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Abstract: State-of-charge estimation and on-line model modification of lithium-ion batteries are
more urgently required because of the great impact of the model accuracy on the algorithm
performance. This study aims to propose an improved DUKF based on the state-parameter separation.
Its characteristics include: (1) State-Of-Charge (SoC) is treated as the only state variable to eliminate
the strong correlation between state and parameters. (2) Two filters are ranked to run the parameter
modification only when the state estimation has converged. First, the double polarization (DP)
model of battery is established, and the parameters of the model are identified at both the pulse
discharge and long discharge recovery under Hybrid Pulse Power Characterization (HPPC) test.
Second, the implementation of the proposed algorithm is described. Third, combined with the
identification results, the study elaborates that it is unreliable to use the predicted voltage error
of closed-loop algorithm as the criterion to measure the accuracy of the model, while the output
voltage obtained by the open-loop model with dynamic parameters can reflect the real situation.
Finally, comparative experiments are designed under HPPC and DST conditions. Results show that
the proposed state-parameter separated IAUKF-UKF has higher SoC estimation accuracy and better
stability than traditional DUKF.

Keywords: lithium-ion batteries; SoC estimation; state-parameter separation; improved dual unscented
Kalman filter

1. Introduction

In recent years, the automobile industry has gradually developed, and the contradiction between
traditional fuel vehicles and environmental carrying capacity has intensified. The demand of replacing
traditional fuel vehicles with new energy ones is becoming more and more urgent. Lithium-ion
batteries are widely used in pure electric vehicles as core power sources due to their high energy
density and long cycle life. State-Of-Charge (SoC) is defined as the percentage of the current residual
capacity of batteries. Accurate estimation of SoC can not only be used as an important basis for
drivers to judge the endurance of batteries, but also for achieving equalization control, overcharge and
discharge protection, overheat protection and other functions in battery management system. However,
as an artificially defined variable, SoC can only be calculated by voltage, current and temperature
of batteries [1]. Based on this, the methods for SoC estimation in recent years can be divided into those
based on characterization parameters and definitions, data-driven and battery modeling theory [2].

Methods based on characterization parameters and definitions include impedance method [3,4],
open circuit voltage method [5,6] and ampere-time counting method [7]. It directly estimates by
establishing a simple correspondence between the characterization parameters and the SoC or by
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using the ampere-time definition. The data-driven method such as neural network [8], support vector
machine [9] and fuzzy theory [10] utilizes a large amount of offline data to train a mapping relationship
between battery current, voltage, temperature and SoC. The method based on battery modeling
theory relies on establishing a high-accuracy model for the battery, and then using the filtering theory
to estimate the state variables in closed-loop. Among these, the method based on battery modeling
theory has larger application prospects due to its good accuracy and real-time performance.

Currently, the equivalent circuit model is more suitable for real-time systems because of its simple
structure and fewer parameters. The parameter identification methods are mainly divided into off-line
method and on-line method. Off-line method usually uses Hybrid Pulse Power Characterization
(HPPC) experiment to identify the parameters in different SoC stages, but this method identifies only
at pulse charging and discharging which proves that the parameters obtained are not representative
even for the same SoC. Online methods are generally based on system automatically identification
theory, including recursive least squares (RLS) method and its derivative algorithm [11], Kalman filter
(KF) and its derivative algorithm [12–15]. These methods also use the external data of batteries,
combined with the state estimation and modify the model parameters at the same time. Dave Andre
proposed a dual filter algorithm for simultaneous estimation of internal resistance and SoC of batteries
by combining KF and unscented Kalman filter (UKF) [16]. Feng Guo designed a multi-scaled Dual
EKF (DEKF) to estimate the SoC and modify all model parameters at the same time [17]. Xu Zhang
proposed the method of EKF-UKF based on the data-driven model [18]. In this algorithm, the EKF is
used to identify the battery model parameters and the UKF is employed to estimate the battery SoC.
Qianqian Wang proposed a Dual UKF (DUKF) to simultaneously estimate the polarization parameters,
internal resistance and SoC of batteries [19]. Zewang Chen analyzed the influence of different model
parameters on the accuracy of the model, and then designed a dual UKF algorithm to simultaneously
estimate the internal resistance and SoC of batteries [20]. Among the above algorithms, the accuracy
of the model is evaluated by comparing the predicted voltage with the observation. This method
will bring unreliable judgment due to the self-correcting characteristics of the closed-loop algorithm.
These dual filter algorithms are carried out regardless of the sequence, which easily leads to divergence
of the results when the state is inaccurate. All the above algorithms take polarization voltage as state
variable, however, it has a strong correlation with polarization parameters, which will reduce the
accuracy of state estimation.

