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Abstract: The limited battery capacity of Internet of Things (IoT) devices is a major deployment
barrier for IoT-based computing systems. In this paper, we propose an energy efficient cooperative
computation algorithm (EE-CCA). In an EE-CCA, a pair of IoT devices decide whether to offload
some parts of the task to the opponent by considering their energy levels and the task deadline.
To minimize the energy outage probability while completing most of tasks before their deadlines,
we formulate a constraint Markov decision process (CMDP) problem and the optimal offloading
strategy is obtained by linear programming (LP). Meanwhile, an optimization problem of finding
pairs of IoT devices (i.e., IoT device pairing problem) is formulated under the optimal offloading
strategy. Evaluation results demonstrate that the EE-CCA can reduce the energy outage probability up
to 78% compared with the random offloading scheme while completing tasks before their deadlines
with high probability.

Keywords: offloading; Internet of Things (IoT); energy; constraint Markov decision process (CMDP);
optimization

1. Introduction

From the recent advancement of Internet of Things (IoT) devices with high computing power,
complicated computation can be handled without remote servers [1]. However, the development
speed of batteries for IoT devices is inferior to that of computing module, and thus the limited
battery capacity of IoT devices is being a major deployment barrier for IoT-based computing systems.
Therefore, there is an increasing interest on the energy harvesting technique that converts wasted
energy to electricity [2,3]. With this technique, IoT devices do not need to recharge and/or replace
their batteries anymore, and thus the operating expenditure of IoT-based computing systems can be
reduced [4]. However, the energy that can be harvested from external energy sources is generally
uncontrollable and intermittent. Moreover, the harvested energy volume has temporal and spatial
variations. Therefore, it is difficult to provide a reliable power supply to IoT devices. In this situation,
if an IoT device cannot harvest energy for a long time and it processes lots of tasks requiring high
computing power, its energy can be depleted. To mitigate this problem and improve the energy
efficiency of harvesting IoT devices, a number of works (e.g., sleep scheduling, CPU cycle adjustment,
and so on) have been investigated in the literature [5–10]. One of the possible solutions is offloading
tasks to nearby IoT devices [5–7]. IoT-based computing systems have advantages compared to remote
servers-based offloading systems. For example, offloading to remote servers consumes huge resources
in networks when IoT devices generate lots of tasks. In addition, longer latency is needed when
offloading to remote servers. Especially when an energy-scarce IoT device offloads tasks to a nearby
energy-abundant IoT device, energy depletion of the energy-scarce IoT devices probably does not occur.
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However, unplanned offloading can cause another energy depletion. For example, when an offloader
(i.e., an energy-scarce IoT device) always offloads all tasks to an offloadee (i.e., an energy-abundant
IoT device) having lots of own tasks and/or small harvesting rate, the energy of the offloadee can be
depleted within a short duration. Moreover, tasks cannot be completed within their deadlines due to
the high load of the offloadee. Therefore, a sophisticated offloading algorithm should be devised.

In this paper, we propose an energy efficient cooperative computation algorithm (EE-CCA).
In an EE-CCA, each IoT device is paired to its partner and a pair of IoT devices conduct cooperative
computing. Specifically, a centralized controller collects information such as the distribution about
temporal and spatial variations of external energy sources, the task occurrence rates of IoT devices,
and the energy levels of IoT devices. Based on this information, the controller can construct and
distribute offloading decision tables to IoT devices. Then, when a task occurs in IoT devices, they
decide whether to offload some parts of the task to the opponent by following the decision tables.
To minimize the energy outage probability while completing most of the tasks before their deadlines,
we formulate a constraint Markov decision process (CMDP) problem, and the optimal offloading
strategy is obtained by linear programming (LP). Meanwhile, an optimization problem of finding pairs
of IoT devices (i.e., IoT device pairing problem) is formulated under the optimal offloading strategy.
Evaluation results demonstrate that the EE-CCA can reduce the energy outage probability up to 78%
compared with the random offloading scheme while completing tasks before their deadlines with
high probability. In addition, the EE-CCA operates adaptively even when the operating environment
(e.g., inter-task occurrence rate) changes.

The contribution of this paper can be summarized as follows: (1) we develop the cooperative
computation algorithm called EE-CCA for IoT devices, while optimizing the EE-CCA by means of
CMDP formulation; (2) optimal pairs of IoT devices are decided based on the optimization problem;
and (3) extensive evaluation results are presented and analyzed under various environments, providing
valuable guidelines for the design of cooperative computing in energy harvesting IoT.

The remainder of this paper is organized as follows. Related works are summarized in Section 2,
and the EE-CCA is described in Section 3. The CMDP model for cooperative computing and the
optimization problem for the IoT device pairing are developed in Section 4. Evaluation results are
given in Section 5, and followed by the concluding remarks in Section 6.

2. Related Works

A number of studies on the computation offloading have been conducted to improve the energy
efficiency of energy-constraint devices [11–22]. These can be categorized into: (1) framework design [11–16];
and (2) algorithm design [17–22].

