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Abstract: A lithium-ion battery cell’s electrochemical performance can be obtained through a series
of standardized experiments, and the optimal operation and monitoring is performed when a model
of the Li-ions is generated and adopted. With discrete-time parameter identification processes, the
electrical circuit models (ECM) of the cells are derived. Over their wide range, the dual-polarization
(DP) ECM is proposed to characterize two prismatic cells with different anode electrodes. In most
of the studies on battery modeling, attention is paid to the accuracy comparison of the various
ECMs, usually for a certain Li-ion, whereas the parameter identification methods of the ECMs
are rarely compared. Hence in this work, three different approaches are performed for a certain
temperature throughout the whole SoC range of the cells for two different load profiles, suitable for
light- and heavy-duty electromotive applications. Analytical equations, least-square-based methods,
and heuristic algorithms used for model parameterization are compared in terms of voltage accuracy,
robustness, and computational time. The influence of the ECMs’ parameter variation on the voltage
root mean square error (RMSE) is assessed as well with impedance spectroscopy in terms of Ohmic,
internal, and total resistance comparisons. Li-ion cells are thoroughly electrically characterized
and the following conclusions are drawn: (1) All methods are suitable for the modeling, giving a
good agreement with the experimental data with less than 3% max voltage relative error and 30mV
RMSE in most cases. (2) Particle swarm optimization (PSO) method is the best trade-off in terms of
computational time, accuracy, and robustness. (3) Genetic algorithm (GA) lack of computational time
compared to PSO and LS (4) The internal resistance behavior, investigated for the PSO, showed a
positive correlation to the voltage error, depending on the chemistry and loading profile.

Keywords: lithium-ion characterization; ual-polarization equivalent circuit model; analytical
equations; least-square; heuristic algorithm; EIS impedance spectroscopy; LTO; NMC

1. Introduction

Electrochemical energy storage cells with lithium have been gradually entering in all our
society’s power levels. Different types of commercially available Li-ion cells do exist presently with
many more being under research [1,2]. Lithium-ion battery (Li-ion) cell’s nominal performance in
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terms of volumetric (size) and gravimetric (weight) energies, specific power, operating voltage and
charge/discharge loading capabilities depends on the formation of anode and cathode active material,
electrolyte, separator, current collectors and cell’s shape [3]. This composition characterizes electrically,
thermally and mechanically the Li-ion cell with its nominal values at a certain temperature, also known
as the beginning of life (BoL) state of the cell.

It is crucial to characterize, model and assess the cell’s behavior at the BoL (off-line) and to adapt
the identified parameters at various conditions and states (online) to enhance performance during
operation. This is achieved by accurately obtaining the main parameters of the cells i.e., the impedance,
capacity and open circuit voltage, and by deriving a suitable model for the microprocessors of the
battery management system (BMS) that are designed to monitor and perform an optimal operation
within a predefined safe-operation-area (SoA) and power limits [4]. The modeling of the Li-ions is
achieved with one of the following methods [5,6]:

• Generic-based or data-based empirical models,
• Electrochemical impedance spectroscopy (EIS)-based models,
• Static and dynamic equivalent electrical circuit models (ECM) and
• Electrochemical and physics-based models.

The generic models are usually based on the Shepards equation [7], they are mathematical
representations of the voltage usually with a low physical meaning. Hence they can be preferred for
simple representation of the Li-ion batteries although they can be challenging for online parameter
adaptation and state estimation.

The frequency domain models analyze the impedance of the cells in a wide frequency range with
superimposed AC signal carried by a DC (charge or discharge) to investigate the overall working
principle of the Li-ions. The linearity and time invariance of the system are achieved with the low AC
power amplitude ranges of the experiment (mV or mA) which leaves aside however the current rate
dependency on the cells [8,9]. Dealing with this, the non-linear Butler–Volmer equation (BVE) along
with the Arrhenius relationship can give the charge-transferring temperature and current dependence
of the cells [10], raising however questions on the accuracy and computation effort of solving on-board
such non-linearities.

An electrochemical model has the highest fidelity, but it is a computational demanding
representation of the working principles of the cells. This is accompanied with a huge number of
parameters that must be identified and adapted to circumstances, which makes them so far inefficient
for on-board applications.

A good compromise between physical representation of the cells and the fast modeling response
is obtained with ECMs. They are further subdivided into static and dynamic modeling approaches.
The former models represent the cells with simple polynomial equations suitable for constant
charge/discharge representation. The latter can give a dynamic model that can be addressed to
real-life loading cycling profiles. For either case, the ECMs are composed of lumped equivalent
electrical elements that represent the working principles of battery to a certain degree. In one hand
simple static models can be generated without any experimental characterization and can model
accurate constant power profiles. Alternatively, dynamic ECMs require a series of electrical testing
from which the lumped parameters are derived by applying parameter identification techniques.
In most studies however, focus is laid on comparisons among the different modeling ECM approaches,
nevertheless, to the best of our knowledge, the parametrization techniques are rarely compared under
the framework of a certain chemistry and model, similarly stated by Lai et al. [11], in which however
various ECMs are compared for several heuristic algorithms.

Furthermore, the low computational power of the BMS renders necessary not only to reduce the
modeling parameters to the minimum necessity, but also to depict the electrochemical processes as
accurately as possible. Regarding this, the second-order ECM, also known as the dual-polarization
ECM is selected in this work to characterize the Li-ion cells. Three parametrization methods are



Energies 2019, 12, 4031 3 of 37

investigated and compared for two different anode-based cells and two types of validation profiles are
used to assess the identification results.

The generated ECMs in this work are compared for their robustness, computational effort and
accuracy at an off-line modeling approach. Also, the power capability is estimated under charge
and discharge of the cells, while impedance comparison among the proposed methods and EIS is
taking place as a merit of evaluation on the physical accuracy of estimated parameters from the
identification techniques.

This paper’s overall motivation is seen in three parts:

• An experimental characterization and electrical modeling of the Li-ions with three different
parameter identification methods,

• A comprehensive comparison among the parameter identification methods from previous studies,
• Analyses on the impedance behavior of the cells in time and frequency domain and estimation

on the power capabilities of the cells.

The paper is organized as follows: the experimental setup as well as discussion of the Li-ions
main characteristics and the experimental process are presented in Section 2, the proposed model
development is analyzed in Section 3 and a comprehensive comparison on different parameter
identification methods is performed in Section 4. Impedance results, comparisons over the methods
and discussions are taking place in Section 5, whereas Section 6 concludes the paper.

2. Experimental Setup

2.1. Test Bench Description

Two commercial prismatic Li-ion cells are tested, suitable for either high-power or high-energy
applications, one LTO and an NMC. Their shape and main characteristics are illustrated and compared
in Figure 1, while Table 1 gathers the main electro-mechanical properties of the Li-ion cells.

(a) (b)

Figure 1. (a) Lithium-ion cells placed on a A4 paper. On the left lays the LTO and right is the NMC.
(b) Lithium-ion cells nominal properties (datasheet) comparison at the BoL. no.#2 indicates a twice
better behavior in absolute values.
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Table 1. Manufacturing properties of the lithium-ion cells.

Main Characteristics Value Unit

Chemistry LTO NMC [-]
Nominal voltage 2.3 3.65 [V]
Nominal capacity 23 43 [Ah]

End-of-charge maximum voltage 2.7 4.2 [V]
End-of-discharge cut-off voltage 1.5 3 [V]

Volumetric energy density 202 424 [Wh/L]
Specific energy density 96.1 186.8 [Wh/kg]

Specific power >1200 >1200 [W/kg]
AC impedance (1 kHz) 0.6 1 [mOhms]
Recommended charge 4 C 1 C [-]current rate (continuous)
10 s max charge C-rate >8 C 3 C [-]

Height 103 148 [mm]
Width 115 91 [mm]

Thickness 22 27.5 [mm]
Weight 0.550 0.840 [kg]

Figure 2 illustrates the test setup. Steel connectors are attached to the aluminum tabs with a
spot-welding technique. Laser welding for aluminum-to-aluminum interconnection is also being
investigated to compare the contact resistance and tensile force capabilities [12]. Cells are placed inside
a temperature chamber to preserve 25 ◦C and they are connected to the PEC ACT0550 tester, capable of
up to DC 5 V measurements with a ±0.005% accuracy.

Control/ 

command via 

PEC software

Electronic 

load / power 

supply

Discharging / 

charging current

Measurements

PEC ACT 0550

Raw data

Temperature Chamber

Prismatic cells

Current, IVoltage, V

Temperature, T

Figure 2. Topology of test bench and the battery cells during experiments [13].

It consists of equipment commonly found in a battery dedicated laboratory: Battery tester can
charge/discharge and monitor cell’s voltage, current and temperature, one K-type thermocouple for
the surface of the cell and climate chamber to control the environmental temperature. Raw data in
terms of voltage, current, power, energy, step, cycle and temperature.