Considering the above problems, an improved dual-unscented Kalman filter algorithm based on
state-parameter separation is proposed in this paper. The algorithm takes SoC as the only state variable
and estimates the model parameters at the same time, which improves the accuracy. In this algorithm,
two filters are ranked to solve the poor stability caused by inaccurate initial values of state variables
in dual filter algorithms. In this study, the open-loop model output is used as the criterion to evaluate
the accuracy of the model. The arrangement of the paper is as follows: Section 2 mainly introduces
the equivalent circuit model adopted in this paper and the off-line parameter identification method;
Section 3 introduces the implementation details of the improved dual unscented Kalman filter algorithm
based on state-parameter separation; Section 4 introduces the relevant experiments; Section 5 proves
that evaluating the model accuracy by comparing the predicted voltage of the closed-loop algorithm
with experimental data is unreliable, then the SoC estimation and parameter modification accuracy
of the proposed algorithm are also discussed. Section 6 introduces the conclusions of this study.

2. Battery Model and Off-Line Parameter Identification Method

Considering the accuracy and complexity of the model, the double polarization (DP) model based
on second-order resistor-capacitor (RC) network is chosen in this study [21]. The structure of the circuit
is shown in Figure 1.
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Figure 1. Double polarization (DP) model.

uoc represents the open-circuit voltage of the battery and its value is a function of SoC. R0 represents
the ohmic internal resistance. R1, R2, C1, C2 represents the polarization parameters. iL represents
the charging current. u1, u2 represent two polarization voltages. u0 represent the voltage of R0,
uL represents the terminal voltage of the battery model.

The continuous-time equation of the DP model can be obtained by using Kirchhoff’s law and
shown as follows. 

•

u1(t) = 1
τ1

u1(t) +
R1
τ1

iL(t)
•

u2(t) = 1
τ2

u2(t) +
R2
τ2

iL(t)

SoC(t) = SoC(t0) +
∫ t

t0

iL(t)dt
QN

(1)

uL(t) = u1(t) + u2(t) + R0iL(t) + uoc(SoC) (2)

SoC(t0) is the initial value of SoC, QN is the nominal capacity of the battery. τ1 = R1C1, τ2 = R2C2.
Off-line identification of model parameters is the basis of establishing on-line parameter

estimators. Referred to [22], HPPC experiment can identify the parameters of equilibrium potential and
over-potential characteristic simultaneously. The specific experimental method is shown in Section 4.
Some experimental scatters of uoc are obtained by recording the static ending voltage of different SoC
in HPPC experiments. Then the scatters are fitted by the six-order polynomial shown in Equation (3).
Ki are the constant parameters that need to be identified.

uoc(SoC) =
6∑

i=0

KiSoCi (3)

Ohmic internal resistance and polarization parameters can be identified by the response curve
of pulse discharge as shown in Figure 2a. R0 can be calculated by the instantaneous change of voltage
when current switching on and off as shown in Equation (4). Id is the pulse discharge current. uA, uB,
uC and uD are the voltage values at points A, B, C and D respectively. Because of the short discharge
time between B and C, uoc can be considered to be constant, and the terminal voltage can be expressed
by Equation (5). The terminal voltage of the discharge recovery interval D to E can be expressed by
Equation (6), where u1(0) and u2(0) represent the polarization voltage at the beginning. Equation (6)
is used to fit the experimental data to get τ1 and τ2, then get R1 and R2 in the same way according
to Equation (5).

R0 =
(uA − uB) + (uD − uC)

2Id
(4)

uL = uoc + R0Id + R1Id(1− e−t/τ1) + R2Id(1− e−t/τ2) (5)

uL = uoc + u1(0)e−t/τ1 + u2(0)e−t/τ2 (6)

In order to make full use of the experimental data and take full account of the dynamic changes
of model parameters, parameter identification was also carried out in the long discharge recovery
in HPPC experiment in this study. Long discharge recovery refers to the voltage recovery of the battery
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after a long discharge which aims to test the pulse characteristics of the next SoC under HPPC test as
shown in Figure 2b. τ1 and τ2 can be obtained by fitting the curve from G to H. Because uoc cannot be
regarded as a constant in the long discharge process, Equation (5) is no longer suitable for curve fitting;
R1 and R2 are not identified here.

