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Abstract: Challenges in the coordination between the transmission system operator (TSO) and the
distribution system operator (DSO) have risen continuously with the integration of distributed energy
resources (DER). These technologies have the possibility to provide reactive power support for
system operators. Considering the Portuguese reactive power policy as an example of the regulatory
framework, this paper proposes a methodology for proactive reactive power management of the DSO
using the renewable energy sources (RES) considering forecast uncertainty available in the distribution
system. The proposed method applies a stochastic sequential alternative current (AC)-optimal power
flow (SOPF) that returns trustworthy solutions for the DSO and optimizes the use of reactive power
between the DSO and DER. The method is validated using a 37-bus distribution network considering
real data. Results proved that the method improves the reactive power management by taking
advantage of the full capabilities of the DER and by reducing the injection of reactive power by the
TSO in the distribution network and, therefore, reducing losses.

Keywords: decision-aid; distributed energy resources; distribution system operator; reactive power
management; uncertainty

1. Introduction

The implementation of renewable energy sources (RES) and the deployment of distributed
energy resources (DER) have created a trend of evolution in the distribution network that requires the
adaptation of the conventional practices to handle the behavior that is related to the RES [1]. These new
procedures are compelled to have a more proactive role by the distribution system operator (DSO),
controlling and/or contracting DER to deal with voltage and line/transformers congestions problems [2].
Incorporating forecast in the system operation of the DSO, as well as creating contract services with
the DER, where the power flexibility is enabled to change the expected operating point, can contribute
to resolve the network operational problems [3]. The power flexibility may be divided for active or
reactive power, which can assist in the network problems at a certain cost. This will ensure that the
DSO can maintain the ability of granting network access to consumers and producers, with power
quality, safety, and stability.

The transmission system operator (TSO) and DSO coordination may be a path to explore as DSO
finds here the opportunity to coordinate a reactive power service with the TSO. This coordination
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intends to avoid voltage and/or congestion problems in the transmission system assuring that the
distribution continues working without problems. Depending on the policies and agreements, this
service can be remunerated given an extra advantage to the DERs. In fact, preventive reactive power
management models are emerging as a potential solution for improving the coordination between the
DSO and the TSO, while ensuring proper levels of voltage control in the system, as shown in [4].

There are many literature examples regarding approaches on reactive power management with
fixed active power injection as in [5,6]. These, however, do not consider networks with strong RES
penetration. A stochastic approach for ensuring voltage stability is proposed in [7]. The method considers
a two-stage stochastic model with multi-objectives, such as minimization of power losses, operation,
and management costs and wind power costs. Similarly, [8] proposes a stochastic model for corrective
voltage control under severe contingencies, considering the uncertainty of wind power producer and
consumer demand. A coordinated active and reactive optimization of an active distribution network
considering energy storage systems and relaxed optimal power flow is proposed in [9]. It proposes a
multi-objective function for minimizing power losses, operation costs and voltage deviation, however,
the reactive power provision to assist in the TSO/DSO coordination is disregarded.

Most of these works disregard the full behavior of the distribution grid, introducing approximations
and linearized versions of the full alternative current optimal power flow (AC-OPF). This can lead
to sub-optimal solutions that may be infeasible. Thus, [10] proposes a voltage sensitivity analysis
for adjusting the reactive power setpoint of DER in order to improve voltage stability and provide
reactive power to upper levels of the network. Complementarily, [11] models an adaptive control of
the reactive power setpoints of wind farms to assist the TSO/DSO coordination, minimizing the losses
while ensuring proper level of reactive power provision. Still, none of these works can schedule in
advance adequate reactive power setpoints for DER, considering the uncertain and variable behavior
of RES.

In this scope, the main objective of this paper is to propose a stochastic reactive power management
model to assist the DSO in the reactive power management ahead of the operating hour. The main
contributions of this paper are threefold:

• To design a two-stage stochastic reactive power management model considering a full AC-OPF.
It has the purpose of aiding the decision-making of the DSO under the uncertain and variable
behavior of RES connected in the distribution network;

• To propose a reactive power service provided by the DSO to the TSO in advance of the operating
hour. This service can be used by the TSO in the transmission system management, defining a
reactive power operation in the TSO/DSO boundary substations. This can help the TSO in different
services like the voltage control and congestion management in the transmission system;

• Take into account the Portuguese reactive power policy on distribution grids, assessing the
behavior and applicability of the proposed model.