2.2. Experimental Process

The methodology followed in this work to electrically characterize the Li-ion cells is summarized
in the flow chart presented in Figure 3. In this section, the main characteristics of the cells and the
methods employed for experimentally extracting the impedance are analyzed. A brief description on
the several impedance measurement methods can be found also here [14].



Energies 2019, 12, 4031 5 of 37

Models Validation

-urban

-suburban

Heavy Duty 

dynamic profile
WLTC

Experimental characterization

LTO and NMC Li-ions cells

Parameter identification DP ECM

Analytical 

equations

Least square 

methods

Heuristic 

optimization

5
-7

 C
-r

at
es

2
5

o
C

Precondition & Capacity

OCV at a 5% SoC step

Voltage response to current 

(HPPC)

EIS impedance response

Figure 3. Division of this work in three main parts, the experimental characterization of the cells,
the parameter identification process and the model validation.

2.2.1. Open Circuit Voltage Test

OCV test is performed to extract the voltage of the cells at no-loading and equilibrium state (VOC).
With a current rate of C/5 the batteries are fully charged and 5% discharging steps are followed until
Vcut−o f f to evaluate the VOC after 3 h resting period, which takes place at each state of charge (SoC)
step. Reverse procedure is followed for the charge OCV test. Regarding the relaxation of the cell
voltage, it occurs due to the rapid discharge of the double layer capacitance as the ions move away
from the electrode surface (at a range of msec) and the slower time-constant diffusions of the ion’s
redistribution within the liquid (electrolyte), until the concentration reaches equilibrium state and
form the re-arrangement of atoms within the solid materials (electrodes). To incorporate for the slow
diffusion processes of the cells, it is recorded that after 240 min the double layer capacitance and the
diffusion processes in solid and liquid do not significantly change the impedance and the voltage
error lays between measurement noise regardless cell type and chemistry, whereas after approximately
900 min of relaxation time, equilibrium is reached [15,16]. Figure 4 shows the measured VOC during
charge and discharge of the cells.
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Figure 4. Open circuit voltage of (a) LTO cell and (c) NMC cell during charge and discharge. Hysteresis
effect on both cells in (b) and (d) respectively.

OCV curves are fitted with an nth order polynomial as VOC = f (SoC) = αnth SoCnth
+ · · · +

α1SoC + a0 or adopted with look-up tables. It is observed that VOC measured during charge is slightly
higher for both chemistries. This, SoC dependent phenomenon, can arise from the internal resistance
increase in the electrode at the edges of the charge/discharge and it is referred in the literature as
hysteresis [17]. It is observed that the hysteresis behavior changes with the chemistry; however, it is
more significant for the higher non-linear regions between 0–20% and 80–100% of the SoC. Accordingly,
for the Li-ion that pose such relative low hysteresis levels a direct modeling approach is adopted [18].
Usually, the hysteresis branch on the modeling is proposed for chemistries that show a greater effect,
such as in LFP chemistry, in the ranges of 50 mV and above. Regarding this, authors in [19] suggest the
one-RC model with hysteresis that comes without an extra increase in complexity, as a better trade-off
of such chemistry modeling approach.

Nevertheless, a brief comparison on the cells OCV shows a faster voltage increase of the NMC
cell (∆OCV/∆SoC) at the slow dynamic area (20% < SoC < 80%) which, in addition to inadequate
relaxation time, can affect the OCV-based SoC estimation methods [20]. At such cases, a structured
ECM that embodies the Li-ion’s hysteresis behavior is a requirement.

2.2.2. Voltage Response to Current Test

The voltage response to several current rates is investigated at the same temperature as the
OCV test. A CCCV charge profile is applied to the cells to reach the 100% SoC, and it is followed by
discharge pulses with C/5 at a 5% SoC step, until the voltage cut-off limit is reached. Right after each
5% SoC drop, five (for NMC) or 7 (for LTO) current pulses at various rates, with a ∆t = 10 s duration
are performed before the cells are rest for a relaxation time, similar to OCV test. The current pulses



Energies 2019, 12, 4031 7 of 37

with different amplitudes are applied at both charge and discharge directions with one-minute rest
in-between.

2.2.3. Impedance Response to Frequency Test

Li-ion characterization technique through current pulse (HPPC) results in discrete-time-dependent
impedance measurements. However, realization of electrochemical properties and phenomena such
as the impedance growth during intercalation and de-intercalation of lithium charge and discharge
process cannot be investigated with this method. On the other side, EIS is a common method for
this purpose where the key power limiting factors such as electrolyte conductivity, solid-electrolyte
interface (SEI) growth and the charge-transfer resistance behaviors can be analyzed with an small AC
excitation signal [21]. It is a method extensively used over the years in battery characterization [22] and
battery ageing [23,24]. Here, a potentiostatic EIS is performed on both cells with BioLogic MPG-205
equipment and the impedance spectra is generated by imposing an AC voltage impulse from 10 kHz
to 5 mHz frequency range and at controlled ambient temperature of 25 ◦C and 4.3 mV amplitude.
Figure 5 shows the plotted Nyquist curve for the Li-ion cells at five different SoCs (0%, 20%, 50%,
80% and 100%) to illustrate the evolution of imaginary against the real impedance.

(a) (b)

Figure 5. Nyquist plots of (a) LTO and (b) NMC, over the different SoCs.

Ohmic resistance is obtained at the intersection of the real and the imaginary axis. As with [25]
and depending on the chemical composition of the cells, the curve is shifted here towards right and
upwards with the decreasing SoC indicating the increment on the Ohmic resistance as the SoC is
decreased. From the generation of the EIS-based models, the DC offset that creates the charge-transfer
impedance to current dependency cannot be incorporated, which makes the ECM inefficient for
dynamic loading profiles. This challenge is addressed, and will be further analyzed in following
section, with the Butler-Volmer equation (BVE).

2.2.4. Capacity Test

During charge and discharge at different current rates, the capacities of Li-ion cells differentiate
from the nominal values in a reverse proportional rate to the current as described by Peukert’s law [26],
whereas they are also follow an Arrhenius temperature dependency [27]. This study focuses on 25 ◦C
for which the capacities values of both cells during charge and discharge, as well as approximation
of the Coulombic efficiency η = AhDischarge/AhCharge are calculated. In the case of inadequate
relaxation period after the CCCV charge an increased discharged capacity can be measured and η is
set to 1. Also, a slightly higher capacity of the cells can be observed while increasing the C-rates at a
certain temperature (usually low) due to the proportional enhancement of the charge-transfer kinetics
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occurring from the increased (self-heating) temperature. To cope with this, cells are placed in a climate
chamber that actively monitor and maintain temperature as close as possible to the predefined 25 ◦C.
Capacities of the cells are shown in Table 2.

Table 2. Charge and discharge capacities of the lithium-ion cells at 25 ◦C.

Value LTO NMC Unit

C-rate C/3 C/2 1C 2C 4C C/3 C/2 1C 1.5C 2C [-]
Charge Capacity 23.2 23.1 23 23 22.9 44.9 44.9 44.8 44.7 44.7 [Ah]Discharge Capacity 23.6 23.3 23.1 23 22.8 45.3 45.2 45 44.9 44.8

3. Model Development

3.1. In Discrete-Time Domain

The model that is employed in this work is the dual-polarization ECM which refers to the
second-order RC circuit as shown in Figure 6. It represents the time-dependent polarization processes
taking place during charge/discharge, the relaxation effect and the equilibrium open circuit VOC in the
battery cells. At a current passage, the terminal voltage Vbatt diverges from the VOC due to material
resistivity, electrochemical reactions and diffusion processes [28].

Voc

Ibatt
I1 I2

Ibatt
R1 R2

R0

V1 V2 Vcell

C1 C2

VoltageCurrent

Initial SoC

Temperature

Energy/Power

Resistance

Figure 6. Dual-polarization electrical equivalent modeling approach of the Li-ion prismatic cells.
Model input is the current, the initial SoC and the temperature. Model output is the voltage response,
resistances and energy/power capability of cells.