Figure 2. (a) Voltage response curve under pulse discharge; (b) voltage response curve under long
discharge recovery.

3. Implementation of the State-Parameter Separated IAUKF-UKF

3.1. State-Parameter Separated Equation for Dynamic Battery Model

Since the observation is the battery terminal voltage, SoC is generally estimated together with
the polarization voltage in the model [16–20]. However, it can be seen from Equation (1) that there is
a strong correlation between polarization voltage and polarization parameters, which results in an
enhanced correlation between state and parameters when using the dual filters. The experimental
results in Section 5 of this study show that this will reduce the accuracy of state estimation and
parameter modification. In this paper, SoC is considered as the only state variable and parameters as
dynamic ones to be modified. The discrete model with noise is organized into Equation (7). It should
be declared that that the sampling time is 1 s.

SoCk = F(SoCk−1, iL,k) +ω
SoC
k = SoCk−1 +

1
QN

iL,k +ω
SoC
k

θk = θk−1 +ω
θ
k

uL,k = G(SoCk, θk) + υk = Hk · θk + uoc(SoCk) + υk

(7)

where,

θk =
[
λ1,k λ2,k λ3,k λ4,k R0,k

]T
(8)

λ1,k =
τ1,k

1 + τ1,k
, λ2,k =

R1,k

1 + τ1,k
, λ3,k =

τ2,k

1 + τ2,k
, λ4,k =

R2,k

1 + τ2,k
(9)

Hk =
[

u1,k−1 iL,k u2,k−1 iL,k iL,k

]
(10)

It should be noted that u1,k−1 and u2,k−1 in data matrix Hk are not state variables, but historical
data of u1,k and u2,k, as shown in Equation (11).{

u1,k = λ1,k · u1,k−1 + λ2,k · iL,k

u2,k = λ3,k · u2,k−1 + λ4,k · iL,k
(11)
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The structure of this Equation can be further illustrated by Figure 3. At k-moment, model output
voltage uL,k is determined by state SoCk and model parameter θk. The former decides uoc,k according
to the function uoc(SoC), and the latter decides u1,k, u2,k, u0,k together with data matrix Hk. This means
that state and model parameters determine different output regions respectively in the process
of equation iteration. The advantage of this method is that it can eliminate the strong correlation
between state and model parameters, and lay the foundation for using dual filters.

Figure 3. Structure of the state-parameter separated equation.

3.2. Improved Dual-Unscented Kalman Filter (IDUKF) Algorithm

Kalman filter algorithm combines the prediction of discrete dynamic system with the observation
containing noise, and calculates the model state recursively to get its maximum likelihood
estimation [23]. As a non-linear form of traditional KF, UKF improves the accuracy of approximating
non-linearity compared with EKF only by first-order Taylor expansion [24]. However, because the
estimation accuracy of the whole algorithm still depends on the accuracy of the dynamic model,
in order to ensure that the prediction of the model can always track the observation, the algorithm
may overcorrect the state and reduce the estimation accuracy in case of inadequate model accuracy,
which will be analyzed in Section 5. Therefore, it is necessary to use the theory of system identification
combined with external data to modify the model, and run simultaneously with the state estimator.
In this study, Adaptive UKF (AUKF) is used as the state estimator by combining Sage-Husa adaptive
filtering theory [25] with traditional UKF, and another UKF is used as the modifier of model parameters.

Another advantage of KF is that it can automatically converge the inaccurate initial state to real
value. However, it is found that the convergence performance of the traditional dual Kalman filter is
weak when the initial state value is inaccurate, which will be analyzed in Section 5. In order to solve
this problem, two filters are ranked in this study: when the error er between the filter prediction and
the observation is greater than a boundary value δ, the state estimator runs and corrects the inaccurate
state, while the parameter modifier stops and holds the parameters still. When the state converges
to the real value, the algorithm prediction also converges to the observation. When er is less than
or equal to the boundary value, open the parameter modifier and run simultaneously with the state
estimator until the next er > δ appears. The structure of proposed IAUKF-UKF is illustrated in Figure 4.
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Figure 4. Structure of the state-parameter separated equation structure of IAUKF-UKF algorithm.

