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Abstract: The ultra-supercritical (USC) coal-fired boiler-turbine unit has been widely used in modern
power plants due to its high efficiency and low emissions. Since it is a typical multivariable system
with large inertia, severe nonlinearity, and strong coupling, building an accurate model of the system
using traditional identification methods are almost impossible. In this paper, a deep neural network
framework using stacked auto-encoders (SAEs) is presented as an effective way to model the USC
unit. In the training process of SAE, maximum correntropy is chosen as the loss function, since it can
effectively alleviate the influence of the outliers existing in USC unit data. The SAE model is trained
and validated using the real-time measurement data generated in the USC unit, and then compared
with the traditional multilayer perceptron network. The results show that SAE has superiority both
in forecasting the dynamic behavior as well as eliminating the influence of outliers. Therefore, it can
be applicable for the simulation analysis of a 1000 MW USC unit.
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1. Introduction

With the fast development of China’s economy in the 21st century, the demand for electricity is
growing rapidly. Although the installed capacity of renewable energy, such as wind power and solar
power, have increased in recent years, coal-fired power generation still accounts for a large proportion
of the power generation. In China, the coal-fired installed capacity reached 921.2 GW by the end of
2017, accounting for nearly 72% of the total electricity generation [1]. In the process of coal burning,
many air pollutants may be released, e.g., sulfur dioxide (SO2), nitrogen oxides (NOX), and carbon
dioxide (CO2), which are extremely dangerous to the global climate [2]. In this case, the Chinese
government pledges to reduce the CO2 emissions per unit of GDP by 60–65% in 2030 compared to
2005 levels [3]. To meet the above requirement, it is an inevitable trend to develop coal-fired power
generation technology with large-capacity, low-pollution, and high-efficiency.

At present, most power plant designers are attempting to improve the boiler-turbine efficiency by
increasing steam parameters [4]. Thus, ultra-supercritical (USC) coal-fired power plants operating at
higher temperature and pressure levels have been gaining increasing attention worldwide. Theoretically,
every 20 ◦C rise in the main steam temperature can result in an approximately 1% increase in efficiency [5].
The cycling heat efficiency of the USC units is up to 49%, which is approximately 10% higher than
that of subcritical units. Meanwhile, the release of CO2 and SO2 can be reduced by 145 g/kWh and
0.4 g/kWh, respectively [6]. In the past decades, the USC power plants have been greatly promoted in
China, with more than one hundred 1000 MW USC units put into operation by the end of 2017.
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While the USC units enjoy higher efficiency and lower emissions, they are also more complicated
than subcritical units. For instance, there is no obvious boundary between water and steam under the
once-through operation, resulting in the strong coupling effect among boiler parameters. In addition,
the load-cycling operation of USC units lead to the operating point changing in a wide range, making the
nonlinearity of the plant variables even more serious. Due to the high-complexity as well as the
nonlinearity, multi-variable, strong-coupling characteristics, the modeling and control of USC units
faces greater challenges.

The modeling of power plants can be categorized into two groups: first-principle modeling [7–9]
and experimental modeling [10]. A classical nonlinear dynamic model derived from first-principles
for a natural circulation 160 MW drum-boiler was presented in [11], which was developed on the
basis of several fundamental physical laws. Due to its clear physical structure, this model has been
widely used for controller design [12–14]. In [15], a mathematical simulation model was developed to
study the stability of a steam boiler drum subjected to all of the possible initial operating conditions,
including both stable and unstable. Papers [16,17] present the static and dynamic mathematic model
of a supercritical power plant and its application to improve the load changes and start-up processes.
In [18], three different flexible dynamic models of the same single-pressure combined-cycle power
plant have been successfully developed, and based on these models, an evaluation of the drum lifetime
reduction was performed. However, owing to the complexity of the USC unit, it is hardly possible to
build an accurate first-principle model, and experimental modeling offers a good framework. In [6],
the dynamic model of a 1000 MW power plant was established by combining the experimental modeling
approach and the first-principle modeling approach, which can be feasible and applicable for simulation
analysis and testing control algorithms. Based on this model, a sliding mode predictive controller
was proposed in [19] to achieve excellent load tracking ability under wide-range operation. In [20],
this model was further improved with added closed-loop validations and more reasonable structure.

