the transformer.

Equation (2a) is the summed up variance over the optimization time horizon. Further constraints
(Equation (2b–2e)) of this strategy are already explained above. Please note, as a minimization of
variance tries to keep the overall values as close as possible to the mean and therefore penalizing high
aggregated load at the transformer, there is no need for an apparent transformer limit.

minimize
x

T̃

∑
t=1

1
Ñ − 1

Ñ

∑
n=1

(xn,t + bt − µ)2 · ∆t (2a)

subject to
tdep
n,j

∑
t=tarr

n,j

xn,t · ∆t = (1− SOCtarr
n,j
) · BCn ∀n ∈ N, ∀j ∈ {0, · · · , Rn}, (2b)

tarr
n,j+1

∑
t=tdep

n,j

xn,t= 0 ∀n ∈ N, ∀j ∈ {0, · · · , Rn − 1}, (2c)

xn,t≤ lcpn ∀t ∈ T, ∀n ∈ N, (2d)

xn,t≥ 0 ∀t ∈ T, ∀n ∈ N. (2e)

3.3.3. GHG Emission Optimized Strategy

This approach aims to be as climate-friendly as possible by minimizing the carbon footprint
of the EV charging demand. Therefore, we apply the same constraints as for the electricity priced
optimization strategy. In the objective function, the electricity price function is substituted by the GHG
emission function.

minimize
x

T̃

∑
t=1

Ñ

∑
n=1

xn,t · cot · ∆t (3a)

subject to
tdep
n,j

∑
t=tarr

n,j

xn,t · ∆t = (1− SOCtarr
n,j
) · BCn ∀n ∈ N, ∀j ∈ {0, · · · , Rn}, (3b)

tarr
n,j+1

∑
t=tdep

n,j

xn,t= 0 ∀n ∈ N, ∀j ∈ {0, · · · , Rn − 1}, (3c)

bt +
Ñ

∑
n=1

xn,t ≤ LT ∀t ∈ T, (3d)

xn,t ≤ lcpn ∀t ∈ T, ∀n ∈ N, (3e)

xn,t ≥ 0 ∀t ∈ T, ∀n ∈ N. (3f)

Equation (3a) is the linear objective function in which the sum of all charging demands at a time
step is multiplied by the current specific GHG emissions of the energy generation mix and the length
of the time step. Subsequently, the result is summed up over all time steps. Further constraints



Energies 2019, 12, 4059 8 of 19

(Equation (3)a–f) of this strategy are already explained above. The specific GHG emissions of the
energy generation mix in time step t ∈ T is calculated as follows:

cot =
Z

∑
z=1

Emz · Ez,t. (4)

Emz describes the specific GHG emissions in gCO2eq/kWh produced by energy source z ∈ Z.
The values are taken from [39]. Ez,t is the current share of energy source z in total energy generation at
time step t. For the total energy generation we take electricity production data for one week in the
winter and one week in the summer into account. Z is the set of different energy sources (e.g., solar
energy, wind energy, lignite, gas).

3.4. Scenario Definition

The generated grid model allows the analysis of a variety of scenarios. For the scenarios, both the
proportion of EVs and the feed-in by PV were determined. Three different scenarios were defined in
order to evaluate the coordinated charging strategies explained above. The scenarios are shown in
Table 1. The percentages indicate how many households have an EV and PV installation, respectively.
Both technologies were randomly distributed.

Table 1. EV and PV figures for the penetrations scenarios.

Baseline 2030 2050

EV penetration 0% 30% 70%
PV penetration 13% 20% 33%

The values for scenarios 2030 and 2050 are based on an energy market study for Germany by
Hecking et al. [40]. The baseline is based on the current number of PV installations and EVs in
Bavaria ([41,42]). For the PV installations, we assume an average size of 3.3 kWp. Further scenarios
include the distribution of EVs as far as possible from the transformer and the massing of 70% of all
mono phase connection on a single phase.

3.5. Analysis Criteria

In order to quantify the impact of EV charging and the effectiveness of our CC strategies, we select
the following criteria. Please note, that the transformer apparent power rating was omitted from the
analysis criteria, due to the fact that with normal cyclical loading of transformers, loads up to 1.3 times
the rated power are acceptable for oil-filled distribution transformers [43]. As the rated power limit is
only violated for short periods, the cyclical character is present.

3.5.1. Voltage Drop

According to DIN EN 50160, the voltage for the end consumer is allowed to deviate ± 10%
from nominal voltage. We assume that the grid has a tap changing transformer and the full voltage
bandwidth can be used in the low voltage part of the network. A violation is tracked if the absolute
voltage deviates more than 10 % from nominal voltage.