Combined with Equations (8)~(12), the implementation steps of IAUKF-UKF algorithm based on
state-parameter separation are shown as follows.

Step 1: Initializing.

ˆSoC0 = E(SoC0), ˆPSoC,0 = E[(SoC0 − ˆSoC0)(SoC0 − ˆSoC0)
T
]

θ̂0 = E(θ0), ˆPθ,0 = E[(θ0 − θ̂0)(θ0 − θ̂0)
T
]

QSoC,0 = 10−5, Qθ = I5

R0 = 10−3

(12)

where I5 means 5-order unit matrix.
Step 2: Time-update for SoC at k-moment, k = 1, 2 . . .
First sigma point calculating:

σi
k−1 = ˆSoCk−1, i = 0

σi
k−1 = ˆSoCk−1 +

√
(n + λ)P̂SoC,k−1, i = 1 ∼ n

σi
k−1 = ˆSoCk−1 −

√
(n + λ)P̂SoC,k−1, i = n + 1 ∼ 2n

(13)

where n is the dimension of state vector which means n = 1; λ is a scaling parameter used to reduce the
total prediction error.

λ = α2(n + κ) − n (14)

α controls the distribution state of the sigma points, κ needs to satisfy κ ≥ 0. In this study, these two
parameters are set as follows: α = 1; κ = 1.

Weight calculating: 
ω0

m = λ
n+λ

ω0
c = λ

n+λ + (1−α2 + β)

ωi
m = ωi

c =
1

2(n+λ)
, i = 1 ∼ 2n

(15)

whereβ is used to incorporate prior knowledge of the distribution and set to 2 for Gaussian distributions.
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Sigma points one-step prediction:

σi
k|k−1 = F(σi

k−1, iL,k) (16)

Time-update for SoC:
ˆSoCk|k−1 =

2n∑
i=0
ωi

m,SoCσ
i
k|k−1

P̂SoC,k|k−1 =
2n∑

i=0
ωi

c,SoC[
ˆSoCk|k−1 − σ

i
k|k−1][

ˆSoCk|k−1 − σ
i
k|k−1]

T
+ QSoC,k−1

(17)

Step 3: Measurement-update for SoC at k-moment
Second sigma point calculating:

σi
k|k−1 = ˆSoCk|k−1, i = 0

σi
k|k−1 = ˆSoCk|k−1 +

√
(n + λ)P̂k|k−1, i = 1 ∼ n

σi
k|k−1 = ˆSoCk|k−1 −

√
(n + λ)P̂k|k−1, i = n + 1 ∼ 2n

(18)

Sigma point observation prediction:

ui
L,k|k−1 = G(σi

k|k−1, θ̂k−1) (19)

Measurement-update for SoC:

ûL,k|k−1 =
2n∑

i=0
ωi

m,SoCui
L,k|k−1

Puu =
2n∑

i=0
ωi

c,SoC[ûL,k|k−1 − ui
L,k|k−1][ûL,k|k−1 − ui

L,k|k−1]
T
+ Rk−1

PSoCu =
2n∑

i=0
ωi

c,SoC[
ˆSoCk|k−1 − σ

i
k|k−1][ûL,k|k−1 − ui

L,k|k−1]
T

Kk = PSoCuPuu
−1

ˆSoCk = ˆSoCk|k−1 + Kk(uL,k − ûL,k|k−1)

P̂SoC,k = P̂SoC,k|k−1 −KkPuuKT
k

(20)

Noise-update for SoC:


QSoC,k = (1− dk−1)QSoC,k−1 + dk−1{Kker,keT

r,kKT
k + P̂SoC,k −

n∑
i=0
ωi

c,SoC[
ˆSoCk|k−1 − SoCi

k|k−1][
ˆSoCk|k−1 − SoCi

k|k−1]
T
}

Rk = (1− dk−1)Rk−1 + dk−1{er,keT
r,k +

n∑
i=1
ωi

c,SoC[ûL,k|k−1 − ui
L,k|k−1][ûL,k|k−1 − ui

L,k|k−1]
T
}

(21)

where er,k represent the error of prediction at k-moment, uL,k is the experimental data of terminal
voltage at k-moment. b is the forgetting factor which is used to reduce the influence of historical data
and set to 0.99 in this study.

er,k =
∣∣∣uL,k − ûL,k|k−1

∣∣∣ (22)

dk = (1− b)/(1− bk) (23)

Step 4: Judgement for er,k:
if er,k > σ, then:

θ̂k = θ̂k−1 (24)

which means to keep the parameters still and get back to step 2;
Else, open the parameter adjuster and continue to Step 5:
Step 5: Time-update for θ at k-moment which is similar with Equations (13)–(17).
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Step 6: Measurement-update for θ at k-moment which is similar with Equations (18)–(20).
After that, get back to Step 2 for the next moment.