In 1995, Irwin originally developed a feedforward neural network (NN) to model a 200 MW
oil-fired and drum-type turbo-generator unit [21]. Due to its practicability and flexibility, NNs become
useful tools for power plant modeling [22,23]. In [24], an effective NN modeling method for a steam
boiler was proposed: this model maps the influence of flue gas losses and energy losses due to
unburned combustibles on the main operational parameters of the boiler. In [25], two separate NN
models were developed for the boiler and the steam turbine, which are eventually integrated into a
single NN model representing a 210 MW real power plant. Subsequently, some other methods were
also introduced in NN, such as fuzzy logic. In [26], Liu et al. firstly presented a model of a USC unit
using a fuzzy neural network, the results showing that the model’s built-in fuzzy neural network had
satisfactory accuracy and performance. In [27], a fuzzy model of the USC unit was firstly developed,
and then based on the model, an extended state observer-based model predictive control was proposed.
In [28], an improved Takagi-Sugeno fuzzy framework was applied to the modeling of a 1000 MW
USC unit, the parameters were identified by a k-means++ algorithm and an improved stochastic
gradient algorithm.

During the past decades, computer technology has been widely used in USC power plants.
The supervisory information system, which provides comprehensive optimization for the plant’s
real-time production, collecting all the process data and storing the data in the historical database.
These massive datasets are of great value since they can reflect the actual operational condition
of the USC unit and embody the unit’s complex physical and chemical characteristics. The big
data generated in the USC power plant are generally characterized by massiveness, multi-source,
heterogeneity, and high-dimension. Developing an advanced modeling technology based on big data
is of great significance to the USC unit. Traditional NNs with shallow architecture have low efficiency
in digging and extracting effective information from big data, since they often suffer from uncontrolled
convergence speed and local optima. Meanwhile, it is more difficult to optimize the parameters of
NNs as the number of hidden layers and the training sample size increase.
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The deep neural network (DNN), proposed by Hinton et al. in 2006 [29], provides an effective
tool to deal with the big data modeling problem. In the DNN, layer-by-layer unsupervised learning
is performed for pre-training before the subsequent supervised fine-tuning [30]. The lower layers
represent the low-level features from inputs while the upper layers extract the high-level features
that explain the input samples. Through layer-wise-greedy-learning, DNNs can effectively extract
the compact, hierarchical, and inherently abstract features in the original data and, thus, are able to
achieve high-performance modeling with big data. As one of the commonly used DNN architectures,
a stacked auto-encoder (SAE) is constructed by stacking several shallow auto-encoders (AE) [31],
which learns features by first encoding the input data and then reconstructing it. Due to its remarkable
representation ability, SAE has been successfully applied in fault diagnosis [32], electricity price
forecasting [33], and wind speed forecasting [34].

During the training procedure of SAE, the mean square error (MSE) has been widely used as the
loss function, owing to its simplicity and efficiency. SAE under MSE usually performs well when the
training data are not disturbed by outliers. However, in practical application, the dataset obtained
from a USC power plant will inevitably contain outliers due to various reasons, which makes the
performance of the SAE deteriorate rapidly. Therefore, it is quite important to develop a new loss
function. Unlike MSE, maximum correntropy (MC) [35] is a Gaussian-like weighting function, it is a
local criterion of similarity and thus can be very useful for cases when the measurement data contains
outliers. Since it could attenuate the large error terms effectively, the outliers would have a less impact.

Accordingly, the main contributions of this paper are summarized as follows:

(1) In order to establish an accurate USC unit model using generated big data, SAE is adopted as the
DNN model structure in this paper. The SAE model can generalize very well and yield better
performance when compared to conventional shallow architectures. The SAE model is concise
and suitable for big data analysis.

(2) In order to reduce the bad influence of outliers on the modeling, a loss function using MC is
developed in this paper.