This paper is structured as follows: Section 2 describes the Portuguese reactive power policies
and introduces the sequential AC-optimal power flow (SOPF) tool model; Section 3 presents the
mathematical formulation of the stochastic approach for reactive power management; Section 4
validates the proposed model based on a 37-bus distribution network with real data; Section 5 presents
the most important conclusions.

2. Reactive Power Policies

2.1. Portuguese Reactive Power Policy

The Portuguese reactive power policy for the distribution network is based on the total inductive
and capacitive reactive power that a generating unit produces in an hour [12]. The reactive power is
dependent on the active power injected by the generating unit in the form of tan φ. The reactive power
must have a deviation of less than +/−5% from the defined tan φ.



Energies 2019, 12, 4028 3 of 15

Each day is divided into four periods: peak, full hours, valley and super valley. Yet, reactive
power has only two classifications: peak and off-peak. There are two different schemes referring to the
generating units. The ordinary scheme encompasses conventional units, whereas the special scheme,
RES, industrial and urban waste, cogeneration and micro-producers. The ordinary scheme is limited
to tan φ = 0.4 for the peak period and tan φ = 0 for off-peak hours.

For the special scheme, Table 1 illustrates the relationship between active and reactive power.

Table 1. Reactive power policy for the special scheme [12].

Voltage Level tan φ

Peak Period Off-Peak Period

High Voltage 0 0
Medium Voltage (P > 6MW) 0 0
Medium Voltage (P ≤ 6MW) 0.3 0

Low Voltage 0 0

Similarly, there is a contractual agreement between the TSO and the DSO whereby the upstream
connection will have a profile of tan φ as regulated for the special scheme. This means that between
seven–22 h the tan φ should be within −0.3 and 0.3 and in the remaining hours tan φ = 0, with a
deviation of less than +/−5% of the tan φ. Failure to do so results in a penalty applied to the entity
responsible for the failure. This penalty is modelled in steps of tan φ infringement for peak hours.
Equation (1) illustrates the current 3 steps violation of the limits penalties [13,14]:

0.3 ≤ tanφ < 0.4,
0.4 ≤ tanφ < 0.5,

0.5 ≤ tanφ
(1)

with penalty factor applied to the reference price of reactive power of 0.33, 1 and 3 for each respective step.

2.2. Proactive Reactive Power Management

Though DERs are applying current reactive power policies, the distribution system does not
take full advantage of DER’s technical capabilities (especially RES) or consider their variable and
intermittent behavior. More precisely, the uncertain DERs production is often overlooked, and their
reactive power contribution is as well. This may lead to difficulties in reactive power management,
especially in distribution networks with a high level of DER integration. In this scope, the SOPF tool
proposed in this paper utilizes a two-stage stochastic reactive power management model (presented
in Figure 1) to account for the uncertainty and variability related to the DER. The model has been
developed for single period simulation using information from a representative set of scenarios for the
DER. Stochastic optimization is used as a means to handle the uncertainty of DER. Such a probabilistic
approach is integrated into the reactive power management problem through scenarios of active power
generation of the DER. As DER’s active power generation is uncertain, reactive power can be as well.
Still, reactive power generation curve depends on the level of active power generation, and therefore,
the reactive power can be constrained by tan φ.
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and downward reactive power flexibility. The upward reactive power flexibility stands for increasing 
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power flexibility stands for the opposite of the upward reactive power flexibility. Note that the 
reactive power flexibility should be contracted to the distributed generation to maintain the reactive 
power profile agreed with the TSO while outputting the optimal scheduling of the static equipment 
(capacitor banks and transformers with on-load tap changer – OLTC) managed by the DSO. 