4. Experiments

4.1. Experimental Bench

In this study, we chose one specific manufacturer’s LiNixMnyCo1-x-yO2 lithium-ion battery as
the experimental object considering not only actual condition but also it is a lithium-ion battery with
typical ternary cathode material, and its basic parameters are shown in Table 1. Neware (Shen Zhen,
China) Battery Test System CT-4008-5V100A was selected as battery testing equipment, and a PC
host was equipped to control the testing step and record the experimental data. Qin Zhuo Huan Ce
(Dong Guan, China) thermal chamber GDW-100 was chosen as ambient temperature controller. Since
this study did not involve the influence of ambient temperature of batteries, all experiments were
conducted at 25 °C. The structure of the experimental bench is shown in Figure 5.

Table 1. Parameters of the experimental battery.

Parameters Value

Nominal Capacity 40 Ah
Nominal Voltage 3.7 V

Max Charge Voltage 4.2 V
Min Discharge Voltage 3.2 V

Figure 5. Structure of experimental bench.

4.2. Experimental Methods

In this study, HPPC test was designed to identify the uoc-SoC relationship and the RC parameters
of battery model simultaneously. A cycle consists of a 1/3C constant current discharge, a 3 h recovery
and a pair of 1C pulse charge and discharge. The specific current and voltage curves are shown
in Figure 6. The experimental results can also be used to verify the model and algorithm as an
operating condition.

In order to further verify the performance of the proposed algorithm, the Dynamic Stress Test
(DST) was carried out, refer to [26]. The DST is to simulate the dynamic power of driving electric vehicle
by loading preset current, so as to test the dynamic performance of the battery. The experimental
curves of current and voltage in one cycle are shown in Figure 7.
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Figure 6. (a) The experimental curve of voltage and current of 1/3C discharge and 3 h rest in a cycle
under Hybrid Pulse Power Characterization (HPPC) test. (b) The experimental curve of voltage and
current of 1C pulse discharge and charge in a cycle under HPPC test.

Figure 7. The experimental curve of voltage and current in a cycle under DST test.

5. Results and Discussion

5.1. Off-Line Parameters Identification Results

The off-line parameter identification method described in Section 2 and the experimental method
described in Section 4 are used to identify the uoc-SoC relationship and RC parameters in the model.
This was done according to the data collecting method described in Section 2 and fitting curve function
referred to in Equation (3). The data scatters and their fitting curve are shown in Figure 8. The constants
of the fitting curve function (six-order polynomial) Ki are listed in Table 2. RC parameters can be
divided into identification results at pulse discharge or at long discharge recovery, as shown in Table 3.
It can be found that even for the same SoC stage, the identification results of τ1 and τ2 at the pulse
discharge are quite different from those at the long discharge recovery. Taking SoC = 0.902 as an
example, the pulse discharge recovery curve and the long discharge recovery curve in the first 40 s are
compared in Figure 9. It can be considered that the recovery speed of the pulse discharge is faster
than that of the long discharge, which indicates that SoC is not the only factor affecting the dynamic
change of RC parameters. The uoc-SoC relationship can be considered stable within a certain number
of cycles [27]. Therefore, RC parameters have more complex dynamic processes in the operation
of batteries, and more easily affect the accuracy of the model.
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Figure 8. uoc-State-Of-Charge (SoC) fitting curve.

Table 2. Identification results of the fitting curve.

Parameters K0 K1 K2 K3 K4 K5 K6

Value 3.43 0.3725 5.862 −32.58 68.02 –60.73 19.8

Table 3. Identification results of RC parameters.