The rest of the paper is organized as follows: Section 2 presents a brief description for the USC
unit. Section 3 proposes the USC power plant modeling using SAE. The simulation results are given in
Section 4. Finally, conclusions are drawn in Section 5.

2. The Ultra-Supercritical Coal-Fired Boiler-Turbine Unit

2.1. Brief Description of USC Unit

The power plant considered in this paper is a pulverized coal firing, once-through steam-boiler
generation unit with a power rate of 1000 MW. The maximum steam consumption of the power plant
is 2980 T/h with a superheated steam pressure and temperature of 26.15 MPa and 605 ◦C, respectively.
Figure 1 shows the simplified diagram of the USC boiler-turbine unit. The boiler mainly includes the
economizer, the waterwall, the separator, the superheater, and the reheater. The tandem compound
triple turbine consists of a high-pressure (HP) turbine, an intermediate-pressure (IP) turbine, and a
low-pressure (LP) turbine.

As shown in Figure 1, the pulverizing system transforms the raw coal into the pulverized coal so
that it can fully burn in the furnace. The feedwater is first warmed by the economizer, and further
heated in the waterwall which surrounds the furnace vertically and spirally. Eventually, it turns into
steam with high temperature and pressure. There is a separator on top of the furnace, and the steam
passes through the separator and superheats in the superheater. The superheater consists of four parts:
primary, division, platen, and finish. The turbine governor valve controls the quantity of superheated
steam delivered to the HP turbine. The extraction steam from the HP turbine goes to the reheater.
The reheated steam is used to drive the IP/LP turbine.
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Figure 1. The layout of the 1000 MW boiler-turbine unit.

2.2. Determination of Input-Output Variables

In the once-through operation of the USC unit, there is no obvious boundary between water
and steam. The feedwater is continuously heated, evaporated, and superheated from the inlet of the
economizer. Without the buffering of the steam drum, the USC unit will suffer greater disturbances
than a subcritical unit. This leads to the strong non-linearity and coupling of the USC unit, which can
be seen as a complicated system with multiple inputs and multiple outputs.

In order to reduce the impact of external disturbances and simplify the model structure of the
USC unit, the following assumptions are made:

1. The fuel flow and the forced draft volume are balanced to ensure the combustion stability.
2. The ratio between the forced draft volume and the induced draft volume remains constant, to

ensure that the pressure in the furnace is stable.
3. The control of the main steam temperature is relatively independent.

If the above assumptions are satisfied, the USC unit can be depicted as a three-input, three-output
nonlinear system, as shown in Figure 2. The inputs u1, u2, u3 are the fuel flow rate, the turbine
governor valve opening, and the feedwater flow rate, respectively. The outputs y1, y2, y3 are the electric
power, the main steam pressure, and the separator outlet steam temperature, respectively. The direct
correlation property between water and steam causes the strong coupling between the inputs and
the outputs.

Figure 2. The three-input, three-output system of the USC unit.

3. Stacked Auto-Encoder

The SAE adopts a multi-layer structure, which is hierarchically stacked by a series of AEs,
as shown in Figure 3. Denote the kth hidden layer to be hk, and then the AE associated with hk−1 and
hk(k = 1, 2, · · · , l) is indicated as AEk.
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Figure 3. The architecture of the SAE.

3.1. Auto-Encoder

The AE is a one-hidden-layer feedforward NN with an encoder and a decoder. The encoder
converts the input data from a high-dimensional representation into a low-dimensional abstract
representation. Then the decoder reconstructs the input data from the corresponding codes. The main
purpose of the AE is to learn an approximation in the hidden layer so that the input data can be
perfectly reconstructed in the output layer. The structure of AEk is shown in Figure 4.

Figure 4. The kth auto-encoder.

Given the input hk−1 of AEk, the hidden representation hk can be obtained through the encoder
based on Equation (1), and then maps back to a reconstructed vector z by the decoder as in Equation (2):

hk = f (Wk
1hk−1 + bk

1), (1)

zk = g(Wk
2hk + bk

2), (2)

where the function f (x) = g(x) = 1/(1 + e−x), Wk
2 and bk

1 represent the weight matrix and bias term
of the encoder, and Wk

2 and bk
2 represent the weight matrix and bias term of the decoder, respectively.