Nevertheless, the SOPF tool is scalable to consider distribution networks with hundreds of 
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network reconfiguration (which is a common tool for distribution grid management) but can be 
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3.1. Objective Function 
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Figure 1. Two-stage optimization model embedded in the sequential AC-optimal power flow (SOPF)
tool [15].

In the first stage, the DSO will contract in a day-ahead operating stage, the upward and downward
reactive power flexibility that will be used during the operating stage. This represents the maximum
reactive power fluctuation of the expected reactive operating point of the DER.

As for the operating stage, the second stage of the model, the DSO will activate the reactive power
flexibility needed to overcome the system requirements, respecting the reactive power policy and the
technical characteristics of the network (i.e., voltage and thermal limits).

The SOPF tool will then have as its output the amount and type of flexibility the DSO may need
to operate the distribution system in expectation, ahead of the operating hour, outputting the upward
and downward reactive power flexibility. The upward reactive power flexibility stands for increasing
reactive power injection or decreasing reactive power absorbing in the grid, while downward reactive
power flexibility stands for the opposite of the upward reactive power flexibility. Note that the reactive
power flexibility should be contracted to the distributed generation to maintain the reactive power
profile agreed with the TSO while outputting the optimal scheduling of the static equipment (capacitor
banks and transformers with on-load tap changer—OLTC) managed by the DSO.

Nevertheless, the SOPF tool is scalable to consider distribution networks with hundreds of nodes,
DER, and scenarios at the expense of computational effort. In addition, it does not consider network
reconfiguration (which is a common tool for distribution grid management) but can be adapted to
include it. Still, this would lead to increased complexity of the tool, hence the computational effort.
Therefore, a tradeoff between system complexity and computational effort must be performed to ensure
reliable solutions within the DSO operating window for day-ahead simulation.

3. Mathematical Formulation

The proactive reactive power management accounts for the uncertainty factor of renewable energy
sources (RES). By utilizing the policies mentioned in Section 3.1, the proposed tool aims to manage
the reactive power of the distribution network and to provide reactive power control according the
TSO needs.

3.1. Objective Function

The objective Function (2) aims to minimize the operating costs of the DSO to maintain the
distribution grid operating within the limits. It includes the costs related to each of the stages, in
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which the first stage (FDA) comprises the here-and-now decisions and the second-stage (FRT) the
wait-and-see decisions.

min FDA + FRT (2)

where FDA and FRT are described as in (3) and (4).

FDA =

NG∑
g=1

(
CQ,UP

DER(g)
RQ,UP

DER(g)
+ CQ,DW

DER(g)
RQ,DW

DER(g)

)
+ pQ,UP

TSO RLXQ,UP
TSO + pQ,DW

TSO RLXQ,DW
TSO (3)

FRT =
Ω∑
ω=1

π
(ω)


NG∑
g=1

(
Cact

DER(g)

(
rQ,UP

DER(g,ω)
− rQ,DW

DER(g,ω)

)
+ Ccut

DER(g)P
cut
DER(g,ω)

)
+ prlx, act

TSO

(
rlxQ,UP

TSO(ω)
− rlxQ,DW

TSO(ω)

)
+ pExtra

TSO(ω)
rlxExtra

TSO(ω)
+

NL∑
l=1

(
CDR
(l) PDR

(l,ω)

)
+

NCB∑
cb=1

Nlevels∑
lv=1

CCB(cb)ZCB(cb,ω,lv) +
NTRF∑
tr f=1

Nlevels∑
lv=1

CTRF(tr f )ZTRF(tr f ,ω,lv)

 (4)

FDA represents the first-stage decision of contracting reactive power flexibility. Here, DER provides
cost inflicted, upward and downward reactive power flexibility. It is mathematically presumed that the
TSO request of reactive power may be needed to be relaxed (represented by RLX). This mathematical
relaxation proposes the possibility of a certain deviation of the requested tan φ value in the upstream
connection and is affected by its own penalty. The tan φ value is dependent on agreements between
the TSO and the DSO.