Wang et al. [11] proposed an evolutionary mobile network architecture called MobiScud that
integrates the cloud services into the mobile networks by means of software defined networking
(SDN) and network function virtualization (NFV) technologies in a backwards compatible fashion.
Tong et al. [12] organized edge cloud servers into a hierarchical architecture which enables aggregation
of the peak loads across different tiers of cloud servers. Specifically, when the loads exceed the
capacities of lower tiers of edge cloud servers, they can be aggregated and offloaded by other servers
at higher tiers in the edge cloud hierarchy to maximize the amount of mobile workloads being served.
Taleb and Ksentini [13] introduced a follow me cloud concept that enables mobile cloud services
to follow their respective mobile devices by migrating services to the optimal cloud. Liu et al. [14]
proposed convergence of cloud and cellular systems, abbreviated as CONCERT, based on a concept of
control/data plane decoupling and hierarchically placement of the resources within the network to
manage flexibly and elastically networks and cloud services. Puente et al. [15] presented a seamless
approach for the deployment of edge clouds where conventional mobile traffic and computing related
traffic are segregated and handled individually at base stations. However, since these works do not
consider the device-to-device offloading, IoT devices with high computing power cannot be exploited
efficiently. Shukla and Munir [16] proposed a computation offloading architecture where an IoT device
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first tries to offload tasks to another IoT device instead of directly offloading to the cloud to process the
huge amount of data while guaranteeing the task completion before the deadline. However, they did
not provide any optimization method.

Ko et al. [17] proposed a spatial and temporal computation offloading decision algorithm where
an energy-constraint device decides where and when to process tasks by means of a Markov decision
process (MDP) by considering the energy consumption and the transmission cost. Zhao et al. [18]
developed an optimization problem whose objective function is to maximize the probability that task
execution satisfies the given delay bound. The problem was proved to be concave, and an optimal
algorithm was proposed. Tang and Chen [19] studied a social-aware computation offloading game and
designed a distributed computation offloading algorithm to achieve the Nash equilibrium. Similarly,
Chen et al. [20] modeled a multi-user computation offloading game and designed a distributed
computation offloading algorithm that can achieve the Nash equilibrium of the game. Zheng et al. [21]
formulated the mobile users’ offloading decision process under a dynamic environment as a
stochastic game. Then, they proposed a multi-agent stochastic learning algorithm that can run
in a fully distributed manner without any information exchange. Yu et al. [22] developed an
optimal collaborative offloading strategy under a distributed caching scenario. Specifically, they
formulated a problem of users’ allocation as a coalition formation game with the consideration of
relationships between the offloading and caching and then proposed an optimal offloading with a
caching-enhancement scheme. These works improve the performance of computation offloading;
however, no previous studies optimize the performance of IoT-based computing systems.

3. Energy Efficient Cooperative Computation Algorithm (EE-CCA)

Figure 1 shows the system model of this paper. In our system model, there are N IoT devices with
the energy harvesting capability. We assume heterogeneous IoT environment, where IoT devices have
different computing power and current energy level. In real systems, some IoT devices may not have
sufficient computing power and/or harvesting capability. To support this situation, a study on the
robustness of the proposed algorithm (e.g., a resilient multiscale coordination control [23]) should be
conducted, which is one of our future works. In addition, since they are installed at different spots and
the condition of external energy sources is volatile, energy volumes that can be harvested at each IoT
device are different from each other. In addition, with different rates, these IoT devices periodically
generate tasks that can be abstracted into the input data and the completion deadline before which
the task should be completed [24]. In addition, we consider an application where the input data do
not have dependency, e.g., binomial classification that determines whether each input is larger than a
given threshold or not, and therefore the input data can be partitioned and offloaded. When the task
occurs in a particular IoT device, it decides whether to offload some parts of the task (i.e., input data)
to a neighbor IoT device or not with the consideration of the energy level and the deadline of the task.
Note that, even though the formulation of this paper is based on the assumption where IoT devices
can offload all or half of the tasks, it can be easily extended to consider other portions of the task.

Figure 1. System model.
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Intuitively, when an IoT device offloads some parts of the task to a neighbor IoT device, the task
can be processed in a distributed manner, which can reduce the energy consumption of the task owner.
Since IoT devices offload their tasks to nearby IoT devices by exploiting transmission technologies
with low power consumption (e.g., Bluetooth), the energy consumption for transmission of the task
can be neglected compared to that for processing the task. Moreover, if the neighbor IoT device does
not have its own task, the task completion time can be shortened. However, if the task is offloaded to
an energy-scarce IoT device, it causes the energy depletion of the IoT device, and then the offloaded
task cannot be processed due to the energy depletion. In addition, when the neighbor IoT device has its
own task, it should process its own task and the offloaded task simultaneously, and thus its processing
time can increase. Then, both tasks may not be completed within their deadlines. To prevent these
situations, we propose the EE-CCA and its flow chart is shown in Figure 2. First, the controller collects
and/or maintains information such as the distribution about temporal and spatial variations of external
energy sources, the task occurrence rates of IoT devices, and the energy levels of IoT devices (Step 1 in
Figure 2). Based on this information, the controller determines appropriate partners of IoT devices
for cooperative computation and transmits the pairing information to IoT devices (Step 2 in Figure 2).
In addition, the controller constructs an offloading decision table consisting of the current status and
the operation in a centralized manner. If some parameters (e.g., the task occurrence rates of IoT devices)
are changed, the offloading decision table can be reconstructed by the controller and transmitted to
IoT devices again. Therefore, if the parameters are frequently changed, extra signaling overhead can
occur. To mitigate the signaling overhead, several techniques such as aggregation and delta encoding
can be exploited [25]. Note that the offloading decision table can be obtained by CMDP, which will be
elaborated in Section 4. After that, the controller transmits the optimal offloading decision table to
IoT devices (Step 3 in Figure 2). On the basis of this table, IoT devices can conduct the cooperative
computing (i.e., decide whether to offload some parts of the task or not) (Step 4 in Figure 2). By means
of table deployments in IoT devices, the CMDP model can be applied to resource-constrained IoT
devices without any high computation overhead in IoT devices [26].