The ECM considers the load demand, the initial SoC of the cells and the temperature as inputs
in order to estimate the terminal voltage and the states of the Li-ion cells which are described
by Equation (1):

Vbatt = Voc −V1 −V2 − R0 Ibatt

V̇1 = − 1
R1 C1

V1 +
1

C1
Ibatt

V̇2 = − 1
R2 C2

V2 +
1

C2
Ibatt

(1)

where Voc is the OCV obtained from the experiment, R0 is Ohmic resistance, R1 and R2 represent the
activation (electrochemical) and the concentration polarization respectively (mΩ) with the capacitances
(C1 and C2 in kF) as to relate the voltage drops across them (V1 and V2 in mV) with the two different
time-constant. The former, activation polarization V1 is associated with the charge-transfer and the SEI
layer build up resistance. The latter accounts a concentration gradient build-up taking place at current
flow or during vice-versa during relaxation, represented by V2. Ibatt is the current flow through the
battery cells (Amps) with a sampling period of Tsample = 0.01 s and it is considered negative for charge.
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Since the impedance is dependent on the SoC, a function for this purpose is integrated in the DP
ECM. Generally, the SoC of cells can be estimated with OCV(SoC)-based method [29,30], with power
electronics such as online EIS measurement [31,32], model-based-estimation and machine learning
algorithms, and Ah(Coulomb)-counting, as it thoughtfully discussed in previous studies [33–36].
Challenges with certain chemistries can rise, as for LFP’s low ∆OCV/∆SoC at the slow dynamic area
and its hysteresis effect makes OCV (SoC)-based methods not optimal [37,38], whereas EIS-based
measurements lack accuracy through ageing and the estimations are highly influenced from chemistry
and experimental conditions [39]. Also, due to overload on computational complexity and memory
storage or lack of accuracy, most implementation are to not suitable for on-board applications. However,
certain model-based methods and the Ah-counting are proven more relevant for this purpose.

More in precise, the model-based estimation with adaptive Kalman and particle filters or observers
and fuzzy logic [40–42] or machine learning algorithms such as artificial neural networks (ANN) [43,44]
and support vector machines (SVM) [45] are typically used for on-board implementation, taking into
account their increased computational and memory requirements. On the other hand, the SoC
estimation from Ah-counting [46] depends on the accuracy (sampling precision and frequency) of the
current sensors and the initialization of the cell’s capacity. It usually gives accurate results, which also
relies on the initial and re-calibrated (to avoid error accumulation) SoC after dynamic load profiles
[47]. This low-cost estimation method is used in this work as well, according to Equation (2).

SoC(t) = SoC0 −
η

Cn

∫
i(t) dt (2)

where SoC0 is the initial state of charge, η is the Coulombic efficiency of the cell at the certain
C-rates, i(t) is the instantaneous current through the cell and Cn is the initial capacity (Asec · Ts
= discrete sampling period) as a function of temperature and current rate.

Besides the ECM parameters, the total cell’s resistance incorporates both the Ohmic and
polarizations and is considered to be the DC resistance of the Li-ion that can be extracted according to
Ohm’s law from the measured voltage drop at a current pulse as in Equation (3):

RDC,pulse|∆t =
∆Vpulse

Ipulse,max

∆Vpulse|∆t = Vmax,pulse −VOC,pulse

(3)

where ∆Vpulse is the overpotential between the terminal voltage Vmax,pulse and the VOC,pulse of the
current pulse. This resistance is a modeling assumption that represents the overall impedance of the
cells during a current excitation which is practical for on-board estimation of the available source or
sink power capability of the cells Ppulse, and also the limitation on rate of current Ipulse,max that can be
drawn or fed on either charge or discharge direction over a short period of ∆t. They can be estimated
according to Equation (4) [48]:

Ppulse|∆t=
∆Vpulse ·Vmax,pulse

RDC,pulse
(4)

The power capability is inverse dependent on the RDC of the battery cells and follows the
overpotential ∆Vpulse build-up during the pulse. As a result, it is highly influenced from the C-rates,
the operating temperature and the current pulse length period, as well as the SoC of the cells throughout
ageing and their chemistry [49]. Consequently, Ppulse is assessed here for three C-rates (0.33 C, 1 C
and 2 C-NMC or 3 C-LTO) and at three SoCs (20%, 50% and 80%), for three different pulse times ∆t =
2 s, 10 s and 20 s at 25 ◦C and BoL. The generated power losses at the respective states can be simply
calculated by Ploss = I2

pulseRDC,pulse [in the range of a few Watts].
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3.2. In Frequency Domain

The impedance analysis in time domain is a combined effect of resistance and overpotential at a
current excitation. To get a clear view on the individual generated resistances and losses, the proposed
equivalent circuit illustrated in Figure 7 is selected. EIS can effectively separate the losses with
different time constants (Ohmic, solid-electrolyte interface (SEI), charge-transfer, diffusion), evolving
at frequencies between several kHz to a few mHz range [50]. Depending on the chemistry and state of
health, the first semi-circle is related to the SEI layer of the anode. Nevertheless, in this work a single
semi-circle associated with the double layer capacity and charge-transfer resistance on the electrodes is
observed and modeled accordingly, assuming the impact of SEI formation negligible and with similar
time-constant.
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Figure 7. Topology of EIS proposed equivalent model.

The key elements in this modified Randles circuit model are L0 which represents the cabling and
connection inductance and R0 the Ohmic resistance of the battery cell generated from the material
composition conductivity. They are observed in the highest frequency ranges of the EIS spectrum,
characterized by the materials and the surface geometry, where in our case deviate form 104 to
102 Hz. Also, the parallel branch R1 with the constant phase element (CPE) Q1 which combines the
kinetics impedance related to the electrochemical charge-transfer and double layer, it takes place in
the range of 103 to 100 Hz [51,52]. Lastly, a second CPE Q2 related to diffusion process and the mass
transportation is modeled which is considered at low frequencies and time-constant in the range of
several seconds to minutes [53,54]. These parameters are obtained from EC-Lab R©fitting software
based on Equation (5) [55]

ZEIS = jωL0 + R0 +
1

R−1
1 + (jω)ξ1 Q1

+
1

(jω)ξ2 Q2
(5)

where ZEIS is the impedance of the ECM and 1
(jω)ξ1,2 Q1,2

is the impedance of the CPE elements with

a depression factor 0 ≤ ξi ≤ 1 on the Nyquist plot (0 = resistor, 1 = capacitor with ideal semi-circle
of R//C).

The proposed EIS equivalent model gives a good fit with experimental data which can be seen
in Figure 8 for LTO and NMC cell, respectively. According to previous studies various modeling
representations of Li-ions in frequency domain are proposed by adding either extra parallel branches
of R//CPE elements [54,56] or Warburg element [57] in order to approximate more accurate the
electrochemical reactions taking place in the whole frequency spectra, with a trade-off between
modeling simplicity and accuracy [22]. In this work, as also explained in next section, the proposed
model topology of Figure 7 is selected, as it shows good agreement to the experimental data with the
minimum required lumped elements. The values associated with the EIS model fittings are shown in
Table 3 for all the SoC steps. The corresponding modeling error (ZEIS − Zmodel) stays below 1.52 ×10−5

for most cases, generated from the EC-Lab R©fitting software.
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Table 3. Frequency domain impedance model parameters for both prismatic battery cells at 25 ◦C and
five SoC steps.

Parameter LTO NMC Unit

SoC 100 80 50 20 0 100 80 50 20 0 [%]
R0 0.709 0.714 0.782 0.883 0.953 1.25 1.26 1.306 1.31 1.33 [mΩ]
R1 0.175 0.136 0.122 0.123 0.179 0.359 0.35 0.358 0.434 0.963 [mΩ]
Q1 46.4 283 169.1 43.27 302.8 19.34 18.23 15.45 21.14 176.1 [Ω−1 × sξ ]
Q2 847.7 6987 8449 7209 883.3 9198 8822 10,970 10,726 3662 [Ω−1 × sξ ]

The simulated and experimental data comparison was done at 50% SoC and at room temperature.
The impedance parameters of R0 can be extracted from the fitted curves and R1 can be calculated from
the plotted curves semi-circle to represent charge-transfer resistance between electrolyte and active
materials [58].
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Figure 8. Nyquist plots and the fitted model of (a) LTO and (b) NMC battery cells at 50% SoC.

3.2.1. Ohmic Resistance

Ohmic resistance varies during charge/discharge due to the materials composition and their
conductivity properties. It is strongly dependent on the ionic conductivity of the electrolyte [59,60],
the electric resistance of the electrode, tabs and current collectors and their interfacial resistance [61].
It can change over temperature, ageing and SoC fluctuations, while it is mostly independent on the
current’s amplitude and the relaxation time. It is observed that impedance obtained from EIS at the
fsample = 100 Hz deviates from EIS R0 (at the intersection of the curve with zero imaginary axis) at less
than 0.06 mΩ. More in precise, the intersection of real to imaginary part takes place accordingly at
frequencies fintersection = 128 Hz and 172 Hz for LTO and NMC. The deviation has a positive correlation
to the ∆ f = fintersection − fsample whereas here, either point is considered to have a minor effect on the
determination of the R0, as also discussed in the voltage to current response section. Hence, both
Ohmic resistances obtained are used as a benchmark to compare the Ohmic resistance acquired from
time-domain modeling at the same sampling frequency. It should be noted here that determining pure
Ohmic resistance requires a very fast sampling capacity. In our case, since it is close to the sampling
frequency the error of the HPPC and the EIS can be low, but other chemistries that the Ohmic is
generated at the range of 0.5 kHz (such as LFP in [23]), its measurement from HPPC is impractical.