Concerning FRT, it portrays the real-time operating costs of the distribution network. By the
cost of an activation price, generators may change their reactive power operating point. In cases of
higher need of flexibility (when the DSO cannot entirely provide the service), a different relaxation is
activated through the binary variable rlxExtra allowing the DSO to provide part of the TSO request.
By applying an even greater cost, it is possible to curtail the generators active power for relaxing
situations where active power is creating problems in the distribution network. Demand response can
also be contemplated to decrease the active power consumption, which in turn will reduce the reactive
power consumption, under even greater penalties for this relaxation. These alternatives options will
ensure that DSO prioritizes DER and consumers over providing the reactive power service to the TSO.

Capacitor banks and the transformers OLTC ability are also considered with a cost related to the
lifetime degradation of the equipment by changing the tap set point [16].

3.2. First-Stage Constraints

The first-stage constraints, seen in (5) and (6), represent the DER flexibility for upward and
downward reactive power. Similar constraints are applied to the mathematical relaxation of the
external supplier flexibility.

RQ,UP,Min
DER(g)

≤ RQ,UP
DER(g)

≤ RQ,UP,Max
DER(g)

, ∀g ∈ {1, . . . , NG} (5)

RQ,DW,Min
DER(g)

≤ RQ,DW
DER(g)

≤ RQ,DW,Max
DER(g)

, ∀g ∈ {1, . . . , NG} (6)

3.3. Second-Stage Constraints

The second-stage constraints refer to the operating stage constraints that are introduced by the
uncertainty of RES production. DER active power relates to its operating point for the energy schedule.
This value is assumed as fixed by the conditional mean forecast for active power generation. This leads
to the active power curtailment in the operating stage to be limited by:

Pcut
DER(g,ω) ≤ Pop

DER(g)
+ ∆PDER(g,ω), ∀g ∈ {1, . . . , NG},∀ω ∈ {1, . . . , Ω} (7)

The difference of active power between the realization scenario and the expected forecast in each
scenario is represented as ∆P. The active power flowing from the upstream connection (TSO) is limited
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by the contracted boundaries between the TSO and the DSO and by the capacity of the transformers at
the substation interconnection. Active power can be injected/absorbed by the TSO as seen in (8).

− PMax
TSO(ω)

≤ PTSO(ω)
≤ PMax

TSO(ω)
, ∀ω ∈ {1, . . . , Ω} (8)

In addition, the second-stage also includes the bounds of the second-stage variables and the
non-anticaptivity constraints, given by:

rQ,UP
DER(g,ω)

≤ RQ,UP
DER(g)

, ∀g ∈ {1, . . . , NG},∀ω ∈ {1, . . . , Ω} (9)

rQ,DW
DER(g,ω)

≤ RQ,DW
DER(g)

, ∀g ∈ {1, . . . , NG},∀ω ∈ {1, . . . , Ω} (10)

Constraints (9) and (10) are also applied to the mathematical relaxation represented through
external suppliers.

Each DER has the possibility to provide inductive or capacitive reactive power under the operation
limits defined in the Portuguese regulation.

−

(
Pop

DER(g)
+ ∆PDER(g,ω)

− Pcut
DER(g,ω)

)
tanφ ≤ Qop

DER(g)
+ rQ,UP

DER(g,ω)
− rQ,DW

DER(g,ω)
≤

(
Pop

DER(g)
+ ∆PDER(g,ω)

− Pcut
DER(g,ω)

)
tanφ,

∀g ∈ {1, . . . , NG},∀ω ∈ {1, . . . , Ω}
(11)

In (12) and (13), it is represented the upward/downward activation of the mathematical relaxation
for the TSO. This relaxation considers a high penalty because the main goal is to provide the service for
the TSO request.

rlxQ,UP
TSO(ω)

≤ RLXQ,UP
TSO , ∀ω ∈ {1, . . . , Ω} (12)

rlxQ,DW
TSO(ω)

≤ RLXQ,DW
TSO , ∀ω ∈ {1, . . . , Ω} (13)

As a last resource to find a solution for congestion and voltage problems, demand response is
used by the DSO, being constrained by:

PDR
L(l,ω) ≤ PL(l), ∀l ∈ {1, . . . , NL},∀ω ∈ {1, . . . , Ω} (14)