Figure 2. Flow chart.
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4. Constraint Markov Decision Process (CMDP)

To obtain the optimal offloading strategy, we formulate a CMDP model with five elements. (Since
the CMDP model that is a mathematical framework to model decision-making when outcomes need
to be constrained, and they are partially random and under the control of the decision maker [27], it is
suitable to construct the optimal offloading decision table.): (1) decision epoch; (2) state; (3) action;
(4) transition probability; and (5) cost and constraint functions. Subsequently, we convert the CMDP
model to an equivalent LP problem to obtain the optimal policy. After that, the IoT device pairing
problem is formulated under the optimal offloading policy. Important notations for the CMDP model
and IoT device pairing problem are summarized in Table 1.

Table 1. Summary of notations.

Notation Description

St State at the decision epoch t
At Action chosen at the decision epoch t
τ Duration of each decision epoch
S Overall state space

TM
i State for denoting the occurrence and processing status for the task of IoT device i

TM
j State for denoting the occurrence and processing status for the task of IoT device j

TO
i State for denoting the processing status for the offloaded task of IoT device i

TO
j State for denoting the processing status for the offloaded task of IoT device j

Ei State for denoting the energy level of IoT device i
Ej State for denoting the energy level of IoT device j
Di State for denoting whether the timer for the deadline of the task of IoT device i expires or not
Dj State for denoting whether the timer for the deadline of the task of IoT device j expires or not
A Action space
Ai Action space for IoT device i
Aj Action space for IoT device j

EMAX Maximum battery capacity of IoT device
r(S, A) Cost function on the energy outage
ci(S, A) Constraint function on the timer expiration of IoT device i
cj(S, A) Constraint function on the timer expiration of IoT device j

ζE Energy outage probability
ξT

i Timer expiration probability of IoT device i
ξT

j Timer expiration probability of IoT device j

θT
i Upper limit on the timer expiration probability of IoT device i

θT
j Upper limit on the timer expiration probability of IoT device j

ζE
ij Individual energy outage probability of IoT device i when it is paired with IoT device j

xij Decision variable to denote whether IoT device i is paired with IoT device j or not

4.1. Decision Epoch

Figure 3 shows the timing diagram for the CMDP model. A sequence T = {1, 2, 3, ...} represents
the time epochs when successive decisions are made [28]. St and At denote the state and the action
chosen at the decision epoch t ∈ T, respectively. τ represents the duration of each decision epoch.

Figure 3. Timing diagram.
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4.2. State Space

We define the overall state space S as (The state space is constructed based on the assumption
where IoT devices can offload all or half of the task. However, it can be easily extended to consider
other portions of the task to add elements to TM

i , TO
i , TM

j , and TO
j .)

S = TM
i × TO

i × Ei ×Di × TM
j × TO

j × Ej ×Dj, (1)

where TM
i and TM

j are the states for representing the occurrence and processing status for the task of

IoT devices i and j, respectively. TO
i and TO

j denote the states for the processing status of the offloaded
task of IoT devices i and j, respectively. Ei and Ej are the states for the energy level of IoT devices i
and j, respectively. Di and Dj represent the states for denoting whether the timers for the deadline of
the task of IoT devices i and j expire or not, respectively.

TM
i , TO

i , Ei, and Di are the states for IoT device i, and these states are defined as follows.
First, TM

i is given by

TM
i = {0, 1, 2, 3, 4} , (2)

where TM
i represents the occurrence and processing status for the task of IoT device i. In other words,

TM
i = 0 denotes that the task does not occur in IoT device i, whereas TM

i = 1 refers to the situation
immediately after the task occurs in IoT device i. TM

i = 2 represents the situation where IoT device
i processes all of the task by itself. Meanwhile, TM

i = 3 and TM
i = 4 represent the situations where

half of the task and all of the tasks are offloaded to IoT device j, respectively. Note that, when TM
i = 3,

IoT device i processes the remaining half of the task.
TO

i is represented by

TO
i = {0, 1, 2} , (3)

where TO
i represents the processing status of the offloaded task of IoT device i. Specifically, TO

i = 0
describes the situation where any task is not offloaded to its partner (i.e., IoT device j). Meanwhile,
TO

i = 1 and TO
i = 2 represent the situation where half of the task and all of the tasks are offloaded to

IoT device j, respectively, and it is being processed in IoT device j.
Ei is represented as [29]

Ei = {0, 1, 2, ...EMAX} , (4)

where EMAX is the maximum battery capacity of an IoT device.

Di = {0, 1} , (5)

where Di denotes whether the timer for the deadline of the task of IoT device i expires or not. In other
words, Di = 0 and Di = 1 represent that the timer for the deadline of the task of IoT device i does not
expire and expires, respectively.

TM
j , TO

j , Ej, and Dj are the states for IoT device j, and these states can be defined as similar with
the states for IoT device i. These definitions are omitted in this paper due to the page limitation and
for simple descriptions, which can be found in [30].