3.2.2. Charge-Transfer and Total Resistance

An electric field applied to the current collectors results in a current density described by the
BVE, as a function of the electrochemical charge-transfer overvoltage during redox reactions at the
electrodes. On the contrary to the Ohmic resistance, the Faradaic branch elements R1//Q1 are highly
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dependent on current density but also at SoC, temperature and ageing. During the first instances at
a charge/discharge pulse for the high frequencies, the double layer capacitor impedance acts as a
short circuit and it is quickly charged. Consequently, at lower frequencies it effectively behaves as an
open circuit and the whole current is flowing through the charge-transfer reaction. A superimposed
DC current EIS technique can be used to fit and quantify the charge-transfer R1 resistance [62].
Alternatively, the total resistance can be used, obtained either at the end of the EIS frequency spectrum
5 mHz, or from the pulse test if both the linear Ohmic resistance overvoltage and the logarithmic
electrochemical are considered. The modified BVE can be used as in Equation (6), only if the mass
transport is neglected at cases with lower than 5 s pulse currents [3,63,64]:

Voc −Vbatt = R0 Ibatt + V1 + V2 ⇒
Voc −Vbatt = ∆VDC

I = I0 · {exp(
αanodicnF

RT
∆VDC)− exp(

−αcathodicnF
RT

∆VDC)}

(6)

where n, F, R, T are constants: n is the number of electrons involved in the reaction per molecule of
the active material, F the Faraday constant, R the general gas constant, T the absolute temperature in
Kelvin [65]. By performing current pulses technique and using a simple NLS fitting of Equation (6) to
the results, missing information on the α, I0 constants can be found and the RDC = f (I) be estimated.
A thorough investigation on the non-linearities of the symmetry factors α and the exchange current
density I0 can be found in [64] for LTO cells, signifying their evolution over various states and
temperatures. Another approach by Zhu et al. in [66], approximates both the non-linear dependency
on current and temperature of the modeled resistances obtained from a 30 s HPPC test, where they
propose an electro-thermal model to predict power at low temperatures.

If V1 is used instead of the DC overpotential, the pulse technique is not required and the
charge-transfer resistance R1 = f (I) dependency on the current can be estimated by making certain
simplifications on the BVE, as analytically discussed in [65]. In this regards, assumptions are made on
the symmetry factor for both redox reaction rates depending the desired complexity level on the current
dependency approximation, i.e., either symmetric kinetics αanodic = αcathodic = 0.5, αanodic + αcathodic =

1 [67] are assumed i.e., the reaction processes are at the same speed, or the influence of voltage drop on
small currents is negligible according to Tafel equation and the cathodic part of the BVE could then be
neglected [68].

3.2.3. Diffusion Resistance

At frequencies between 5 Hz–5 mHz for the Li-ions under testing here, the diffusion processes
caused by the ion concentration at the location of the charge-transfer creates a diffusion overvoltage
which is generally described by Fick’s law [69], and is modeled here with the CPE Q2. The time-constant
that describe the diffusion processes depend on the electrode geometry, temperature and electrolyte
ion concentration [50].

Diffusion overvoltage is becoming more pronounced for high rated excitation currents with
periods more than ∆t = 5 s. It is the main reason for decreased capacity of the Li-ions over a full
discharge cycle at increased current rates and the proportionally increased Joule losses. This is an
effect of the ions that cannot be diffused fast enough in the place of charge-transfer and create a
high ion concentration c at the electrode-electrolyte interfaces which creates high overpotential V2

with the aforementioned results. Equation (7) describes this correlation where c0 is the equilibrium
concentration [28]

V2 =
R · T
n · F · ln(

c
c0
) (7)

The working principle of the EIS brings challenges in the identification of the slow time-constant
diffusion processes within liquid and solid [70], while a Warburg element may represent one out of
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three possible diffusion processes [50]. Other empirical approaches have proposed to model accurately
and temperature depending the diffusion resistance with adding a proportional to the square root of
time resistive element, dependent as well on the open circuit voltage VOC, instead of CPEs [71]. In
either case, excitation signals are applied to the Li-ion for several mHz to avoid close to DC excitations
and prevent changes over the SoC or exacerbated ageing effects. Addressing to this, authors in [72],
propose a method to extract the electrolyte and solid-state diffusion overpotential from the HPPC
pulse test for much lower frequencies. They performed it by suppling a 6min pulse and a 3h open load
resting period, subtracting the high-frequency contribution obtained from the EIS, to the relaxation
overvoltage after the current is switched off, and subsequently estimate the diffusion equivalent
resistance after the applied potential is released.

4. Review of the Most Frequently Used Identification Methods

The identification methods are divided in the literature into three main categories, according
to the characterization processes of cells that is followed. First, EIS group that characterizes the
equivalent impedance in the frequency domain. Second, impedance characterization generated from
the electrical standardized test and third, electrochemical models which can be the most accurate but
least computationally efficient for on-board applications [73]. in this work the third modeling approach
is not investigated, where the parameter identification methods for the rest are addressed by one of
the following categories:

• Analytical equations,
• Least-square-based methods,
• Heuristic optimization algorithms,
• Impedance spectroscopy methods and
• Kalman or adaptive filters and observer-based methods.

These methods are used for parameter identification and can be applied for on-board model-based
state estimation and parameter tracking. In Figure 9 the parameter identification approaches
are summarized.

Parameter identification methods

Analytical 

equations

Least square 

methods

Heuristic 

optimization

Electrical 

models in 

time domain

Frequency 

domain and 

BVE

Electro-

chemical 

models
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based

Least square 

methods

Kalman filter 

based

HPPC fitting EIS fitting XRD, EIS, 

SEM and 

other 

electro-

chemical 

testing to 

parameterize 

physic based 

models 

Empirical  model 

based methods

Figure 9. Parameter identification methods.



Energies 2019, 12, 4031 14 of 37

The empirical model-based methods that are obtained from experimental observations and
mathematical representations are discussed. Also, Table 4 gathers several references with the
aforementioned parameter identification methods.

4.1. Parameter Extraction with Analytical Equations

Modeling a Li-ion in the time domain (TD) uses the differential equations that describe the ECM
as in Equation (1). It is a straightforward mathematical approach that identifies the resistances and the
capacitances of the nth order ECM from the HPPC based on Equation (8).

Rn =
∆V|kj

Ik(1− e−
t|kj
τn )

, Cn =
τn

Rn

τn =
∆t|kj

logVj − logVk
, x|kj= xk − xj

(8)

where Rn,Cn and τn are lumped parameters of the selected nth order ECM obtained from HPPC at
the discrete pulse time of ∆t|kj . R0 is calculated similarly to the DR resistance (Equation (3)) for the
Ohmic region. Defining the starting and ending points j, k of the respective Ohmic and polarizations
areas is the main challenge. Waag et al. in [63] used —an application specific— linear approach of
the voltage response at a 10 s current excitation to decouple the Ohmic and the electrochemical to the
concentration polarization overpotential after a 5 s period. On the other side, it usually appears as
an arbitrary process, sample/time-dependent and defined from observations on the voltage pulse
behavior [74–77]. As a general rule, the concentration polarization voltage response reaches steady
state at approximately four to five-time constants ∆t = 5RC after switching off the current.

In [75] the time-domain DP is analyzed based on the power profile of a heavy-duty underground
mining load-haul-dump (LHD) loader with a 20 kW average power per cycle. A battery pack is
constructed with seven 40 Ah NMC cells in series and the DP is parameterized with TD analytical
equations. A mean absolute percentage error (MAPE) of less than is 0.2% is seen signifying the
applicability of the method for heavy-duty modules as well.

In Figure 10, the regions at the HPPC are chosen according to EIS, where Ohmic is considered
on the fhppc = 100 Hz sampling frequency as previously discussed (j = 1, k = 2), the activation and
concentration polarization regions are defined at the theoretically first sample of a fhppc/6 = 17 Hz
and a fhppc/1000 = 0.1 Hz sampling frequencies respectively, with the corresponding sampling points
at j = 2, 6 and k = 6, 1000 respectively. The 17 Hz value is as close as possible to the local minimum
frequency fmin of the semi-circle for both cells, which defines in the EIS impedance characterization,
the time-constant τ = 1/2π fmin of the semi-circle. The latter value of 0.1 Hz is the last point of the
HPPC 10sec pulse, which fall inside the low-frequency diffusion area of the EIS.
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Figure 10. Approximation of the time intervals for the polarization instances based on the frequency
domain EIS.

4.2. Parameter Extraction with Least-Square Methods

The second group of the parameter identification includes the least-square methods (LS) which are
based on non-linear curve fitting of the experimental to the modeling data set by minimizing the sum of
squared residuals. Several versions of LS methods are structured upon their methodology: the recursive
least-square (RLS) with or without forgetting factor to adapt their actual changes over the lifetime,
the weighted recursive least-square (WRLS) to weight recent data more than old, or the weighted
recursive least-quadratic-squares (WRLQS) and others can be found in [68,78–81]. Recursive LS
methods have shown fast-computing capability with high accuracy and low data storage requirements,
capable of surpassing the computational limitations for a BMS integration.