Identification Area Long Discharge Recovery Pulse Discharge

Parameters τ1 (s) τ2 (s) τ1 (s) τ2 (s) R1 (Ω) R2 (Ω) R0 (Ω)

SoC=

0.902 1613 79.94 16.13 1.001 0.0010 0.000278 0.0017
0.834 2695 150.22 14.13 0.741 0.0011 0.000227 0.0017
0.705 2045 274.57 12.70 0.640 0.0011 0.000218 0.0017
0.607 2149 126.33 15.40 0.831 0.0011 0.000239 0.0017
0.508 2838 193.57 14.18 0.765 0.0008 0.000211 0.0017
0.410 2973 268.96 12.20 0.582 0.0007 0.000205 0.0017
0.312 2458 327.44 12.70 0.589 0.0008 0.000249 0.0018
0.213 2670 332.12 11.51 0.468 0.0008 0.000346 0.0018
0.115 4390 414.77 11.84 0442 0.0012 0.000613 0.0018

Figure 9. The comparison of recovery voltage curve between pulse discharge and long discharge when
SoC = 0.902 (first 40 s).

5.2. Advance Explanation of Model Accuracy Evaluation Method

It is worth discussing that the model parameters obtained from the off-line identification are
input into the open-loop battery model in Equation (8) and a common UKF for SoC estimation based
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on this model. The predicted voltage results are quite different. Taking the SoC drops from 0.902
to 0.834 in HPPC test as an example, the RC parameters are taken as the values when SoC = 0.902.
Figure 10a is the curve comparison of the output voltage of the open-loop model, the predicted voltage
of the UKF and the experimental data; Figure 10b is the error comparison. It can be seen that the
predicted voltage error of UKF is significantly smaller than that of open-loop model even though the
parameters adopted are identical. One of the characteristics of Kalman filter is that it can modify the
state according to the observation (in this case, the experimental voltage data) to get its maximum
likelihood estimation. This determines that the algorithm can gradually correct the initial value of the
state when it is inaccurate, which also means the prediction can always converge to the observation [23].
However, in the case of inaccurate model, the negative impact of this feature is that the filter may over
correct the state and reduce its estimation accuracy, which will be verified in 5.3. Therefore, the error
between the voltage prediction of closed-loop algorithm and the experimental data cannot reflect the
actual model accuracy, on the contrary, it may confuse the judgement. In this study, the modified
parameters of all the algorithms in 5.3 will be input into the open-loop battery model, and the effects
of model accuracy on SoC estimation are compared.

� 3.95 (a) 

1.2 1.22 1.24 1.26 1.28 

Time(s) 

(a) 

-Expffllnnllal D111 

- - - UKP Predic:tio11 

- - - Opni Loop Modcl OUtput 

1.3 1.32 1.34 

X 10
4 

i0.02 

-0.02 
1.2 1.22 1.24 1.26 1.28 

Tune(s) 

(b) 

1.3 1.32 1.34 

X 10
4 

Figure 10. (a) The voltage comparison between experimental data, UKF prediction and open loop
model output when SoC drops from 0.902 to 0.834. (b) The error comparison between UKF prediction
and open loop model output when SoC drops from 0.902 to 0.834.

5.3. Comparative Analysis of Algorithms

The structure of the algorithm comparison experiment in this section is shown in Figure 11.
For each algorithm, the experimental current iL,k and voltage Yk are loaded, the SoC estimation curves
and the algorithm predicted voltage curves are drawn. The dynamic parameters modified by the
algorithms are input into the open-loop model in Equation (8), and the output voltage curves are drawn.

Figure 11. Structure of algorithms comparison experiment.

5.3.1. Comparison of SoC Estimation and Parameter Modification Accuracy

In order to analyze the SoC estimation and parameter modification accuracy of the traditional
AUKF-UKF and the proposed state-parameters separated AUKF-UKF, this section compares these
two algorithms with an AUKF. In HPPC test, the initial SoC of these algorithms are set to 0.902
(reference initial value is 0.902); in DST test, the initial SoC are set to 1 (reference initial value
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is 1). The initial parameters under both tests are set to the identification result of pulse discharge at
SoC = 0.902 in HPPC test.

Figure 12a is the SoC estimation result of three algorithms under HPPC test, and Figure 12b
is the SoC estimation error of three algorithms. The black curve represents the reference SoC
based on the experimental measurement of its initial value and ampere-time counting method
combined with the current data; the red curve, the blue curve and the yellow curve represent AUKF,
state-parameter unseparated AUKF-UKF, and state-parameter separated AUKF-UKF respectively.
Similarly, Figure 13 shows the uL prediction results of three algorithms under HPPC test and their
errors between experimental voltage data. The output voltage shown in Figure 14a is obtained by
inputting the parameters which are modified by the three algorithms (AUKF’s parameters are constant)
into the open-loop model. Figure 14b shows their errors between experimental voltage data. errormax

(maximum error) and root mean square error (RMSE) are set to analyze the error data in this study.
The calculation formula is shown in Equation (25).
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Figure 12. (a) The comparison of the SoC estimation between three algorithms under HPPC test;
(b) The comparison of the SoC estimation error between three algorithms under HPPC test.