4.3. Action Space

When the task occurs in IoT devices, each IoT device can decide whether to offload to its partner or
not and the portion to be offloaded based on the current state information. The action set is constructed
based on the assumption where IoT devices can offload all or half of the task. However, it can be easily
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extended to consider other portions of the task to define additional actions. Therefore, the action set
can be described by

A = Ai ×Aj, (6)

where Ai and Aj are the action spaces for IoT devices i and j, respectively, which can be defined as

Ai = {0, 1, 2} (7)

and

Aj = {0, 1, 2} , (8)

where Ai = 0 and Aj = 0 represent that IoT devices i and j do not offload its task, respectively.
Ai = 1 and Aj = 1 denote that IoT devices i and j offload half of the task to its partner, respectively.
In addition, Ai = 2 and Aj = 2 are the actions where IoT devices i and j offload all of the task to its
partner, respectively.

4.4. Transition Probability

The state transition probability of IoT device i is affected by the state of IoT device j. Specifically,
the processing speed of the task occurring in IoT device i (i.e., the transition probability of TM

i )
is dependent on whether the task occurring at IoT device j is processed in IoT device i or not (i.e., TO

j ).

In addition, the transition probability of TO
i is affected by whether IoT device j processes its own task

or not (i.e., TM
j ). Similar to that, the state transition probability of IoT device j is also influenced by

the state of IoT device i (especially TM
i and TO

i ). Therefore, the transition probability with the chosen
action A from the current state S to the next state S′ can be described by

P[S′|S, A] = P[S′i |Si, TM
j , TO

j , A]× P[S′j|Sj, TM
i , TO

i , A], (9)

where S′i and S′j denote the next state of IoT devices i and j, respectively. In addition, Si and Sj represent
the current state for IoT devices i and j, respectively.

Meanwhile, TM
i and TO

i are influenced by the chosen action A, and these states are dependently
changed with each other. In addition, TM

i is affected by TO
j . For example, when the task of IoT

device j is processed in IoT device i, the processing speed of the task of IoT device i can decrease.
Similarly, TO

i is influenced by TM
j . For example, when IoT device j does not process its own task,

it can focus on processing the offloaded task from IoT device i, and therefore the offloaded task can be
completed within a short duration. Meanwhile, when the task is processed in IoT device i, its energy
level can decrease. That is, the transition of Ei is influenced by TM

i . The timer for the deadline of
the task operates only when the task occurs, and therefore the transition of Di is affected by TM

i and
TO

i . Meanwhile, other states change independently of each other. Therefore, for the chosen action A,
the transition probability from the current state of IoT device i, Si = [TM

i , TO
i , Ei, Di], to the next state

of IoT device i, S′i = [T′Mi , T′Oi , Ei, Di], can be described by

P[S′i |Si, TM
j , TO

j , A] = P[T′Mi |T
M
i , TO

i , TO
j , A]× P[T′Oi |T

O
i , TM

i , TM
j , A]× P[E′i |Ei, TM

i ]× P[D′i |Di, TM
i , TO

i ]. (10)
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We assume that the inter-task occurrence time of IoT device i follows an exponential distribution
with mean 1/λi. Then, the probability that the task occurs in IoT device i during a decision epoch can
be calculated as λiτ [27,31]. Therefore, P[T′Mi |T

M
i = 0, TO

i = 0, A] can be represented by

P[T′Mi |T
M
i = 0, TO

i = 0, TO
j , A] =


1− λiτ, if T′Mi = 0,
λiτ, if T′Mi = 1,
0, otherwise.

(11)

Before receiving the result of the offloaded task, IoT device i does not generate the task. Therefore,
P[T′Mi |T

M
i = 0, TO

i 6= 0, TO
j , A] can be defined as

P[T′Mi |T
M
i = 0, TO

i 6= 0, TO
j , A] =

{
1, if T′Mi = 0,
0, otherwise.

(12)

Meanwhile, when the task occurs (i.e., TM
i = 1), IoT device i decides whether to offload to IoT

device j or not and the offloaded portion (i.e., half of the task and all of the task). If IoT device i decides
not to offload it (i.e., when A = 0), the task state will change to 2 representing the situation where
IoT device i processes all of the task by itself (i.e., TM

i = 2). On the other hand, when IoT device i
decides to offload half of the task and all of the task (i.e., when A = 1 and A = 2), the next states of the
occurrence and processing status for the task of IoT device i (i.e., T′Mi ) become 3 and 4, respectively.
Therefore, the corresponding transition probabilities can be represented as

P[T′Mi |T
M
i = 1, TO

i , TO
j , A = 0] =

{
1, if T′Mi = 2,
0, otherwise,

(13)

P[T′Mi |T
M
i = 1, TO

i , TO
j , A = 1] =

{
1, if T′Mi = 3,
0, otherwise,

(14)

and

P[T′Mi |T
M
i = 1, TO

i , TO
j , A = 2] =

{
1, if T′Mi = 4,
0, otherwise,

(15)

respectively.
We assume that the processing time of IoT device i for its own task follows an exponential

distribution with mean 1/µF,S
i when it processes all of its own task and any task of IoT device j is

not offloaded to IoT device i (i.e., TM
i = 2 and TO

j = 0). In this case, the probability that the task is

completed during a decision epoch is µF,S
i τ [27,31]. Then, the probability that a task is not completed

during a decision epoch is 1− µF,S
i τ. On the other hand, if some portion of the task of IoT device

j is offloaded to IoT device i (i.e., TO
j 6= 0), the processing speed of IoT device i for its own task

decreases, and thus it is assumed that the processing time of IoT device i for its own task follows
an exponential distribution with mean 1/µF,D

i (> 1/µF,S
i ). In this case, the probability that the task

is completed (or not completed) during a decision epoch is µF,D
i τ (or 1− µF,D

i τ) [27,31]. Therefore,
P[T′Mi |T

M
i = 2, TO

i , TO
j = 0, A] and P[T′Mi |T

M
i = 2, TO

i , TO
j 6= 0, A] can be derived as

P[T′Mi |T
M
i = 2, TO

i , TO
j = 0, A] =


1− µF,S

i τ, if T′Mi = 2,
µF,S

i τ, if T′Mi = 0,
0, otherwise,

(16)
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and

P[T′Mi |T
M
i = 2, TO

i , TO
j 6= 0, A] =


1− µF,D

i τ, if T′Mi = 2,
µF,D

i τ, if T′Mi = 0,
0, otherwise.