The parameter set in AEk is θk =
{
Wk

1, bk
1, Wk

2, bk
2

}
.

The parameter set θk can be optimized by minimizing the reconstruction error:

JAE(θ
k) =

1
m

m∑
i=1

L(hk−1
i , zk

i ), (3)
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where m is the sample size and L is the mean square error (MSE) expressed as:

LAE−MSE
(
hk−1

i , zk
i

)
=

1
2

∥∥∥hk−1
i − zk

i

∥∥∥2
, (4)

3.2. New Loss Function Design Using Maximum Correntropy

Usually large amounts of operating data are captured continuously by the online plant
data acquisition system in the USC power plant. Before using these data for network training,
data preprocessing is required, since they will always contain some outliers. The generation of outliers
may include faulty sensors, human errors, errors in data capturing system, etc. However, it is very
difficult to remove all outliers manually since the sample size is too large.

During the training procedure of AEk (k = 1, 2, · · · , l), the MSE is used as the loss function,
owing to its simplicity and efficiency. The AE under MSE usually performs well when the training
data are not disturbed by outliers. However, when the outliers are mixed within the training data,
the performance of the AE under MSE may deteriorate greatly.

Notice that the MSE function is a quadratic function in the joint space with a valley along the
hk−1 = zk line. The quadratic term has the net effect of amplifying the contribution of samples which
are far away from the hk−1 = zk line, so that the outliers would have a great impact on the normal
training of the model.

Unlike MSE, MC [35] uses a Gaussian-like weighting function so that it is a local criterion of
similarity and, thus, can be very useful for cases when the measurement data contains large outliers.
Since it could attenuate the large error terms effectively, the outliers would have less of an impact.
The MC function to be maximized is expressed as:

LAE−MC(hk−1
i , zk

i ) =
1
d

d∑
i=1

Kσ(hk−1
i , zk

i ), (5)

where d is the number of the output units, and Kσ(·, ·) is the Gauss kernel, which is defined as:

Kσ(a, b) =
1
√

2πσ
exp

− (a− b)2

2σ2

, (6)

where σ is the kernel size.
Owing to the effectiveness of MC function, it is chosen as the loss function of each AE in this paper.

3.3. SAE Model Structure and Learning Algorithm

The SAE model can be established by stacking several AEs. Figure 5 shows the structure of
the SAE used for USC modeling. Due to the inertia and delay of the system, the historical data of{
u1(k), u2(k), u3(k), y1(k− 1), y2(k− 1), y3(k− 1)

}
in the last two steps are also adopted as the inputs of

the model. Thus, the total number of inputs and outputs are 18 and three, respectively. In this model,
multiple AEs are used to obtain the intrinsic features from the original USC data, while the regression
layer is responsible for outputting the expected normal behaviors of the system along the time axis.
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Figure 5. Structure of the SAE used for USC modeling.

The training of the SAE includes two steps: an unsupervised layer-wise pre-training step and
a supervised fine-tuning step, as shown in Figure 6. In Figure 6a, with the original training data,
the AE at the bottom layer is first trained by minimizing the reconstruction error in Equation (3) using
the gradient descent method. Then, the generated hidden representation can be used as the input
for training the higher-level AE. In this way, multiple AEs can be stacked hierarchically. After the
layer-wise pre-training, all the obtained hidden layers are stacked, and the regression layer can be
added on top of the SAE to generate the final outputs, as shown in Figure 6b. The parameters of the
whole SAE network can be fine-tuned in a supervised way using the gradient descent method.

Figure 6. (a) Unsupervised layer-wise pre-training of the SAE. (b) Supervised fine-tuning of the SAE.

4. USC Unit Modeling

4.1. Experimental Settings

Training of the SAE with a dataset including all possible variations in the range of working
conditions is very crucial. The dataset used for training was carefully selected from the very large
amount of data logged in the historical database, during which the working condition varies frequently.
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Twenty thousand sets of continuous I/O data with 1 s sampling were selected for training, with load
changing conditions ranging from 550 MW to 1000 MW. Another 3000 sets of I/O data were selected
for validation.