In this work, since the Ah-counting is proposed for SoC estimation and the cells are tested at the
BoL aiming to assess the efficiency of various parameterization methods, the trust-region-reflective
non-linear least-square algorithm is employed, which however is susceptible to divergence problems
by getting trapped to local minima when the initial values are not precisely defined [82,83].
A straightforward calculation based on the discrete TD equations is performed to set the initial
values of the R,C elements according to Equation (8). The rest values, are optimized by minimizing the
objective function as Equation (9):

Fobj =
∆t

∑
ti=1

(Vbatt,ti
−V

′
batt(ti))

2, i ∈ [1, s] (9)

where Vbatt,ti
is obtained from HPPC response and V

′
batt(ti) is the estimated value defined in

Equation (1) for a total s = 1000 samples. More details on the LS algorithm can be found in [84]
and for the current flow through the polarization resistance in [85].

In previous studies, NLS method is implemented to characterize the DP model impedance of a
A123 14 Ah LFP battery cell and to obtain the SoC with a proposed EKF [86]. Various high current
pulses are also implemented to assess the internal resistance’s behavior over a wide current range,
giving a max voltage RMSE < 12 mV with dynamic stress test (DST) profile. Wang et al. in [87] perform
another modeling comparison which reveals that the DP model characterized with NLS performs
better for SoC estimation with a combined EKF-Ah method, compared to the Thevenin or PNGV ECMs.
This model show a lower SoC estimation error validated with DST and constant current discharge
profiles with a voltage RMSE = 11 mV.
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Recursive LS methods are used to identify the 1st order impedance of a 940 mAh NMC Li-ion cell
over a certain cycling lifespan in [88]. The authors use a second-order EKF, which is designed for state
estimation and the model is validated with DST and federal urban driving schedule (FUDS) giving a
voltage mean relative error (MRE) lower than 2% for the BoL with an increasing trend over the end of
life at about 10%.

To cope with the slow change of the parameters that the RLS alone cannot instantaneously capture,
authors in [89] use an optimal forgetting factor that tends to ’forget’ the older values on the parameter
estimation and give to latest data more influence, usually to incorporate temperature and ageing effects
on the cells. In this regard, seven ECMs compete for the most accurate modeling approach, in terms
of voltage MRE and RMSE accuracy. The comparison is implemented based on a 10 Ah LFP battery
cell and the models are validated with DST and a FUDS showing the lowest absolute and RMS errors
for the DP model. The RLS with an optimal forgetting factor is also employed in [90] where the SoC
estimation is compared and validated for three different Li-ions. Also, here, the DP model is compared
with the Thevenin and is found to have lower voltage and SoC inaccuracies.

To further investigate the computational accuracy of the different LS methods on the Li-ion cells,
reference [91] proposed an RLS method that decouples the slow and high dynamic areas (for low
and higher ∆OCV/∆SoC respectively) of the OCV by employing linear low and high pass filters. A
better performance has been achieved compared to the conventional WRLS method. Following this
approach, authors in [81] investigate the accuracy of the DP model of an 18650 cylindrical NCA cell
based on a decoupled WRLS method. They separate the slow and fast dynamic area and the DP model
impedance is created based on the two different observations in time domain. It is seen that the model
shows a better performance compared to simple RLS-based method, whereas also, the benefit on the
SoC estimation accuracy with the DWRLS method is underlined, without any need for filtering or
observers which could potentially decrease the computational efficiency.

As a last remark, LS methods have been used in a multi-cell topology for determining the highest
impedance among the cells as well. This is achieved in [92] where the RLS method is used to obtain
the impedance and the OCV information of each cell and to determine the states and power capability
of a battery pack.

4.3. Parameter Extraction with Heuristic Optimization

An alternative approach on the identification methods that requires the problem’s convexity and
appears more suitable for high non-linear and discontinuous functions is based on the heuristic
algorithms [93]. Several algorithms have been proposed in the literature, depending on their
methodology: evolution-, physics- and swarm-based methods, which respectively include the genetic
algorithms (GA), simulated annealing algorithm (SA), particle swarm (PSO), ant colony (ACO),
firefly algorithm (FA), grey wolf (GWO), whale optimization algorithm (WOA) and the multi-verse
cosmology-based (MVO) optimizations. A comparative study for such methods on various Li-ion
ECMs is performed in [11], while characterizing a 32.5 Ah NMC pouch cell. The authors proposed
a relationship in the model-to-parameterization approach based on the model’s efficiency and the
algorithm’s computational time and accuracy. For the DP model, PSO, GA and then FA showed the
highest robustness, whereas PSO requires by far the lowest computation time to converge. It is also
the most accurate whereas authors suggest FA for higher-order ECMs due to its superior identification
capacity, lacking though on the computational time.

The heuristic algorithms have been used depending the study, mostly aiming on the ECM
comparison and assessment and not to the identification efficiency. The GA is used in [85] to analyze
for an LMO cells with five different ECMs. A DST is performed to estimate the voltage mean absolute
error (MAE) of the proposed models, where it is shown that the DP shows the lowest values. Also,
in [94] authors examine 12 ECMs of an NMC and LFP with low capacity cylindrical cells. The selected
models cover a wide range of ECMs from simple polynomial representation to enhanced self-correcting
(ESC) models with two and four states of low-pass filtering, and up to third order with or without
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hysteresis block. The parametrization of the proposed ECMs is implemented with a multi-swarm
particle swarm optimization (MPSO), another heuristic algorithm similar to PSO but modified to
improve its global search capability [95]. It is found that the Thevenin ECM with hysteresis (LFP)
and without (NMC) can provide the optimal results in terms of voltage ME and RMSE. Also, in [96],
authors assess the performance of GA parameterization method on 11 ECMs. The models are checked
for accuracy and robustness in terms of parameter fluctuations and inaccuracies of the SoC estimation.
The authors showed that increasing the number of equivalent models by more than two brings no
benefits as the complexity during parameterization increases along with the estimation error, whereas
the EKF cannot overcome this modeling weakness which results in the SoC error becoming increasingly
large when using a high-order RC model. Lastly, in [97], authors use a GA to investigate four different
modeling approaches of an LFP 10 Ah cell. A crude approximation of the LFP’s dynamics is made with
a mathematical combined model, a better performance is achieved with a 2nd order ECM, whereas a
single-particle model and a data-driven with support vector machine shown the best accuracy but
with significantly increased required computational time.

The GA has been preferred in this field of research where structural details of the GA algorithm
implementation can be found in [98–100]. Nevertheless, PSO compared to GA is faster since it involves
no mutation or crossover functions and usually outperforms GA for unconstrained non-linear problems
such as Li-ion ECMs [101]. It is being preferred for higher complexity studies such as in identification
of certain electrochemical parameters that can significantly change over ageing [102]. Other research
use hybrid GA-PSO [103], non-linear regression with PSO [104], and coevolutionary CPSO [105]
to enhance the optimization process on state and parameter estimation. The addressed challenges
with heuristic methods include the number of parameters that they have to optimize, the respective
computational time and memory requirement, the construction of a solid objective function and the
robustness of such probabilistic methods within a stable accuracy limit as the results are obtained
from a random population, generations and observations [106]. On the other hand they do not require
initialization of the parameters and multi-objective functions can be defined to enhance the accuracy
and the computational time on problems with several conflicting criteria such as temperature, current
rates, ageing etc. [107,108]. Hence in this work, GA and PSO are compared to assess the speed, the
robustness and the accuracy on two Li-ions with different characteristics. Since the experiments are
held in the BoL and 25 ◦C a single-objective approach is proposed as in [109]. According to literature
research, the optimization criterion to define the optimal value can be set with either the mean or
their square residual, or the RMS minimization. In this work, a brief comparison of several fitness
approaches has shown that the execution time inversely changes with their complexity. Increasing
the modeling accuracy has been the merit of selection in this study, and the objective function is
hence formulated as the minimization of the total absolute residuals of the fixed-length sampling data
sequence, similarly to [110,111].

4.4. Parameter Extraction with Impedance Spectroscopy

Despite the extra hardware testing requirement of the EIS-based models, they can give impedance
characterization with the physical meaning of the properties of the materials due to the equally
considered, wide frequency range applied to the cells. Compared to the limitation of the pulse current
method on the sampling rate and the corresponding frequencies that can be determined during the
fitting process [112], impedance results with EIS give analytical in-sight of the individual generated
resistances at specific states and temperatures, by relating frequency to the respective processes.