Then, the actual reactive power consumption of consumer l is given by:

QL(l,ω) =
(
PL(l) − PDR

L(l,ω)

)
tanφ, ∀l ∈ {1, . . . , NL},∀ω ∈ {1, . . . , Ω} (15)

where tan φ can be settled at 0.3 as assumed in [17].
Regarding the capacitor banks and transformers with OLTC, these devices are owned by the DSO

and located in the substation. This means that the DSO has the knowledge of their characteristics.
Capacitor banks are used to provide reactive power being modelled by levels of reactive power as in
(16) and (17).

QCB(cb,ω,lv) = Qlevels
CB(cb,lv)XCB(cb,ω,lv), ∀cb ∈ {1, . . . , NCB}, ∀ω ∈ {1, . . . , Ω},∀lv ∈ {1, . . . , Nlevels} (16)

Nlevels∑
lv=1

XCB(cb,ω,lv) = 1, ∀cb ∈ {1, . . . , NCB},∀ω ∈ {1, . . . , Ω} (17)

The cost of changing the tap of the capacitor banks is multiplied by ZCB, which represents the
difference between the tap selection in the present period with the previous one, which is constrained by:

Xt−1
CB(cb,ω,lv) −XCB(cb,ω,lv) ≤ ZCB(cb,ω,lv), (18)
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XCB(cb,ω,lv) −Xt−1
CB(cb,ω,lv) ≤ ZCB(cb,ω,lv), ∀cb ∈ {1, . . . , NCB},∀ω ∈ {1, . . . , Ω},∀lv ∈ {1, . . . , Nlevels} (19)

The transformers with OLTC constraints for voltage control are modelled as:

∆VTRF(tr f ,ω,lv) = Vlevels
TRF(tr f ,lv)XTRF(tr f ,ω,lv), ∀ω ∈ {1, . . . , Ω},∀tr f ∈ {1, . . . , NTRF},∀lv ∈ {1, . . . , Nlevels} (20)

Nlevels∑
lv=1

XTRF(tr f ,ω,lv) = 1, ∀ω ∈ {1, . . . , Ω},∀tr f ∈ {1, . . . , NTRF} (21)

Vsb(ω) = Vre f
sb(ω)

+

Nlevels∑
lv=1

∆VTRF(tr f ,ω,lv), ∀ω ∈ {1, . . . , Ω},∀tr f ∈ {1, . . . , NTRF} (22)

where ∆VTRF represents the voltage level to be activated in the transformer by the DSO. Vlevels
TRF is a

parameter representative of all possible taps of the transformer, and XTRF is the binary variable for
selection of a unique tap level. Vre f

sb is the reference of voltage magnitude at the substation before
the use of OLTC ability by the transformer, while the final voltage value at the substation is denoted
by Vsb. In addition, the cost for changing the tap of the transformer is included in the objective
function (5), where ZTRF is the linearization of the absolute function, as the capacitor banks. Thus, the
constraints are:

Xt−1
TRF(tr f ,ω,lv) −XTRF(tr f ,ω,lv) ≤ ZTRF(tr f ,ω,lv), (23)

XTRF(tr f ,ω,lv) −Xt−1
TRF(tr f ,ω,lv) ≤ ZTRF(tr f ,ω,lv),∀tr f ∈ {1, . . . , NTRF},∀ω ∈ {1, . . . , Ω},∀lv ∈ {1, . . . , Nlevels} (24)

Moreover, an AC-OPF is used to model the power flow in the distribution network. Therefore,
the active power balance in each bus is modelled as:

NG∑
g=1

(
Pop, i

DER(g)
+ ∆Pi

DER(g,ω)
− Pcut

DER(g,ω)

)
+P i

TSO +
NL∑
l=1

(
PDR, i

L(l,ω)
− Pi

L(l)

)
= GiiV2

i(ω) + Vi(ω)

∑
j∈TLi

V j(ω)

(
Gi j cosθi j(ω) + Bi j sinθi j(ω)