3.5.2. Thermal Rating of Cables

The generic cable used in our modeled DSOO semi-urban low voltage grid #13 has a thermal
rating of up to 420 Amperes per phase [44]. Therefore, we assume a violation if phase currents were
higher than 100% of the thermal rating.
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3.5.3. Voltage Unbalance

Voltage unbalance is the deviation from balanced conditions of voltage magnitudes and phase
angles. It is a criterion for the unbalance of a system. The voltage unbalance factor (VUF) in percent
can be expressed by:

VUF =
V(2)

V(1)
· 100%, (5)

where V(2) is the negative sequence voltage component and V(1) is the positive voltage sequence.
V(1) and V(2) are given by

V(1) =
Vab + a ·Vbc + a2 ·Vca

3
, (6)

V(2) =
Vab + a2 ·Vbc + a ·Vca

3
, (7)

where a = ∠120 and a2 = ∠240 and Vab, Vbc and Vca the line voltages [45]. In Germany, a maximum
voltage unbalance of 2% is acceptable [46].

3.5.4. PV Self-Consumption

As mentioned above, EV owners tend to have an affinity for renewables and a high interest in
using their residential PV installations in order to charge their EVs. We define PV self-consumption
in relation to EV charging for the whole grid as a closed system. The self-consumption rate (SC) is
given by:

SC =

(
1−

EEV, ch − EPV

EEV, ch

)
· 100%, (8)

where EEV, ch is the energy needed to charge all vehicles during a period (one day, one week), and EPV

is the energy provided by the PV installations during the same time frame. Please note that, as the
formula indicates, this ratio depends highly on the charging needs and the number of the EVs, as well
as the number and installed peak power of the PV installations.

3.5.5. Electrical Grid Losses

Grid losses are of high interest for distribution system operators, as lower losses mean higher
profit margins. We calculate the average network losses (ADL) using the following formula:

ADL =

√(
∑T

t=1(Ptransformer,t −∑H
h=1 Ph,t −∑Ñ

n=1 Pn,t)
)2

+
(

∑T
t=1(Qtransformer,t −∑H

h=1 Qh,t)
)2

T
, (9)

where, Ptransformer,t is the measured real power in kW at the transformer at time step t ∈ T, Ph,t is the
measured real power in kW of household h ∈ H at time step t ∈ T (measured at the grid connection
points), Pn,t the charging rate at the grid connection points of vehicle n ∈ N at time step t ∈ T,
Qtransfomer,t the reactive power in kVAr at the transformer at time step t ∈ T, and Qh,t the reactive
power in kVAr at the grid connection points at time step t ∈ T. T describes the total number of
measured values over one week in an interval of minutes (10,080 time steps in total). Please note,
that the formula is only applicable for this specific case, as we assumed that the EV charging demand
is only real power.

4. Results

In this section we discuss the simulation results. We divide the results into the analysis of the
effects of uncoordinated charging and coordinated charging.
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4.1. Uncoordinated Charging

We firstly assess the impact of UC. As already mentioned, we define two baseload cases (light and
heavy load) for the simulation. The two load cases were combined with three penetration scenarios to
check which constellation has the greatest impact on the investigated low voltage grid. We depict the
results in Figure 3 as a comparison of voltage and current limit violations in minutes, for both light
and heavy load cases. The light and heavy load case show no violations when no EVs are integrated.
With an EV penetration rate of 30%, we found no voltage violations in both light and heavy load
scenarios. The current carrying capacity of the cable is exceeded for 15, 120 min, respectively. As for
the heavy load scenario with a 70% EV penetration rate, voltage violations occur for 990 min and
current limit violations for 2400 min. This highlights the fact that the impact of EV charging highly
depends on the baseload of the considered grid.

Light load

0% 30% 70%

EV penetration levels

Light load
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Figure 3. Comparison of voltage and current violations duration for different EV penetration rates
between the heavy and light load scenarios.

We also analyze the effects of the penetration scenarios for winter and summer to explore seasonal
behavior. As the baseload is higher in winter than in summer and EVs have generally a higher energy
consumption in colder month, the impact of EV charging is more pronounced in winter. The results
are shown in Figure 4. With a growing number of EVs, frequency and duration of violations increase
and as the energy demand and baseload are higher in winter, more violations for both current and
voltage limits occur during winter. The figures show that the most critical situations arise for the heavy
load case in winter and summer with a 70% EV penetration rate (2050 scenario). This is why these
constellations is our main focus for the application and impact studies of our optimization algorithms
which can be found in Section 4.2.