In [113], a hybrid characterization procedure is used to model the dynamic behavior of the
cell by combining information form the EIS and HPPC responses on SoC, temperature, and current
dependencies. The simulated behavior of the LFP 1.2 Ah prismatic cell is adapted according to the
BVE, by applying to the model correction factors generated from the differences between the simulated
and the experimental voltages, approach that is also examined in [114]. The proposed model achieved
a low relative error, tested with a dynamic pulse current and an application specific field-measured
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profile for frequency regulation purposes. A similar approach that uses EIS and pulse current excitation
takes place in [72]. The authors use the impedance spectra to investigate the high-frequency Ohmic,
charge-transfer and SEI resistances, while the low-frequency diffusion processes, the corresponding
resistances and the overpotentials are characterized by HPPC, as an attempt to overcome the EIS
challenges on modeling them. Hereafter, a static model is proposed with focus on the analysis and
identification of the most dominant loss mechanisms. In particular, in short pulses (time-constant in
range of seconds) overvoltages related to high-frequency components have major importance with
approximately 85% on the overall losses, whereas in longer periods (min or hours range) diffusion
overpotential is fully built up and equally restricts the performance of the cell. Further detailed analysis
on the conduction phenomena occurring in Li-ions and modeling approaches of the diffusions can be
found in [61,115].

Also, in [116], authors propose seven impedance-based ECMs with a current dependency
described by the BVE. The models are tested in a model-in-the-loop environment using real vehicle
data obtained in an EV prototype and current pulse tests. Temperature, calendar/cycle ageing as well
as C-rate dependences are investigated on the proposed models to assess the state of available power
capability of the cells at various SoCs. Results have shown a good voltage performance of the 3rd
order CPE model with its accuracy being slightly dropped for either aged or operating close to the
SoA limits.

Nevertheless, modeling with EIS raises practical challenges for on-board equipment integration
and performance at a multi-cell topology level, while the obtained impedance in this study works as a
benchmark to compare results acquired from the other numerical methods.

4.5. Parameter Extraction with Kalman Filters Based Techniques

A Kalman filter-based parameter identification has been used in [117] for a 1st order (R-R//C)
ECM to assess the modeling accuracy on state of available power, when the BVE non-linear
charge-transfer resistance on the current dependency is considered. The results shown a significant
improvement on the estimation accuracy compared to the case that charge-transfer resistance is linear
and the BVE is neglected. However, as highlighted in [48] assumption made on the constancy of
the symmetry factors and the exchange current density over the lifetime and temperature can affect
the accuracy estimation in the various conditions. Same authors in [10] incorporate the Arrhenius
equation to evaluate the KF accuracy on an LFP when temperature effects on the redox reactions at the
electrodes are considered signifying its importance.

Furthermore, Kalman filter methods can combine the parameter identification and the state
estimation resulting in a system identification approach. The linear barrier of the KF method is
surpassed with the Extended KF (EKF) [18], composed of first-order Taylor-series expansions that are
used to linearize the non-linear time-invariant Li-ion model. For this purpose dual (DKF) or joint (JKF)
Kalman filters may be used by either working in parallel and providing each other information, or by
enlarging the model matrices in order to establish higher reliability with the penalty of proportionally
increased computational time [118–122].

Nejad et al. [19], proposed a dual-EKF approach which combines state and weight filter for SoC
and parameter identification, respectively. Both filters can simultaneously operate and feed each
other to enhance stability and improve the accuracy. The filters are evaluated on ten ECMs from
simple combined model up to 2nd order ECM with hysteresis. The authors conclude that for NMC
cells the DP ECM is the optimal choice for ECM parametrization offering the best trade-off between
performance and complexity, with RMSE < 10 mV and SoC accuracy with less than RMSE < 1% under
various operation temperatures. Alternatively, the one-RC model with hysteresis can be a compromise
for chemistries with higher hysteresis effect, as in LFPs.
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Table 4. Comparison of several referenced works based on various electrical models and parameter
identification techniques.

Refs. Parameterization /SoC Covering Aspects Methodology Conclusion

A. Analytical equations (TD)

[75] CC Analytical time-domain
characterization of the DP

ECM.

A 40 Ah NMC cell is tested
in a 7s1p module design.

The model is validated on a
real-life heavy-duty

application profile and
found a voltage
MAPE 1 < 0.2%

B. Least-square methods (LS)

[89,90] CC/KF RLS with an optimal
forgetting factor to

characterize several ECMs.

The former compares 7
ECMs, assessed with DST 5

and FUDS 6 profiles and the
latter work compares 2
ECMS for 3 chemistries

with DDPT 7 and WLTC 8.

The DP models shows the
best performance for both

works with
RMSE 2 < 25 mV, and

MAE 3 < 10 mV,
respectively.

[86] KF An NLS technique is used
to characterize the DP ECM

of the battery cell.

A DST is performed for the
14 Ah LFP/C pouch cell.

Discussion on the resistance
behavior over high current
profiles and SoC estimation

with EKF.

An RMSE < 12 mV between
the estimated and the
measured voltage is

observed.

[81] CC The DP EMC is
characterized decoupled

WRLS method and
validated on a

motorway-drive data.

A commercial 3 Ah 18650
cylindrical cell is tested in
terms of SoC estimation

accuracy.

An RMSE < 10 mV with the
DWLS with better accuracy
on both parameter and SoC

identification.

C. Heuristic algorithms (GA/PSO)

[94] CC MPSO method to
parameterize the ECMs.

12 different ECMS are
compared for cylindrical

NMC and LFP cells.

A maximum
RMSE < 30 mV with a DST
and FUDS validation profile
is observed- lowest for one
ECM with hysteresis (LFP)

block.
[85] CC/KF GA method to parameterize

the five proposed ECMs for
an LMO battery module.

A DST is applied to assess
the accuracy of the models

with CC. A FUDS
validation profile the KF.

A MAE < 50 mV for the DP
model is obtained with CC.

[11] CC A comparative study based
on various heuristic
algorithms for nine

different ECMs.

A pouch 32.5 Ah NMC
battery cell is validated

with NEDC profile.

A relationship on the
model-to-algorithm

complexity is proposed.
PSO with an

RMSE < 25 mV
[96] KF A comparative study based

on GA of 11 different ECMs
and a proposed SoC

estimation.

A pouch 32.5 Ah NMC
battery cell is validated
with NEDC 9 profile.

The 2RC is the best among
all in terms of accuracy with

RMSE < 5 mV.

[97] CC SVM, DP, SPM and
combined model are

parameterized with GA.

An LFP 10 Ah cell is
validated with NEDC to

assess the complexity
versus accuracy.

Dual-Polarization order
ECM is found as a good

modeling trade-off.

D. Impedance spectroscopy (EIS)

[113] CC A hybrid procedure for 2nd
order CPE circuit is

developed from EIS and
HPPC tests.

A pulse test and a frequency
regulation validation profile

is used on a prismatic
LFP/C battery cell.

A max voltage relative error
<5% is observed for both

profiles.

[116] 10% Seven impedance-based
ECMs with RC and CPE

elements are characterized
by current dependency

based on BVE

NMC, LTO and LFP cells
are tested in regards to state

estimation.

The 3-CPE shows accurate
result with an

RMSE < 20 mV, but the
accuracy of the models is
highly dependent on the
operating conditions and

SoH.
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Table 4. Cont.

Refs. Parameterization /SoC Covering Aspects Methodology Conclusion

E. Other methods (KF-based)

[87] KF A three ECMs comparative
study (Thevenin, PNGV, and

DP) with an EKF-Ah SoC
estimation algorithm.

NMC/G pouch 35 Ah cell is
modeled and tested with a

CCD 10 and DST to estimate
the influence of each model’s

accuracy with the selected
SoC estimation.

Best case for RMSE < 20 mV
and RMSE < 15 mV for the

DP model under the CCD and
DST respectively

[19] KF A comparative study on ten
ECMs that are parameterized
with the dual-EKF technique.

LFP and NMC cells are
validated with the NEDC

profile. Focus laid on the state
estimation (SoC-SoP) with

erroneous initial conditions.

The DP model is chosen for
having the best performance

with less complexity when the
hysteresis of the cells can be

neglected with
RMSE < 10 mV.

Proposed
paper

CC A DP ECM is proposed and
characterized by analytical

equations (TD), LS and
heuristic optimization

techniques (GA and PSO).
Impedance behavior is

estimated and compared to
EIS.

A WLTC urban/suburban and
heavy-duty current profiles
are performed for LTO and

NMC battery cells. Discussion
of the Ohmic, total and

internal resistance behavior in
time and frequency.

A max RE 4 < 4% for all
techniques is observed. PSO

and NLS are optimal
identification methods.

Trade-off between accuracy,
robustness and computational

time set PSO as the best
approach.

1 MAPE: mean absolute percentage error. 2 RMSE: root mean square error. 3 MAE: mean absolute
error. 4 RE: relative error. 5 DST: dynamic stress test. 6 FUDS: federal urban driving schedule.
7 DDPT: dynamic discharge pulse test. 8 WLTC: worldwide harmonized light vehicles test cycle.
9 NEDC: new European driving cycle. 10 CCD: constant current discharge.