(17)

Meanwhile, when offloading half of the task to IoT device j (i.e., TM
i = 3), the remained task can

be completed with shorter time. It is assumed that the processing time of the remained task follows
an exponential distribution with mean 1/µH,S

i when any task of IoT device j is not offloaded to IoT
device i (i.e., TO

j = 0), and then the probability that the remained task is completed during a decision

epoch is µH,S
i τ [27,31]. On the other hand, when IoT device i offloads the half of its task to IoT device j

and processes the offloaded task from IoT device j (i.e., TM
i = 3 and TO

j 6= 0), the processing time of

the remained task of IoT device i follows an exponential distribution with mean 1/µH,D
i . In this case,

the probability that the remained task is completed during a decision epoch is µH,D
i τ [27,31]. Thus,

the corresponding transition probabilities can be represented as

P[T′Mi |T
M
i = 3, TO

i , TO
j = 0, A] =


1− µH,S

i τ, if T′Mi = 3,
µH,S

i τ, if T′Mi = 0,
0, otherwise,

(18)

and

P[T′Mi |T
M
i = 3, TO

i , TO
j 6= 0, A] =


1− µH,D

i τ, if T′Mi = 3,
µH,D

i τ, if T′Mi = 0,
0, otherwise.

(19)

When the task does not occur, the processing status of the offloaded task of IoT device i does not
change. Therefore, P[T′Oi |T

O
i = 0, TM

i 6= 1, A] can be denoted as

P[T′Oi |T
O
i = 0, TM

i 6= 1, TM
j , A] =

{
1, if T′Oi = 0,
0, otherwise.

(20)

Meanwhile, when the task occurs (i.e., TM
i = 1), the processing status of the offloaded task of IoT

device i changes according to the chosen action A. Therefore, corresponding transition probabilities
can be represented as

P[T′Oi |T
O
i = 0, TM

i = 1, TM
j , A = 0] =

{
1, if T′Oi = 0,
0, otherwise,

(21)

P[T′Oi |T
O
i = 0, TM

i = 1, TM
j , A = 1] =

{
1, if T′Oi = 1,
0, otherwise,

(22)

and

P[T′Oi |T
O
i = 0, TM

i = 1, TM
j , A = 2] =

{
1, if T′Oi = 2,
0, otherwise,

(23)

respectively.
When some portion of the task is offloaded (i.e., TO

i = 1 or TO
i = 2), it is processed by IoT device

j. Meanwhile, the processing time of the offloaded task to IoT device j depends on the portion of the
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offloaded task (i.e., TO
i ) and whether IoT device j processes its own task or not (i.e., TM

j ). Specifically,
when half of the task (or all of the task) of IoT device i is offloaded and IoT device j does not process its
own task, we assume that the processing time of the offloaded task follows an exponential distribution
with mean 1/µH,S

j (1/µF,S
j ). On the other hand, if half of the task (or all of the task) of IoT device i is

offloaded and IoT device j processes its own task, the processing time of the offloaded task follows an
exponential distribution with mean 1/µH,D

j (1/µF,D
j ). Then, the probabilities that the offloaded task

is completed during a decision epoch for each case can be derived as µH,S
j τ, µF,S

j τ, µH,D
j τ, and µF,D

j τ,
respectively [27,31]. Therefore, the corresponding transition probabilities can be denoted as

P[T′Oi |T
O
i = 1, TM

i , TM
j = 0, A] =


1− µH,S

j τ, if T′Oi = 1,

µH,S
j τ, if T′Oi = 0,

0, otherwise,

(24)

P[T′Oi |T
O
i = 2, TM

i , TM
j = 0, A] =


1− µF,S

j τ, if T′Oi = 1,

µF,S
j τ, if T′Oi = 0,

0, otherwise,

(25)

P[T′Oi |T
O
i = 1, TM

i , TM
j 6= 0, A] =


1− µH,D

j τ, if T′Oi = 1,

µH,S
j τ, if T′Oi = 0,

0, otherwise,

(26)

and

P[T′Oi |T
O
i = 2, TM

i , TM
j 6= 0, A] =


1− µF,D

j τ, if T′Oi = 1,

µH,S
j τ, if T′Oi = 0,

0, otherwise.