)
,

∀i ∈ {1, . . . , NBus},∀ω ∈ {1, . . . , Ω},θi j(ω) = θi(ω) − θ j(ω)

(25)

Additionally, the reactive power balance is given by:

NG∑
g=1

(
Qop, i

DER(g,ω)
+ rQ,UP, i

DER(g,ω)
− rQ,DW, i

DER(g,ω)

)
−

NL∑
l=1

Qi
L(l,s) +

NCB∑
cb=1

Nlevels∑
lv=1

Qi
CB(cb,ω,lv) + Qop, i

TSO(ω)
+ rlxQ,UP, i

TSO(ω)
− rlxQ,DW, i

TSO(ω)
+ rlxExtra, i

TSO(ω)
=

Vi(ω)

∑
j∈TLi

V j(ω)

(
Gi j sinθi j(ω) − Bi j cosθi j(ω)

)
− BiiV2

i(ω), ∀i ∈ {1, ..., NBus},∀ω ∈ {1, ..., Ω},θi j(ω) = θi(ω) − θ j(ω)

(26)

There is also the consideration that the energy flowing through the distribution lines has a thermal
limit that should not be exceeded, being limited as in (27) and (28).∣∣∣∣Vi(ω)

[
yi jVi j(ω) + ysh (i)Vi(ω)

]∗∣∣∣∣ ≤ SMax
TL , Vi j(ω) = Vi(ω) −V j(ω), ∀i, j ∈ {1, . . . , NBus},∀ω ∈ {1, . . . , Ω}, i , j (27)

∣∣∣∣V j(ω)

[
yi jV ji(ω) + ysh ( j)V j(ω)

]∗∣∣∣∣ ≤ SMax
TL , V ji(ω) = V j(ω) −Vi(ω), ∀i, j ∈ {1, . . . , NBus},∀ω ∈ {1, . . . , Ω}, i , j (28)

Voltage magnitude must stay between the limits established by the DSO, assuming the slack bus
voltage magnitude as fixed.

Vi
Min ≤ Vi(ω) ≤ Vi

Max, ∀ω ∈ {1, . . . , Ω} (29)

4. Case Study

This section presents the case study used to apply and test the model developed for the Portuguese
reactive management policies. The simulation has been carried out with MATLAB and GAMS tools.
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4.1. 37-Bus Distribution System

The present case study is based on a 37-bus distribution network (originally presented in [18])
that was adapted to support five DER in the form of three combined heat and power (CHPs) and two
wind turbines, as one can see in Figure 2.
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There is also the consideration that the energy flowing through the distribution lines has a 
thermal limit that should not be exceeded, being limited as in (27) and (28). 
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Voltage magnitude must stay between the limits established by the DSO, assuming the slack bus 
voltage magnitude as fixed. 
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4. Case Study 

This section presents the case study used to apply and test the model developed for the 
Portuguese reactive management policies. The simulation has been carried out with MATLAB and 
GAMS tools. 

4.1. 37-Bus Distribution System 

The present case study is based on a 37-bus distribution network (originally presented in [18]) 
that was adapted to support five DER in the form of three combined heat and power (CHPs) and two 
wind turbines, as one can see in Figure 2. 
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The distribution network is connected to a high voltage network through two power transformers
of 10 MVA each. It also possesses 22 consumption points that represent 1908 consumers (1850 residential
consumers, two industrial consumers, 50 commercial stores, and six service buildings) [18], with the
consumption characteristics and profile being adopted from [19]. The total active and reactive power
consumption in the network is summarized in Table 2.

There are two transformers and two capacitor banks being considered in the network. More
precisely, the transformers have OLTC ability with a maximum voltage deviation of 0.1 p.u. In addition,
the capacitor banks also have steps with a total capacity of reactive power production of 5.4 MVAr
(one capacitor bank with 4.5MVAr and the other with 0.9 MVAr). The cost reflecting the use of the
transformers and capacitor banks (with the OLTC ability that reduces the equipment lifetime) is
determined by [16]. It is assumed that both types of equipment are owned and managed by the DSO.