Figure 13. (a) The comparison of the uL prediction between three algorithms under HPPC test;
(b) The comparison of the uL prediction error between three algorithms under HPPC test.
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Figure 14. (a) The comparison of the open-loop model output between three algorithms under HPPC
test; (b) The comparison of the open-loop model output error between three algorithms under HPPC test.

Where Xk is the estimation of k-moment and Xref
k is the reference of k-moment. All calculation

results of the above two parameters under HPPC test are shown in Table 4.

Table 4. Error analysis of different algorithms under HPPC test.

Algorithms Items Errormax RMSE

AUKF
SoC estimation 0.0631 0.0122
uL prediction 0.1865 V 0.0066 V

Open loop model output 0.1904 V 0.0097 V

state-parameter unseparated AUKF-UKF
SoC estimation 0.0404 0.00104
uL prediction 0.0403V 0.00049 V

Open loop model output 0.0405 V 0.0056 V

state-parameter separated AUKF-UKF
SoC estimation 0.0187 0.00056
uL prediction 0.0474 V 0.00092 V

Open loop model output 0.0461 V 0.0034 V


errormax = Max

∣∣∣Xk −Xref
k

∣∣∣
RMSE =

√
1
n

n∑
k=1

(Xk −Xref
k )

2 (25)

From Figures 12–14 and Table 4, it can be found that the errormax and RMSE of the uL predictions
of state-parameter unseparated AUKF-UKF are smaller than those of the state-parameter separated
AUKF-UKF. If the model accuracy is referenced by this result, the conclusion is that the traditional
AUKF-UKF has better parameter modification performance, and should have higher SoC estimation
accuracy. However, the experimental results show that the state-parameter separated AUKF-UKF has
higher SoC estimation accuracy than the other two algorithms. The point of view in 5.2 is verified here
that the error between the predicted terminal voltage of the filter and the experimental voltage data
is unreliable as a criterion to measure the accuracy of the model. The reason is that the closed-loop
algorithm corrects the state based on the observation and can also converge the predicted terminal
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voltage to the experimental data when the model parameters are inaccurate. Thus, the state is over
correct and the error has increased. According to 5.2, by comparing the terminal voltage output after
inputting the dynamic parameters of the three algorithms to the open-loop model, we find that the error
AUKF > state-parameter unseparated AUKF-UKF > state-parameter separated AUKF-UKF, which is
consistent with the comparison results of SoC estimation. It shows that the proposed state-parameter
separated AUKF-UKF has higher SoC estimation and parameter modification accuracy.

Similarly, Figure 15 shows SoC estimation and errors of three algorithms under DST test;
Figure 16 shows uL prediction and errors of three algorithms under DST test. The output voltage
and error shown in Figure 17 is obtained by inputting the parameters which are modified by the three
algorithms (AUKF’s parameters are constant) into the open-loop model. Red curve, blue curve and
yellow curve represent AUKF, state-parameter unseparated AUKF-UKF and state-parameter separated
AUKF-UKF respectively. The analysis results of the error data are shown in Table 5. The results show
that the uL prediction error of state-parameter separated AUKF-UKF is larger than that of traditional
AUKF-UKF, while the output voltage error of open-loop model is smaller, the estimation accuracy of SoC
is higher. Therefore, compared with the other two algorithms, state-parameter separated AUKF-UKF has
higher SoC estimation accuracy and better parameter modification performance under DST test.

Figure 15. (a) The comparison of the SoC estimation between three algorithms under DST test;
(b) The comparison of the SoC estimation error between three algorithms under DST test.

Figure 16. (a) The comparison of the uL prediction between three algorithms under DST test;
(b) The comparison of the uL prediction error between three algorithms under DST test.
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Figure 17. (a) The comparison of the open-loop output between three algorithms under DST test;
(b) The comparison of the open-loop output error between three algorithms under DST test.

Table 5. Error analysis of different algorithms under DST test.