5. Results, Validations and Discussions

5.1. Resistance and Power Capability

5.1.1. Lower Time-Constant Resistances

Ion concentration at the electrode-electrolyte interface builds up as the applied current pulse
period is increased which creates further increment on the total resistance and the overpotential
between the operating and the open circuit voltage. For a short period, impedance of the cells is kept
low as the ion concentration and the diffusion overpotential are not quite developed. This -material
and temperature- dependent result is illustrated for both battery cells in Figure 11.
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Figure 11. Experimental current pulses and generated voltage responses for (a) LTO and (b) NMC
battery cells with fsample = 100 Hz.
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It is observed that regardless SoC, current amplitude/direction and pulse duration the LTO
produces relatively lower polarization overpotentials compared to NMC cell (around 3 mV for short
and around 7 mV for higher pulses considering measurement error of 1.5 mV, cells connectors and
cables are considered to have the same impedance). Nevertheless, for the LTO cell this polarization
drop refers to an approximately 50% contribution of the total 100 mV overpotential taking place for a
20 s pulse (at 3 C). For the same conditions but a current rate of 2 C, an approximately 30% contribution
on the overall 180 mV polarization is observed for the prismatic NMC. That means, this NMC cell has
significantly higher Ohmic, kinetics and mass transport limitations compared to the LTO at the 25 ◦C,
which makes the former more suitable for high-energy applications, whereas the latter might be more
efficient for high-power demanding applications.

If the Ohmic part is subtracted during the applied current, the effects of electrochemical
charge-transfer, double layer and diffusion in electrolyte and electrodes are observed without however
being possible to clearly distinguish them. Regarding this, the higher frequency processes can be
separated from the EIS whereas the overvoltage build-up due to slower processes, can be roughly
observed here, while the current is still flowing through the cells, or after removing the applied
potential and letting the batteries reach equilibrium, as proposed from Gantenbein et al. [72]. Diffusion
overpotential becomes more pronounced at decreased temperatures [50] or increased current rates [28].
On the contrary, despite the Li-ion’s chemical composition Ohmic resistance expresses the inherited
resistivity of the materials that hinders the charge-transferring and it is affected by SoC, temperature
and lifetime [67]. Hence, the irreversible Joule losses contribution of the Ohmic resistance is the same
regardless length of the pulse.

5.1.2. Total Resistances

The speed of the redox reactions which are taking place in the electrodes and convert chemical
to/from electrical energy, the corresponding electrode kinetics, the diffusion coefficient and the mass
transports define the power capability of the cells, whereas the applied current is an expression
that defines the speed of the reactions at a certain rate [123]. The power capability Ppulse|∆t, the total
resistance RDC and the corresponding overpotential ∆VDC are obtained from Equations (3) and (4) with
the assumption that both Ohmic and polarization processes are included in these results. As described
in Equation (6), the current exchange and the symmetry factors can be further obtained. The impedance
behaviors at the various current rates are plotted in Figure 12.
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Figure 12. Total resistance at 50% SoC for (a) LTO and (b) NMC. Total charge resistance at various SoC
for (c) LTO and (e) NMC. Generated exponential overvoltage for the RDC for (d) LTO and (f) NMC.
Pulse power capabilities of the cells at 25 ◦C, three different C-rates, SoCs and pulse lengths (g) LTO
and (h) NMC.

By increasing the pulse current rate for a certain period, the kinetics of the electrochemical
processes speed up due to increased temperature and results in a lower total resistance. Since the
Ohmic resistance remains constant, the instantaneous IR0 and the polarization overpotential between
operating and open circuit potential are proportionally increased to the applied current. For illustrative
reasons, the charge-discharge behavior is shown at 50% SoC in the 2D plots, whereas the charge is
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shown in the 3D plots over the various SoCs. It is observed that for 25 ◦C both cells show similar
dynamic characteristics for charge and discharge, which makes the assumption on the symmetrical
dependence on both anodic and cathodic branches of Equation (6) valid for these cells as well, while
low variations in the range of 0.2 mOhms are mostly affected by the increased pulse period. As stated
in [17] and also observed in similar LTO power capability studies [124] and in this work, the power
capability of storing during charge is higher than delivering during discharge for both cells, and the
difference increases proportionally to the current rate. For both chemistries difference lays in the
range of a few Watts for current rates up to 1 C, whereas it is highly increased for the LTO at 3 C/8 C
current with 25 Watts/85 Watts respectively, and for NMC at 2 C stays around 40 Watt. It can be
concluded that the dynamic behavior of the LTO changes for very high current rates, where for 8 C
Pcharge/Pdischarge = 1.23.

As the speed of the energy delivered is affected by the kinetics of the active materials and their
interface, it is not possible to obtain the same value at different time periods and applied currents.
The measured pulse power capabilities of the cells show that more energy can be transformed as the
current rates and their duration increase, which are proportional to the generated overvoltage and
diminish due to the total resistance (and the respective heat generation) increase. Comparing the two
cells, the lower resistance and overpotential, along with the higher power and current rate capability
makes the LTO more favorable for fast charging applications [13]. It should be noted here that a
proportional behavior of RDC to the Ppulse is observed which come against to what it is expected when
the temperature effect is considered. As seen in [19], total resistance has a reverse proportional behavior
with the temperature, as the kinetics and the diffusion coefficients are enhanced at such increase, which
consequently leads to an inverse behavior of the power. However, it is possibly explained due to the
fact that temperature has a greater effect on the total resistance (in the range of 10 mOhms for the LTO)
which can drop the power capability remarkably. On the other hand, impedance increase during a
pulse with a higher period is at a lower range and is not capable of dropping the power capability,
although it comes with the simultaneous increase in the irreversible Joule losses. Precisely, the LTO at
a 20 s pulse with a 3 C rate gives approximately 30 W more power than the same 2 s pulse, whereas the
respective losses are 6.8 W compared to 5.18 W. For NMC a 2 C pulse for 20 s gives 20 W more power
than the 2 s pulse, whereas at 50% SoC we have 14.4 W Joule loss compared to 11.3 W, respectively. On
the other hand, for the same power capability (e.g., 150 W) NMC generates approximately 2 times less
heat than LTO. Nonetheless, it is concluded that high-power pulses (duration and rate) applications are
not optimal for the NMC cell, where LTO is more favorable and capable of feeding up to 8 C charging
loads with 450 W and 35 W losses for 10 s at 50% SoC.

5.2. Current Profiles and Voltage Responses

The parameter identification of the cells in the time domain are fed to the dual-polarization ECM
and the models are assessed with two different load profiles, a WLTC and a HD which can be seen
in Figure 13a,b. The models take also initial SoC and temperature as input where they are set same
for all cases. It can be seen that the WLTC is divided into two parts, urban and suburban profiles
where compared to HD they are more aggressive during discharge, whereas HD has higher current
charging rates. In the same figure the measured and the modeled voltage responses are shown for both
profiles obtained for NLS method in this case. It can be observed that relative voltage error is below
3% in most cases whereas it is increased for the high discharge area of the suburban WLTC. For the
NMC, the relative error of the HD profile stays low throughout the full cycle, while the inherited lower
operational nominal voltage of the LTO is responsible for the higher relative error.

Other results from the parameter identifications are extracted in a similar way, whereas the
relative voltage error for all the methods stays below 4%.
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Figure 13. Characterization of LTO prismatic cell with least-square optimization at (a) WLTC and
(b) HD current profile. For the same approach, LTO and NMC at WLTC (c,e) and HD (d,f) profile
validation with the respective voltage relative errors in percentage.

5.3. Discussion of Methodology Robustness

This section includes a discussion of the robustness of the parameter identification methods. Since
the heuristic are based on random generations and are probabilistic approaches, they can converge to
the global minimum but within a range of accuracy. The robustness of the methods is investigated
over ten consequent times, and the relative errors as well the RMSEs are observed. Since the PSO
and the GA have shown similar robustness according to [11], and since the GA has been assessed in
various research, PSO is selected here to assess the robustness over ten-time repetitive approximations.
As seen in the same research, both algorithms need at least five consecutive re-identification of the
parameters to produce a reduplicate voltage RMSE with a probability of 99%. On the contrary, LS and
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TD do not decline from the estimation as they are derived from direct calculations and minimization
of the residuals [125].

Figure 14 shows the voltage relative error and RMSEs for the PSO for ten times. It is observed
that the variation of the former lays between 1% whereas the mean stays more or less the same for
both cells. It is observed however that the RMSEs can deviate up to 5 mV, whereas LTO shows lower
RMSE for the WLTC. NMC shows a lower mean and standard deviation for the HD profile which
results in the lower RMSE compared to the WLTC.
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Figure 14. Voltage relative error for WLTC and HD profiles for (a,b) LTO (c,d) NMC. RMSE of the
ten-time consecutive PSO for WLTC (e) and HD (f) for both cells.