Within the datasets, there exist outliers that need to be removed in advance. In practice, the outliers
can be identified in different ways. Usually, the data points which deviate substantially from the
general trend of variations of its neighboring points can be considered as outliers. Additionally,
the outliers can be found by checking the relationship between trends of data for highly correlated
parameters. For example, the increase of fuel flow must correspond to the effect on that of the electric
power, with a regular correspondence. By using these method, the detected outliers are listed in Table 1.
As for the identified outliers in the dataset, they are replaced by the data from their neighboring points.
These datasets used for training and validation, after preprocessing the outliers, are shown in Figure 7.
All the preprocessed data are normalized in the range of [0,1] before establishing the SAE model.
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Table 1. The number of outliers in training and validating sample sets.

Parameter Training Sample Set Validating Sample Set

u1 36/20,000 14/3000
u2 24/20,000 8/3000
u3 34/20,000 11/3000
y1 28/20,000 14/3000
y2 23/20,000 12/3000
y3 29/20,000 9/3000

The root mean squared error (RMSE) in Equation (7) is employed as the evaluation metric:

RMSE =

√∑K
k=1 (y∗k − yk)

2

K
, (7)

where y* is the model output and y is the plant output, K is the total data number. Notice that y* and
y are normalized values. There are several parameters that have to be defined for the SAE model,
such as the nodes in each layer, the number of AEs, learning rate, momentum, etc. These parameters
are determined through cross-validation only on the training set. The initial weights and biases of
each AE were chosen to be small random values sampled from a zero-mean Gauss distribution with a
standard deviation of 0.01. The maximum number of epochs is set to 100 and the fine-tuning stage
terminates when the variation in RMSE of the validation set is less than 10−3. This criterion will reduce
the model complexity and, thus, result in a better generalization by avoiding overfitting.

In order to determine the optimal structure of SAE model, i.e., the number of AEs and hidden
layer units in each AE, experiments were repeatedly done by choosing the number of AEs ranging from
1 to 10, while the number of units in hidden layers from ϕ = [18, 17, · · · , 5, 4]. The optimal structure is
found from different configurations considering the RMSE value.

The relationship between the number of AEs and the RMSE of the learning network is shown in
Figure 8. The network is unable to generalize well when the number of AEs is too small because of the
insufficient number of tunable parameters in the model. The performance of the network gradually
improves as the number of AEs increases, especially when the number reaches 8. However, when the
number of AEs increase further, the improvement seems to be very little, as using more AEs will lead to
more complex structures that are prone to overfitting. Moreover, the vanishing gradient problem also
imposes negative impacts on the fine-tuning of the SAE when the number of AEs increases. Therefore,
the network structure of SAE is set to be eight hidden layers.

Figure 8. The relationship between the number of AEs and the RMSE value.

4.2. The Modeling Results

Figure 9 shows the modeling results with the 20,000 sets of training data. Then, this training
model was validated by the 3000 sets of validating data, as shown in Figure 10. When adopting very
different sets of operating data, the SAE model is still able to achieve good performance. From both the
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training and validating, it is clearly seen that the SAE model can predict the USC dynamic accurately
over a wide range of loads.
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Figure 9. A comparison of the boiler system and the SAE model (training).

Energies 2019, 12, 4035 10 of 14 

 

the training and validating, it is clearly seen that the SAE model can predict the USC dynamic 
accurately over a wide range of loads. 

 
Figure 9. A comparison of the boiler system and the SAE model (training). 

 
Figure 10. A comparison of the boiler system and the SAE model (validating). 