(27)

The IoT device can harvest energy only when its environments provide energy (e.g., when the
wind blows above a certain speed). Therefore, the probability that IoT device i harvests one unit
energy at an arbitrary decision epoch is modeled by a Bernoulli random process with the probability
pH

i [32]. Then, when the IoT device i does not process any task (i.e., TM
i = 0 or TM

i = 1) and its battery
is not fully charged (i.e., Ei 6= EMAX), Ei increases by one unit with the probability pH

i . If the battery of
IoT device i is full (i.e., Ei = EMAX), it cannot harvest energy anymore. Therefore, the corresponding
transition probabilities can be represented as

P[E′i |Ei 6= EMAX , TM
i = 0] =


1− pH

i , if E′i = Ei,
pH

i , if E′i = Ei + 1,
0, otherwise,

(28)

P[E′i |Ei = EMAX , TM
i = 0] =

{
1, if E′i = Ei,
0, otherwise,

(29)

P[E′i |Ei 6= EMAX , TM
i = 1] =


1− pH

i , if E′i = Ei,
pH

i , if E′i = Ei + 1,
0, otherwise,

(30)
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and

P[E′i |Ei = EMAX , TM
i = 1] =

{
1, if E′i = Ei,
0, otherwise.

(31)

When IoT device i processes the task (i.e., TM
i = 2 or TM

i = 3) and it has energy (i.e., E 6= 0),
it consumes one unit energy. On the other hand, if IoT device i does not have any energy, it cannot
process for any task the sensed data, and thus no energy is consumed. In addition, its energy Ei
increases by one unit with the probability pH

i . Therefore, the corresponding transition probabilities can
be expressed by

P[E′i |Ei 6= 0, TM
i = 2] =


1− pH

i , if E′i = Ei − 1,
pH

i , if E′i = Ei,
0, otherwise,

(32)

P[E′i |Ei = 0, TM
i = 2] =

{
1, if E′i = Ei,
0, otherwise,

(33)

P[E′i |Ei 6= 0, TM
i = 3] =


1− pH

i , if E′i = Ei − 1,
pH

i , if E′i = Ei,
0, otherwise,

(34)

and

P[E′i |Ei = 0, TM
i = 3] =

{
1, if E′i = Ei,
0, otherwise.

(35)

Meanwhile, when all of the tasks are offloaded to IoT device j (i.e., TM
i = 4), IoT device i does not

consume its own energy. Therefore, the corresponding transition probability can be denoted as

P[E′i |Ei, TM
i = 4] =

{
1, if E′i = Ei,
0, otherwise.

(36)

When the task does not occur (i.e., TM
i = 0 or TO

i = 0), the timer for the deadline of the task does
not start, and therefore it does not expire. Therefore, P[D′i |Di, TM

i = 0, TO
i = 0] can be represented as

P[D′i |Di, TM
i = 0, TO

i = 0] =

{
1, if D′i = 0,
0, otherwise.

(37)

We assume that the timer for the deadline of the task of IoT device i follows an exponential
distribution with mean 1/κi [33,34]. Then, when the task is not completed (i.e., TM

i 6= 0 or TO
i 6= 0),

the probability that the timer expires during a decision epoch is κiτ. Thus, the corresponding transition
probabilities can be represented as

P[D′i |Di = 0, TM
i 6= 0, TO

i ] =


1− κiτ, if D′i = 0,
κiτ, if D′i = 1,
0, otherwise,

(38)
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and

P[D′i |Di = 0, TM
i , TO

i 6= 0] =


1− κiτ, if D′i = 0,
κiτ, if D′i = 1,
0, otherwise.

(39)

Meanwhile, when the task is completed (i.e., TM
i = 0 and TO

i = 0), the timer is reset and does
not operate, which means that there is no expiration. Therefore, P[Di

′|Di = 1, TM
i = 0, TO

i = 0] can
be denoted as

P[D′i |Di = 1, TM
i = 0, TO

i = 0] =

{
1, if D′i = 0,
0, otherwise.

(40)

If the timer expires (i.e., Di = 1) and the task is not completed (i.e., TM
i 6= 0 or TO

i 6= 0), the timer
remains in the expired state. Therefore, the corresponding transition probabilities can be represented as

P[D′i |Di = 1, TM
i 6= 0, TO

i ] =

{
1, if D′i = 1,
0, otherwise,

(41)

and

P[Di
′|Di = 1, TM

i , TO
i 6= 0] =

{
1, if D′i = 1,
0, otherwise.

(42)

The transition probability for the states of IoT device j can be defined as similar to that of IoT
device i. These are omitted in this paper due to the page limitation and for simple descriptions, which
can be found in [30].

4.5. Cost and Constraint Functions

4.5.1. Cost Function

To define the cost function, we consider the energy outage of IoT devices. The energy outage
occurs when batteries of IoT devices are empty. Therefore, the cost function can be defined as

r (S, A) =


1, if Ei = 0,
1, if Ej = 0,
0, otherwise.

(43)

4.5.2. Constraint Function

To prevent the situation where the task cannot be finished before the timer expiration,
the constraint functions for the timer expiration of IoT devices i and j can be represented by

ci (S, A) =

{
1, if Di = 1,
0, otherwise,

(44)

and

cj (S, A) =

{
1, if Dj = 1,
0, otherwise,

(45)

respectively.
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4.6. Optimization Problem Formulation

Since
t

∑
t′

E [r (St′ , At′)] means the number of energy outages, the average energy outage probability

ζE can be defined as

ζE = lim
t→∞

sup
1
t

t

∑
t′

E [r (St′ , At′)], (46)

where lim denotes the value that a function approaches as the input approaches a specific value.
In addition, sup (i.e., supremum) means the least upper bound.