To elaborate on the reasons why we do not use the apparent power at the transformer and the rated
power of said transformer as an analysis criterion, we use Figure 5. It shows that even in a worst-case
scenario (winter’s week, heavy load, and 70% EV penetration), the rated power limit is only exceeded
for short periods and never reaches 130% of the rated power limit. Furthermore, we observe that the
EVs are indeed adding to the evening peaks, and uncoordinated charging, considering our input data,
rarely takes place during the night.

The key figures for UC are shown in Table 2. The overall costs for one week are higher for the
week in the summer because of general higher electricity prices in the selected summer week. Due to
the higher electricity production from photovoltaic systems in summer, GHG emissions are around
70 kg CO2eq lower. Due to the higher baseload and EV charging demand, the network losses are
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higher in winter. We also checked electricity prices and GHG emissions for other weeks and received
similar results. Therefore, we choose the depicted weeks for their representative character.
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Figure 4. Comparison of voltage and current violations duration for different EV penetration rates
between the summer and winter week for the heavy load case.
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Figure 5. Comparison of the apparent power at the transformer for the baseline and 2050 scenario
(70% EVs, 33% PV penetration) for a week in the winter and the heavy load case.

Table 2. Comparsion of indicators for the uncoordinated charging (UC) scenario, values over one week.
GHG = greenhouse gas; SC = self-consumption rate.

Energy Cost
in EUR

GHG Production
in kg CO2eq ADL in kVA SC in %

Winter’s week 125.99 924.54 1.332 2.64
Summer’s week 145.90 851.25 1.108 41.59

Practical experience has shown that single-phase installations tend to get connected to a specific
phase. This was also confirmed with domain experts. Figure 6 depicts a comparison of the voltage
unbalances for two different cases at three different buses. For the first case, the phase connections are
evenly distributed, whereas for the second case 70% of all single-phase installations are connected to
phase R. Bus 66 is located near the transformer, Bus 50 in the middle, and Bus 114 at the end of the grid.
In both cases, a balanced distribution of the households loads can be observed. In the night hours when
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no electricity is generated by photovoltaic systems, the voltage unbalance factor is 0%. In the case
where the connections are evenly distributed among the phases, we can see that the voltage unbalance
factor stays at about 1%. In the second case, the accumulation of connections to a single-phase leads to
a violation of the limit for voltage unbalance. A peak value of 2.5% is reached. This shows that with an
unfavorable phase distribution of EVs, the safe operation threshold for the grid is exceeded.
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Figure 6. Comparison of voltage unbalance factors at buses 50, 66, and 114 for evenly distributed EV
phase connections and for 70% of connections massed on a single phase.

Another factor of impact is the distribution of EVs to the households in the grid. The further
the EVs are connected from the transformer, the higher the voltage drops. Therefore, we analyze
the distrubtion of EVs to the households and choose bus 114, which meets this criterion. As a single
line connects the transformer to the rest of the grid, bus 1, was selected as benchmark. To study
the worst-case scenario, all EVs were connected to households located as far as possible from the
transformer, as well as 70% of all mono phase connections to the phase R. Figure 7 shows a box plot for
the phase voltages at bus 114 and currents at bus 1. The unsymmetrical loading of the grid is especially
visible for the voltage values for phase R. The minimum values lie at 0.875 pu with a number of outliers
between 0.875 and 0.85 pu. The phases S and T show almost the same voltage drop distribution.
For phase R, 75% of all values lie above 0.945 pu, while for the phases S and T the figures are slightly
higher than 0.95 pu. As for the current values, a massive violation occurs at phase R with maximum
values up to 820 A, which is almost double the current carrying capacity of the cable. Similar to the
voltages, the currents for phase S and T show a comparably light valuation with maximum values up
to 580 A. More than 75% of the values for all phases lie beneath the current limit.
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Figure 7. Phase voltages at bus 114 and phase currents at bus 1 for UC with massed connection at R
and EVs distributed at the end of the grid.
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4.2. Coordinated Charging

In this section, the results for week-ahead scheduling are presented with regards to their respective
saving potentials and impact on the electrical grid. The simulation was run over a week with 15-min
time steps. If not stated otherwise, all results are based on the 2050 scenario for a winter week with
heavy load and evenly distributed EVs, as well as PV installations.