0 0.5 1 1.5 2

x 10
4

600

700

800

900

1000

n

El
ec

tr
ic

 p
ow

er
 o

ut
pu

t (
M

W
)

 

 

SDAE
Plant

0 0.5 1 1.5 2

x 10
4

14

16

18

20

22

24

26

n

M
ai

n 
st

ea
m

 p
re

ss
ur

e 
(M

pa
)

 

 

SDAE
Plant

0 0.5 1 1.5 2

x 10
4

340

360

380

400

420

n

Te
m

pe
ra

tu
re

 a
t o

ut
le

t o
f s

ep
ar

at
or

 (d
eg

.C
)

 

 

SDAE
Plant

0 500 1000 1500 2000 2500 3000
350

360

370

380

390

n

Te
m

pe
ra

tu
re

 a
t o

ut
le

t o
f s

ep
ar

at
or

 (d
eg

.C
)

 

 

SDAE
Plant

0 500 1000 1500 2000 2500 3000
15

16

17

18

19

20

21

n

M
ai

n 
st

ea
m

 p
re

ss
ur

e 
(M

Pa
)

 

 

SDAE
Plant

0 500 1000 1500 2000 2500 3000
600

650

700

750

800

850

n

El
ec

tr
ic

 p
ow

er
 o

ut
pu

t (
M

W
)

 

 

SDAE
Plant

Figure 10. A comparison of the boiler system and the SAE model (validating).
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This SAE model was then compared with a general multi-layer perceptron (MLP) network
adopting the structure in [26], under the same I/O data. Table 2 lists the comparing results. It is found
that the performance of the MLP network is lower than that of the SAE network, as it is a shallow
architecture which often suffers from uncontrolled convergence speed and local optimality, especially
when the training sample size grows too large.

Table 2. The root mean square errors of three adopted models.

Temperature Pressure Power

MLP
Training 0.0039 0.0022 0.0034

Validating 0.0076 0.0065 0.0072

SAE
Training 0.0016 0.0007 0.0015

Validating 0.0031 0.0019 0.0034

4.3. The Modeling Using Maximum Correntropy

As listed in Table 1, there exists outliers in both the training and validating sample sets. In order
to disclose the essential influence of these outliers on the modeling effect, the simulation is repeated
without the preprocessing process. It can be found that the modeling performance soon deteriorates,
as shown by the green line in Figures 11 and 12.

Figure 11. A comparison of SAE models using different loss functions without the preprocessing
process (training).
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Figure 12. A comparison of SAE models using different loss functions without the preprocessing
process (validating).

The simulation using the MC loss function is shown by the red line of Figures 11 and 12. Table 3
lists the RMSE values under these two methods, which clearly shows the advantage of the SAE model
incorporating the MC function in alleviating the influence of outliers.

Table 3. The root mean square errors of SAE without the preprocessing process.

RMSE Temperature Pressure Power

MSE
Training 0.0231 0.0301 0.0307

Validating 0.0529 0.0476 0.0559

MC
Training 0.0185 0.0209 0.0169

Validating 0.0217 0.0275 0.0248

5. Conclusions

For the modeling of a 1000 MW USC coal-fired boiler-turbine unit, a DNN framework using an
SAE was proposed in this paper. Real-time measurement big data generated from a wide range of
operating points were used for the network training and validating. To evaluate the effectiveness of
the proposed model, a comparative analysis of the SAE and MLP network was constructed. From the
results, the following conclusions can be summarized.

(1) Compared with the shallow-layer NN, the DNN architecture adopting the SAE model trained
by an unsupervised greedy layer-by-layer pre-training and a supervised fine-tuning is very efficient
to deal with the big data modeling problem since it can effectively extract the compact, hierarchical,
and inherent abstract features in the original USC unit data through the layer-wise-greedy-learning.

(2) MC is a local criterion of similarity which could attenuate the large error terms effectively.
The proposed SAE model adopting MC as the loss function reduces the poor influence of outliers
effectively, compared with adopting MSE as the loss function.
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In summary, the proposed SAE model can be suitably applied for analyzing the dynamic behaviors
of the 1000 MW USC boiler-turbine system.
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The following abbreviations are used in this manuscript:

USC Ultra-supercritical
SAE Stacked auto-encoder
CO2 Carbon dioxide
SO2 Sulfur dioxide
NOX Nitrogen oxides
NN Neural network
DNN Deep neural network
AE Auto-encoder
MSE Mean square error
MC Maximum correntropy
HP High-pressure
IP Intermediate-pressure
LP Low-pressure
RMSE Root mean squared error
MLP Multi-layer perceptron
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