The network is composed of different DER. More precisely, three CHP units and two wind turbines
which can provide reactive power flexibility, accordingly to their technical limits.

It is assumed that the DER active power generation should be fully absorbed by the network,
following the standard regulation. Therefore, Table 3 shows the generic characteristics of the DER,
including the expected operating point (e.g., wind power forecast).

The DER characteristics, as well as the cost for upward and downward reactive power flexibility,
are given in Table 4.
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Table 2. Active and reactive power consumption characteristics.

Load.Bus
Active Power Consumption (kW) Reactive Power Consumption (kVAr)

Min Mean Max Min Mean Max

1 3 373.2 677.9 1190.5 112.0 203.4 357.2
2 4 206.1 591.2 1015.6 61.8 177.4 304.7
3 6 88.4 599.0 1029.8 26.5 179.7 308.9
4 7 394.7 716.9 1259.1 118.4 215.1 377.7
5 9 539.0 761.8 1089.0 161.7 228.5 326.7
6 10 298.7 636.6 1040.9 89.6 191.0 312.3
7 12 323.0 586.5 1030.1 96.9 176.0 309.0
8 14 387.0 1110.4 1907.4 116.1 325.4 567.1
9 16 745.6 1589.1 2598.3 223.7 425.6 779.5
10 18 509.7 720.3 1029.8 152.9 169.7 308.9
11 20 88.4 599.0 1029.8 26.5 152.1 308.9
12 21 373.2 677.9 1190.5 112.0 190.9 357.2
13 23 365.1 778.1 1272.3 109.5 208.4 381.7
14 24 539.0 761.8 1089.0 161.7 179.5 326.7
15 26 323.0 586.5 1030.1 96.9 165.1 309.0
16 28 178.3 511.6 878.8 53.5 149.9 261.3
17 29 74.4 503.8 866.2 22.3 128.0 259.9
18 31 314.0 570.2 1001.4 94.2 160.5 300.4
19 32 290.4 618.9 1011.9 87.1 165.8 303.6
20 34 93.5 633.4 1089.0 28.1 160.9 326.7
21 36 217.9 625.3 1074.1 65.4 183.2 319.3
22 37 323.0 586.5 1030.1 96.9 165.1 309.0

Table 3. General characteristics and operating point for distributed energy resources (DER).

DER Number of Units Total Installed Power
Operating Point Pop (MW)

Min Mean Max

CHP 3 2.5 (MVA) 1.0 1.15 1.5
Wind 2 20 (MVA) 11.31 14.01 15.34

Transmission system operator (TSO) 1 20 (MVA) - - -

Table 4. DER reactive power costs.

DER
Upward Cost Cup (m.u./kVAr) Downward Cost Cdw (m.u./kVAr)

Min Mean Max Min Mean Max

CHP 0.02 0.04 0.06 0.02 0.04 0.06
Wind 0.02 0.025 0.03 0.02 0.025 0.03
TSO 1 1 1 1 1 1

RESs are modelled through stochastic variables. Thus, upward and downward reactive power
flexibility is constrained by their technical limits. In [20,21] can be found the scenarios used to model
the uncertainty of wind power forecast. A set of 10 scenarios were extracted for each wind generator.
In this case study, the standard reactive power policy of the DER is subjected to the Portuguese
regulation, following Table 1.

Regarding the upstream connection, it must be established the tan φ agreed between the TSO
and the DSO for the substation of interconnection. In this case, it has been considered that the tan φ
varies throughout the day according to the regulation established in [12]. More precisely, the TSO
must provide a tan φ of 0 with +/−5% of deviation between 22:00 and the 07:00. In the remaining
period, the tan φ is expected to be 0.3 with +/−5% deviation. Note that the tan φ can vary from these
values, taking into account specific agreement between the DSO and the TSO for a specific substation
of interconnection. The case study was constructed assuming that active power from DER can be
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greater or less than the load on the network. Thus, the TSO can either inject or absorb active power
depending on the realization of wind generation over time.

4.2. Results

The tool will attempt, by using capacitor banks, transformers with OLTC and DER, to contract
optimal reactive power flexibility and with this, meet the desired reactive power profile defined by
the DSO.