4.2.1. Cost Optimized Strategy

In Figure 8, the results of the energy cost optimization are depicted for a week in winter. We
see that the electricity wholesale prices are low during the night due to low demand. The charging
events of the EVs are contained to a number of short time frames with the lowest electricity prices.
Because of the transformer constraint, the charging demand of the EVs is limited to a peak of 167 kVA.
In Equation (1d), we set the transformer limit LT to 200 kVA as in our specific network the current rating
of the cable is exceeded before the apparent power rating of the transformer (250 kVA). A transformer
limit of 200 kVA was chosen because it is the maximum apparent power value, at which the current
does not exceed the given limit if the network is balanced.
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Figure 8. Comparison of electricity prices and cost optimized charging for a week in the winter.

As shown in the right box plot of Figure 9, this does not work as intended as EV charging is
inherently unbalanced and the accumulation of EV charging on a single-phase leads to violation of
the current-carrying limit, even when the apparent power limit is adhered. The medians of the phase
currents lie at 226 A, and the whiskers are crossing the current-carrying limit. All boxes have the same
height indicating that for all three phases, 50 % of all values are distributed between 150 A and 290 A.
The voltage limit is not exceeded with a median of 0.956 pu and the whiskers reaching from 0.986 pu
to 0.902 pu.

The overall energy costs are 60.05e for the optimization with transformer constraint. The overall
saving between UC and cost-optimized charging is 62.83e or 51.13%. Due to a high coincidence
between low GHG emissions and low energy prices, the carbon emissions are almost halved, dropping
from 924.54 to 548.89 kg CO2eq. Network transmission losses are decreasing from 1.332 kVA to
0.895 kVA, due to the lower current peaks and the quadratic relation between current and losses.
A summary of the changes in economic key figures and a comparison between the results for the
different CC strategies can be also found in Table 3.
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Figure 9. Phase voltages at bus 114 and phase currents at bus 1 for cost optimized vehicle charging.

4.2.2. VF Optimized Strategy

Figure 10 shows the graph of the apparent power in the base case without EVs compared to the
VF CC approach. We can see that the valleys in the night are perfectly filled by the charging demands
of the EV. Some EVs are charging forenoon so that the small load valley between breakfast and noon is
filled, but the majority of EVs are charging between 8:00 p.m. and 8:00 a.m. the next day. Therefore,
we can conclude that the parking times of the EVs are sufficient, to allow almost perfect scheduling.
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Figure 10. Baseload and coordinated charging (CC) valley filling (VF), apparent power.

Figure 11 depicts box plots of the voltages and currents for each phase, at two critical buses in
the network for the uncoordinated and the coordinated charging VF approach. For the VF approach,
we can observe that in the heavy load case the currents at peak times are close to the current carrying
capacity limit of the cable. The valley filling optimization allows the medians of the phase currents to
drop slightly from around 211 A in the UC case to around 208 A in the CC case. Similar to the behavior
of the phase voltages in the UC case, some current values violate the limits, and the distribution is
wider, indicated by taller boxes and longer whiskers. The average network losses can be reduced
from 1.332 kVA to 0.636 kVA, which makes this strategy the best overall strategy for the DSO. GHG
emissions and electricity costs for EV charging are 890.85 kg CO2eq and 89.05e, respectively. SC is
comparably low with 1.13% for the heavy load winter scenario, as the EVs are scheduled to charge
predominantly at night.
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Figure 11. Comparison of phase voltages and currents for UC and CC VF.

4.2.3. GHG Emission Optimized Strategy

Environmental conscious EV users might want to charge their EVs with electricity that was
generated by energy sources with a low carbon footprint. This optimization could be employed
by load serving utilities to offer their customers a truly green energy tariff. The GHG-optimized
charging demand is shown in Figure 12. Due to a high feed-in of wind energy plants in the considered
week in the winter, GHG emissions of the energy mix are low in the night. Additionally, EVs are
generally available at home during this time and can be ideally scheduled. Overall GHG emissions
drop from 924.54 kg CO2eq in the case of uncoordinated charging (2050) to 517.50 kg CO2eq when
GHG-optimized charging is employed. The summed up electricity cost for the charging demand of
the EVs lies at 76.39e, which is comparably low due to the deployment of renewable energy sources.
As the charging process is shifted into the night hours, a decrease in SC from 4.04% to 0.18% can be
observed. Additionally, due to the shift into the night, the ADL drops to 1.105 kVA, which is caused by
lower current flows in the network.
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Figure 12. GHG-optimized charging demand of EVs for one week in the winter.