Meanwhile, the average timer expiration probabilities of IoT devices i and j, denoted as, ξT
i ,

and ξT
j , respectively, can be defined as

ξT
i = lim

t→∞
sup

1
t

t

∑
t′

E [ci (St′ , At′)] (47)

and

ξT
j = lim

t→∞
sup

1
t

t

∑
t′

E
[
cj (St′ , At′)

]
. (48)

Then, the optimization problem in the CMDP model can be formulated as

min
π

ζE, (49)

s.t. ξT
i ≤ θT

i and ξT
j ≤ θT

j , (50)

where θT
i and θT

j are the upper limits on the timer expiration probabilities of IoT devices
i and j, respectively.

The formulated optimization problem can be transformed into an equivalent LP problem [28].
That is, when φ(S, A) represents the stationary probability of state S and action A, the solution of the
LP problem φ∗(S, A) can be mapped to that of the CMDP-based optimization model. The equivalent
LP model can be expressed as

max
φ(S,A)

∑
S

∑
A

φ(S, A)r(S, A), (51)

s.t. ∑
S

∑
A

φ(S, A)ci(S, A) ≤ θT
i , (52)

∑
S

∑
A

φ(S, A)cj(S, A) ≤ θT
j , (53)

∑
A

φ(S′, A) = ∑
S

∑
A

φ(S, A)P[S′|S, A], (54)

∑
S

∑
A

φ(S, A) = 1, (55)
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φ(S, A) ≥ 0. (56)

The objective function in (51) is to minimize the energy outage probability of IoT devices.
Meanwhile, the constraints in (52) and (53) are to maintain the timer expiration probabilities of IoT
devices i and j below θT

i and θT
i , respectively. The constraint in (54) satisfies the Chapman–Kolmogorov

equation. The constraints in (55) and (56) are for the probability properties.
The optimal policy π∗(S, A), which is the probability of taking a particular action at a certain state,

can be obtained from the solution of the above LP problem. The optimal policy can be derived from

π∗ (S, A) =
φ∗ (S, A)

∑
A′

φ∗ (S, A′)
for S ∈ S, ∑

A′
φ∗
(
S, A′

)
> 0. (57)

Note that, if ∑
A′

φ∗ (S, A′) = 0, which means that there is no solution to satisfy all constraints,

IoT devices do not offload any task. LP problem can be solved in polynomial time [35–37]. Therefore,
our proposed algorithm can be implemented to real systems without high computational power.

4.7. IoT Device Pairing Problem

The optimal offloading policy in the previous subsection is obtained given the paired IoT devices
i and j. In this subsection, we formulate an IoT device pairing problem whose objective is to minimize
the summation of energy outage probabilities of all IoT devices.

Let ζE
ij denote an individual energy outage probability of IoT device i when it is paired with IoT

device j. ξE
ij can be calculated as (We assume that the individual energy outage probability of IoT

device i when it is paired with IoT device j is lower than that when it is not paired (i.e., ξE
ij < EE

ii ).
This assumption is reasonable because paired IoT devices operate by following the optimal policy
obtained by CMDP:

ζE
ij = ∑

S
∑
A

π∗
([

TM
i , TO

i , Ei = 0, Di, Sj

]
, A
)

. (58)

Then, the optimization problem for pairing IoT devices can be defined as

min
xij

∑
i

ζE
ij xij, (59)

s.t. ∑
j

xij = 1, ∀i, (60)

where xij is a decision variable that is 1 if IoT devices i and j are paired and 0 otherwise. The objective
function in (59) is to minimize the summation of energy outage probabilities of all IoT devices.
Meanwhile, the constraint in (60) to ensure that all IoT devices are paired with only one IoT
device. This optimization problem is solved in the controller by using several algorithms (e.g.,
brute-force approach, LP relaxation, and branch-and-bound algorithm), and therefore there is no
burden in IoT devices.

5. Evaluation Results

For performance evaluation, we compare the proposed algorithm, EE-CCA, with the following
four schemes: (1) ALL where IoT devices always offload all of the tasks; (2) HALF where IoT devices
always offload half of the task; (3) NON where IoT devices do not offload any task (i.e., process their
tasks by themselves); and (4) RAND where IoT devices randomly offload their tasks at each decision
epoch. For pair comparison, IoT devices are paired based on the solution of the optimization problem
in Section IV-G. Meanwhile, the objective of this paper is to minimize the energy outage probability
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while maintaining the probability that the task is completed before their deadline above a certain level.
Therefore, the average energy outage probability, ζE, and the average probabilities that the task of IoT
device i and j are completed before their deadline, ηi and ηj, are used as performance measures of the
EE-CCA. Note that ηi and ηj can be calculated by 1− ξT

i and 1− ξT
j , respectively.

To improve the reliability of the simulation results, we have conducted over 10,000 simulation
runs with different seed values independently. The default number of IoT devices is set to 6. The other
default parameter settings are summarized in Table 2, where [a b] denotes a random value between
a and b.

Table 2. Default parameter settings.