Algorithms Items Errormax RMSE

AUKF
SoC estimation 0.0642 0.0279
uL prediction 0.0109 V 0.0031 V

Open loop model output 0.0323 V 0.0129 V

State-parameter unseparated AUKF-UKF
SoC estimation 0.0195 0.00059
uL prediction 0.0109 V 0.0008 V

Open loop model output 0.0191 V 0.00041 V

State-parameter separated AUKF-UKF
SoC estimation 0.0069 0.00021
uL prediction 0.0115 V 0.00092 V

Open loop model output 0.0131 V 0.00022 V

5.3.2. Comparison of Convergence Performance

According to Section 3.2, the convergence performance of the traditional DUKF is weak when
the initial value of the state is inaccurate. The IAUKF-UKF proposed in this paper ranked the two
filters to turn the parameter modification on only when the voltage prediction converges to the
observed value. In order to verify the reliability of the proposed algorithm, different initial values
of SoC (the reference is [1]) are set in this section. The convergence performance of AUKF-UKF and
IAUKF-UKF are compared under DST test. In addition, in order to maintain consistency, the two
algorithms adopt the state-parameter separated AUKF-UKF proposed in this study.

Figure 18 shows the SoC estimation and uL prediction curve of IAUKF-UKF algorithm under
different initial SoC. It can be seen that the algorithm can converge to the real value when the initial
SoC is inaccurate. It can also be found that the convergence time increases with the increase of initial
error from Table 6. Figure 19 shows model parameter modification curves when the initial SoC is
set to 0.7. It can be found that the parameters are not modified before 1023 s and remain constant.
After 1023 s, the SoC and uL prediction have converged to the real value and the parameter modifier is
turned on. Figure 20 shows the SoC estimation and uL prediction curve of the traditional AUKF-UKF
under different initial SoC. It can be seen that when the initial SoC is inaccurate, the uL prediction of the
AUKF-UKF can still converge to the experimental data, but the SoC estimation has not converged to the
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reference, which means invalid. This shows that it is unreliable to use the convergence performance
of uL prediction to judge that of SoC. In summary, the IAUKF-UKF algorithm proposed in this study can
overcome the shortcomings of the traditional DUKF in the case of inaccurate initial state, and enhance
the robustness of the algorithm.

Figure 18. (a) The comparison of the convergence performance of SoC estimation between different
initial value of SoC using IAUKF-UKF under DST test; (b) The comparison of the convergence
performance of uL prediction between different initial value of SoC using IAUKF-UKF under DST test.

Table 6. Convergence time of different initial SoC under DST test.

Initial Value 0.9 0.8 0.7 0.6 0.5

Convergence time (s) 390 600 1023 1310 2065

Figure 19. The curves of parameter modification when the initial SoC = 0.7.
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Figure 20. (a) The comparison of the convergence performance of SoC estimation between different
initial value of SoC using AUKF-UKF under DST test; (b) The comparison of the convergence
performance of uL prediction between different initial value of SoC using AUKF-UKF under DST test.

6. Conclusions

In this study, an improved AUKF-UKF based on state-parameters separation is proposed. Its main
characteristics are as follows: (1) SoC is the only state variable in the dynamic equation of the model,
and the RC parameters of the model are treated as dynamic ones to be modified, which eliminates
the strong correlation between state and parameters; (2) The state estimator AUKF and the parameter
modifier UKF are treated with different ranks, so that the parameter modifier works only when the
terminal voltage prediction of the state estimator converges to the observed value.

First, the proposed state-parameter separated AUKF-UKF is compared with single AUKF
and traditional AUKF-UKF. HPPC and DST test are loaded on the three algorithms respectively.
Experiment shows that state-parameter separated AUKF-UKF has higher SoC estimation and parameter
modification accuracy than the other two algorithms. It is proved that it is unreliable to measure the
accuracy of parameter modification by using the error of terminal voltage prediction, while the error
of terminal voltage output obtained by inputting dynamic parameters into the open-loop model can
reflect the actual situation.

Second, the convergence performance of the proposed IAUKF-UKF and AUKF-UKF under
DST test with inaccurate initial SoC is compared. The experimental results show that the proposed
IAUKF-UKF can converge the SoC to the reference when the initial value is inaccurate, and the
convergence time increases with the increase of the initial error. Traditional AUKF-UKF can converge
the terminal voltage prediction to the experimental data, but the misconvergence of SoC makes the
estimation invalid. This shows that the convergence performance of terminal voltage prediction is
independent from that of the state.
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