In Figure 13, the distribution of phase voltages and currents is shown. The phase voltages are
exhibiting nearly the same median value of around 0.96 pu, furthermore are the inter-quartile ranges
almost equal. The whiskers span from 0.986 pu to 0.905 pu, indicating the minimal and maximal
voltage drop. No violation in voltage limits occur. In contrast, the current carrying capacity of the cable
is exceeded. The medians of the current values are nearly equal for all three phases at around 229 A.
Moreover, 75% of all currents are below 300 A, but measurement 25% quantile reach a maximum of
469 A, 535 A, and 567.7 A, for phase R, S, and T, respectively. Therefore, the current carrying capacity
of the cable is exceeded on multiple occasions, which could lead to an overheating of the cable.
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Figure 13. Phase voltages at bus 114 and phase currents at bus 1 for GHG emission optimized
vehicle charging.

4.3. Discussion of the Results

In Table 3, a summary of the results for the economic key figures of the considered week in the
winter (Scenario 2050) is given. The different optimizations are able to achieve their objectives. The cost
optimization lowers the energy cost by more than half and provides the user with the lowest overall
energy cost among the other optimizations. Due to the relation between the employment of low carbon
technologies and low energy prices, it significantly lowers GHG emissions. The GHG-optimized
charging offers only a 5.6% reduction of emissions, at a cost increase of 26.29% in contrast to the cost
optimized scenario. This is due to low carbon emission technologies being deployed during a time of
high demand and therefore, high electricity prices. This fact can also be observed when the ADL are
compared. The cost-optimized charging offers a reduction of 30%, while GHG optimization only offers
a 17% reduction in comparison to the UC scenario. As network losses are mainly a quadratic function
of current, this underlines the fact, that EVs were scheduled to charge during a time of high load.
These circumstances make GHG minimal charging economically infeasible, at least in the week that
was studied here. The SC is low for both optimizations as the EV are mainly charged at night, and SC
levels are in general low in winter. VF provides the lowest ADL but results in comparatively high
energy costs and GHG emissions. As VF is most suitable from a grid perspective and thus a potential
strategy for DSOs, our results emphasize the conflict of interest that could occur between operators
and aggregators.

Table 3. Total energy cost, GHG emissions, average electrical distribution losses, and PV self-consumption,
for different optimization approaches. Data was calculated for a winter’s week, Scenario 2050.

Energy Cost
in e

GHG Production
in kg CO2eq ADL in VA SC in %

2050 UC 125.99 924.54 1332 2.64
Cost optimized 60.05 548.89 895 0.75

VF 89.05 890.85 636 1.13
GHG-optimized 76.39 517.50 1105 0.06

5. Outlook and Future Work

In this paper, we developed a simulation model for a European semi-urban low voltage grid.
We designed the grid model in MATLAB Simulink and implemented an algorithm for the automatic
generation of the grid model. Our model provides the option to modify many input parameters very
easily, e.g., the penetration of PV installations or the number of EVs. The resulting output parameters
are comprehensive and include among others voltages and currents per phase. Using the model,
we analyzed the impact of uncoordinated charging on different output parameters. Subsequently,
we developed three different optimization-based coordinated charging strategies. The main impacts
we assessed include voltage drops, phase unbalances and electrical grid losses. The interactions of the
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EV charging processes and a representative distribution grid, presented in this paper, demonstrate the
importance of an EV impact study.

For our semi-urban low voltage grid, an EV penetration rate of 30% shows almost no noticeable
impact. However, when we take a look in the year 2050 with an EV penetration rate of 70% and
a PV penetration rate of 33%, we see some interesting results. No violations of the additional
criterion of voltage unbalance can be observed if the fleet is evenly distributed among the phases.
Nevertheless, in real-world systems it is impossible to control at which phase an EV will be connected
to. Our further analysis of a non evenly distributed fleet among phases showed an excess of the voltage
unbalance limit.

The VF approach proved to be the best way to minimize network losses but has the disadvantage
of comparably high GHG emissions and electricity costs. The cost optimized strategy is able to
minimize the costs for electricity but leads to critical grid situations even with a constraint on the
apparent power flow in place. The GHG emissions optimized strategy helps to reduce GHG emissions
by around 40%. In contrast to VF, the average electrical distribution losses increase by around 30%.

The above analysis and results include a representative topology and realistic methodology to
measure the EV impact on low voltage grids. From the results, it is observed that there are conflicts
between different approaches. Decision makers should trade-off the different objectives and outcomes,
alleviating electricity costs, grid congestion, and GHG emissions. Regardless of the policy followed,
we conclude that analyzing the impact of EVs, particularly as EV battery sizes are increasing, is of
paramount importance. This study provides a practical and representative basis for future analysis.

With the grid model created in this work, further research into more advanced optimization
algorithms is possible. One future research direction could be the implementation of an algorithm
which is directly coupled to the electrical grid model. In this case, more realistic scheduling of EV
could be reached by taking shorter optimization horizon into account.
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