τ λ µF,S µF,D µH,S µH,D pH κ θT

1 [0.2 0.3] [0.3 0.4] [0.15 0.2] [0.6 0.8] [0.3 0.4] [0.4 0.9] [0.2 0.3] 0.99

5.1. Effect of the Harvesting Probability

Figure 4 shows the effect of the harvesting probability pH
j of IoT device j on the average energy

outage probability and the average probabilities that tasks of IoT devices i and j are completed before
their deadlines. As shown in Figure 4, it can be found that the EE-CCA can reduce significantly the
energy outage probability of IoT devices (see Figure 4a). For example, when PH

i is 0.1, EE-CCA can
reduce the energy outage probability by 78% compared to RAND. while maintaining the probability
that the task is completed before the deadline (i.e., 0.99) (see Figure 4b,c). This is because IoT devices
in the EE-CCA decide whether to offload some parts of the task to the opponent with the consideration
of the energy harvesting probability, the task occurrence rate, and the current energy levels of IoT
devices. For example, IoT device does not offload its task to the partner when the current energy level
of the partner is low and predicted to be decreased due to low harvesting probability and high task
occurrence rate.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p
H

j

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E

EE-CCA
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NON
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(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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0.88

0.9

0.92

0.94

0.96

0.98

1

i

EE-CCA

ALL

NON

HALF

RAND

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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H

j
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0.88
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0.92

0.94

0.96

0.98

1

j

EE-CCA

ALL

NON

HALF

RAND

(c)

Figure 4. Effect of the harvesting probability. (a) average energy outage probability; (b) average
probability that the task of IoT device i is completed before the deadline; (c) average probability that
the task of IoT device j is completed before the deadline.

From Figure 4a, it can be shown that the average energy outage probabilities of all schemes
decrease as pH

j increases. This is because a high battery level of IoT device j can be maintained

regardless of whether to offload or not when pH
j is high. Meanwhile, from Figure 4b,c, it can be seen

that the probabilities that tasks of IoT devices i and j are completed before their deadlines increases with
the increase of pH except specific cases (i.e., NON in Figure 4b and ALL in Figure 4c). This is because
the tasks can be completed only when IoT devices have sufficient energy. In other words, IoT devices
cannot complete their tasks within the deadline if they cannot harvest sufficiently energy. On the
other hand, in NON, IoT device i does not offload its task to IoT device j. Therefore, the harvesting
probability pH

j of IoT device j does not affect the probability ηi that the task of IoT device i is completed
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within the deadline. Similarly, in ALL, all tasks of IoT device j are processed in IoT device i, and thus
ηj is not affected by pH

j .

5.2. Effect of the Inter-Task Occurrence Rate

Figure 5 shows the effect of the inter-task occurrence rate λi of IoT device i. From Figure 5, it can
be found that the average energy outage probabilities of all schemes increase with the increase of
the inter-task occurrence rate. This is because IoT devices consume more energy when tasks occur
frequently. However, the incremental ratio of the EE-CCA is smallest among comparison schemes.
This is because IoT devices in the EE-CCA operate adaptively even when the operating environment
changes. Specifically, as the inter-task occurrence rate of IoT device i increases, it offloads more tasks
to its opponent to avoid the energy depletion.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E

EE-CCA

ALL

NON

HALF

RAND

Figure 5. Effect of the inter-task occurrence rate on the average energy outage probability.

5.3. Effect of the Average Deadline

The effects of the average deadline of the task on the average energy outage probability are
demonstrated in Figure 6. From Figure 6, it can be observed that the average energy outage probability
of the EE-CCA decreases with the increase of the deadline. This is because, when a sufficient deadline is
given, IoT devices in the EE-CCA can handle the task within the deadline by themselves even though
they do not offload any tasks to energy-scarce opponents. On the other hand, the other schemes
follow the fixed policy regardless of the deadline of the task, and thus their average energy outage
probabilities do not change according to the deadline.

2 3 4 5 6 7 8 9 10

Average deadline

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E

EE-CCA

ALL

NON

HALF

RAND

Figure 6. Effect of the average deadline of the task.
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5.4. Comparison between the Optimal IoT Device Pairing and the Random Pairing

Figure 7 shows the average energy outage probabilities of the EE-CCA when pairing IoT devices
based on the optimization problem (denoted by OPTIMAL) and pairing IoT devices randomly (denoted
by RAND) as a function of the number of IoT devices. As shown in Figure 7, the average energy outage
probability of OPTIMAL decreases as the number of IoT devices increases. This can be explained as
follows: a large number of IoT devices means that there are lots of candidate IoT devices to be matched
to a specific IoT device. In this situation, each IoT device can be paired to more appropriate IoT device.
For example, an energy-scarce IoT device can be paired to more energy-abundant IoT device. On the
other hand, since IoT devices are paired randomly in RAND regardless of the number of IoT devices,
its energy outage probability is not affected by that number.

4 6 8 10 12

Number of IoT devices

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E

RAND

OPTIMAL

Figure 7. Comparison between the optimal pairing and random pairing.

6. Conclusions

In this paper, we proposed an energy efficient cooperative computation algorithm (EE-CCA),
in which a pair of IoT devices decide whether to offload some parts of the task to the opponent with
the consideration of their energy harvesting probabilities, task occurrence rates, and current energy
levels. The optimal offloading decision can be obtained by means of a constraint Markov decision
process (CMDP). Moreover, an optimization problem for IoT device pairing is formulated under
the optimal offloading strategy. The evaluation results demonstrate that the EE-CCA offloads tasks
appropriately, and thus the energy outage probability can be reduced by up to 78% compared to the
random offloading scheme while providing the desired probability that tasks are completed before
the deadline. Moreover, it can be seen that the EE-CCA operates adaptively even when the operating
environment (e.g., inter-task occurrence rate) is changed. In our future works, we will investigate an
incentive mechanism to encourage IoT devices to process tasks. In addition, a study for the robustness
of the proposed algorithm will be conducted for supporting heterogeneous functionality of IoT devices.
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