Robustness is seen in terms of performing the optimization algorithms for the several repetitions
and estimating the deviation of the mean RMSE (MRMSE) to the best fit (BRMSE) as explained
in Equation (10).

r = 1− MRMSE − BRMSE
BRMSE

(10)
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Lowest voltage error for WLTC is obtained at PSO#8 and #9, for HD PSO#4 and #9 for the LTO
and NMC. A 0.9 robustness means that the parameterization method deviates in a voltage MRMSE
approximately 10% from the BRMSE.

The influence of the robustness depends on the accuracy of the parameter identification.
The Ohmic resistance is used to compare the influence of the discrepancies, as shown in Figure 15a,b.
The variations in the approximations are seen in the lower and upper SoC range where the Ohmic
resistances varies approximately ∆R0 = 0.01 mOhms. Regarding only the deviation of the R0 it can
be considered negligible, with aprx. 2% total variation. However, deviations do exist in the other
parameters where total impedance, time constants and modeling Vbatt can be affected in a higher
degree. To estimate this effect, the mean internal resistance Rint = R0 + R1 + R2 is calculated over the
whole SoC, for each iteration of the PSO, and its deviation from the measured impedance of the EIS is
assessed. The accumulative variations of Rint are up to 8% as it seen in Figure 15c,d for both cells.

To assess the accuracy of the PSO against the robustness the iterations are plotted from lowest
to highest impedance deviation, and the respective RMSEs of the model are plotted accordingly in
Figure 15e–h. However, a correlation between the lowest value of the mean internal resistance to the
RMSE cannot be made, as we observe that the lowest RMSE obtained for PSO#8 for LTO under WLTC
and PSO#4 under HD profile, whereas the best fit for this cell is obtained for PSO#1. On the other
hand, the best fit of the NMC gives the lowest RMSEs for both WLTC and HD (PSO#9), which however
is considered to be an arbitrary result. On the other hand, a proportional correlation between the RMSE
and the increase of the internal resistance is observed from the curves for both cells when applying
a linear regression. The positive rate of change λ denotes the degree of expected inaccuracy as the
internal resistance identification trips away from the actual.

5.4. Parameter Identification Comprehensive Assessment

Taking on account the analysis performed so far, the comparison for the off-line parameter
identification and the DP ECM modeling can be assessed based on the real-life loading profiles, in
terms of accuracy, robustness and computational effort. First, comparisons on accuracy are performed
based on the best RMSE obtained from the heuristic algorithms, the analytical approach and the
least-square methods. Secondly, robustness is addressed with the deviation of the mean to the best
RMSE, considering the minimum number of consecutive repetitions for achieving at least 99% model
accuracy [11]. Thirdly, computational efficiency is recording the elapsed identification time of each
method. In Figure 16, the relative errors of the DP ECM are shown for the two current profiles in
(a) for LTO and (b) for NMC. All the methods but the TD and the GA for the HD can give absolute
maximum below 4% errors for the LTO, whereas for the NMC accuracy stays above 97%. The models
show good behavior for both profiles with mean relative errors below 1%. The RMSEs are shown in
the subfigure (g), where the superiority in modeling accuracy of the PSO over the GA is clear for all
cases. Analytical approaches are simple but difficult to catch accurately the impedance deviations
and can result in higher inaccuracies. LS-based methods, on the other hand, are accurate and can be
compared to the PSO approach. In (c) to (f) the normalized values of the identification methods are
presented where 1 denotes the worst and 5 the best. It is seen that the WLTC loading on the LTO cell
gives higher accuracy than the HD, where the inverse behavior is observed for the NMC. Robustness
and computational time are not affected by the loading profile and remain the same. The scores of
identification methods for all cases are shown analytically in Table 5. It is indicated that PSO has the
best performance for both cells for WLTC, whereas LS is better for HD and NMC. If the robustness is
considered, PSO still remains more accurate in this work whereas the computational efficiency lack is
a factor of 2 from LS.
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Figure 15. Ohmic resistance R0 behavior for the different modeling approaches for (a) LTO and
(b) NMC battery cells. Rint variation over the various PSO iterations for LTO (c) and NMC (d). Set from
lowest to highest deviation from EIS. Linear regression between RMSE and PSO approach oriented
according to Rint evolution for (e,f) LTO, (g,h) NMC.
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Figure 16. Statistical comparisons of the results for all the methods. Relative errors for (a) LTO and
(b) NMC battery cells. For heuristic methods BRMSE are taken into account and for subfigures (c–f) the
mean RE is considered. In (g) the voltage RMSE of both cells is shown.
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Table 5. Comparison of the methods.

Li-ion Method Mean RE (%) Max. RE (%) Min. RE (%) Std. Deviation Comp. Time (s) Robustness (p.u) RMSE (mV)

HD WLTC HD WLTC HD WLTC HD WLTC on HPPC profile HD WLTC HD WLTC

LTO

TD 0.622 0.714 3.295 1.787 4.717 3.871 0.808 0.939 <10 1 1 22.12 26.79
LS 0.573 0.621 3.067 2.085 3.861 3.364 0.745 0.742 <60 1 1 20.22 18.56
GA 0.635 0.634 3.982 3.444 4.899 2.086 0.805 0.791 <1200 0.90 0.87 24.27 * 21.49 *
PSO 0.558 0.522 2.984 3.293 3.290 2.431 0.657 0.531 <100 0.92 0.90 17.05 * 15.02 *

NMC

TD 0.577 0.755 2.576 1.793 3.147 2.053 0.803 0.800 <10 1 1 31.26 31.69
LS 0.275 0.621 1.188 2.425 1.341 0.895 0.358 0.777 <60 1 1 14.61 26.2
GA 0.312 0.477 2.418 2.023 1.640 1.180 0.430 0.557 <900 0.94 0.94 17.02 * 20.87 *
PSO 0.291 0.459 1.447 1.710 1.455 1.451 0.383 0.511 <100 0.95 0.95 15.01 * 18.72 *

* For the heuristic parameter identification the fit with the lowest voltage RMSE is selected.
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6. Conclusions

Parameter identification methods are investigated for the DP ECM of two different anode Li-ion
cells. Their nominal capacity is 23 Ah and 43 Ah respectively and they are optimal for either power
or energy electromotive applications. A comprehensive research is first performed to investigate the
identification methods that are used for off-line modeling. Electrical characterization methods are
presented and physical investigation on the parameterization of the ECM based on frequency domain
measurements is performed.

As a first step, Li-ions are experimentally tested under standardized procedures to assess
their voltage to current response as well as impedance and discharge capacity capability at 25 ◦C.
Furthermore, the hysteresis effect in both cells showed a highest value of 20 mV at the mid-SoCs,
whereas it stays less than 30 mV in the high non-linear areas. For this reason, it is neglected from the
dynamic modeling, for which a DP ECM approach has been followed due to its high accuracy shown
in several research with an additional low computational effort. A straightforward coulomb counting
method is used to estimate the SoC in the ECM, where the initial SoC has been manually adapted.

Additionally, three main parameterization methods are compared in discrete-time, with analytical
equations (TD), least-square-based methods (LS) and heuristic optimization (GA and PSO).
The generated models are validated with WLTC urban and suburban profiles, and a heavy-duty
dynamic profile. The assessment is implemented in terms of modeling accuracy, robustness
and required computational time. The modeling accuracy and the computational time are direct
measurements between the simulated and the experimental voltage responses in terms of mean
voltage RE and RMSE in one hand, and convergence of the parameterization method on the other.
As for the robustness, it is estimated based on a 10-times repetition of the methods, where the respective
variation of the ECM parameters (with focus on the Ohmic and the internal resistances) and their effect
on the MREs and RMSEs are compared and showed a good agreement with most cases been less than
approximately 3% and a voltage RMSE lower than 30 mV. The TD model showed the less accuracy
in both. The PSO showed the lowest voltage deviations for the LTO at both loading profiles whereas
for the NMC it has the best accuracy for the WLTC but not for HD. As the modeling accuracy and
the robustness are concerned, PSO is the optimal approach for off-line identification. Nevertheless,
work on the algorithm should be performed to reduce computational (and memory) requirements to
apply the method in microcontroller and online identification.

Lastly, the Ohmic resistance obtained from the impedance spectra with EIS technique at either
cross-section with real axis and at 100 Hz sampling frequency, showed a good relationship to the LS
method and the heuristic algorithms. However, a comparison of the total internal resistance obtained
from the PSO showed that a 0.01 mOhms variation on the Ohmic (1% to 2% depending the chemistry)
and up to an accumulative 8% variation on the total internal resistance can be occur. However, the
increasing RMSE of the method showed a positive correlation with that internal resistance increase
and it is chemistry dependent.

Next steps may include dynamic modeling and comparisons with frequency domain on the
same merits to further incorporate the physical behavior of the cells. Also, online adaptation of the
PSO and the LS for state estimations investigated for several cell chemistries. A universal algorithm
for parameter identification and state estimation despite Li-ion technology is also under research.
Regarding the DP ECM, thermal and ageing branches are generated to thoroughly characterize the
cells which are going to be presented in future work.
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