It is important to note that active power production in the DERs is fixed according to the previous
forecast of the energy dispatched for each hour. Wind power plants have a forecast point determined
for the next 24 h along with 10 possible hourly scenarios, as in Figure 3.
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Using wind active power as an input and considering the flexibility limits, the expected reactive
power production operation is determined by the tool for each operation hour point. The tan φ of both
wind power plants is kept within the +/−5% range in every scenario. Figure 4 shows the evolution of
tan φ overtime for the wind power plant 1.
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Figure 5 depicts the tan φ profile at the substation. As was predicted, the tan φ values are as close
as possible to 0.3 between 7–22 h and a value of 0 for tan φ for the other hours, for every scenario, to
guaranty that no penalties to be applied to the DSO. DERs reactive power generation, the capacitor
banks and the transformers with OLTC ability have an important role in securing this result.
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Figure 6 shows the reactive power production of capacitor bank 1. The level of reactive power
varies according to the DSO needs. For periods between 22:00 and 07:00, the level of reactive power
production is high, reaching the maximum production in some periods. During the day, the reactive
power production of the capacitor bank comes to zero, since the TSO is injecting a significant amount
of reactive power which is sufficient to support the system. It is also worth mentioning that the
step position does not change more than four times per day, which reduces equipment degradation
over time.Energies 2019, 12, x FOR PEER REVIEW 11 of 14 
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Figure 6. Reactive power production of capacitor bank 1 throughout 24 h.

Capacitor bank 2 follows the same behavior as capacitor bank 1, as can been seen in Figure 7.
In fact, as capacitor bank 2 is much smaller than capacitor bank 1, the capacitor bank 2 is often used to
complement the reactive power between steps of the capacitor bank 1.
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As with the capacitor banks, OLTC tap changes are reduced, even maintaining the same position
throughout the 24 h. It is noteworthy that as the optimization considers the day-ahead forecast point,
it leads to the modification of the OLTC tap hourly positions (Figure 8). Note that both transformers
present the same behavior as presented in Figure 8.
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5. Conclusions

This work proposes a new tool to be used by the DSO in reactive power management, exploiting
DER flexibility. It explores the use of a two-stage stochastic model that manages the uncertainty of wind
power producers. With this tool, TSO reactive power requirements can be provided by contracting the
service to the DSO, which may be an alternative to investments in reactive power control equipment in
the transmission network. Simulations were done for a 37-bus distribution network, whose results
demonstrate the feasibility of the proposed tool. The selection of the DER that could provide reactive
power flexibility, under the different operation conditions introduced, was proven and the service was
provided to the TSO.
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Nomenclature

Parameters
∆P Power deviation in each scenario
B Imaginary part in admittance matrix
C Cost
G Real part in admittance matrix
N Number of unit resources
p Penalty for external supplier’s flexibility
y Series admittance of line that connects two buses
ysh Shunt admittance of line that connects two buses
Variables
θ Voltage angle
P Active power
Q Reactive power
r Reactive power flexibility used in the operating stage
rlx Reactive power relaxation in the operating stage
R Reactive power flexibility contracted at day-ahead stage
RLX Reactive power relaxation at day-ahead stage
S Apparent power
V Voltage magnitude
V Voltage in polar form
Vsb Voltage at slack bus
∆V Voltage level activated by the DSO in the transformer
X Binary variable
Z Auxiliary variable for absolute function linearization
Subscripts
ω Index of scenarios
cb Index of capacitor bank units
CB Capacitor bank abbreviation
g Index of generators units
i, j Bus index
l Index of load consumers
L Load consumers abbreviation
lv Index of levels (tap changing) for capacitor banks and transformers
TSO Transmission system operator
t Time index
tr f Index of transformer units
TRF Transformer abbreviation
Superscripts
act Activation cost of resources in real-time stage
cut Generation curtailment
Max Maximum limit
Min Minimum limit
op Operating point of the power resource
Q, DW Downward reactive power flexibility
Q, UP Upward reactive power flexibility
DR Demand response of consumer l
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