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Abstract: The angle of attack (AoA) is the key parameter when extracting the aerodynamic polar
from the rotating blade sections of a wind turbine. However, the determination of AoA is not
straightforward using computational fluid dynamics (CFD) or measurement. Since the incoming
streamlines are bent because of the complex inductions of the rotor, discrepancies exist between
various existing determination methods, especially in the tip region. In the present study, flow
characteristics in the region near wind turbine blades are analyzed in detail using CFD results of flows
past the NREL UAE Phase VI rotor. It is found that the local flow determining AOA changes rapidly
in the vicinity of the blade. Based on this finding, the concepts of effective AoA as well as nominal
AoA are introduced, leading to a new method of AOA determination. The new method has 5 steps:
(1) Find the distributed vortices on the blade surface; (2) select two monitoring points per cross-section
close to the aerodynamic center on both pressure and suction sides with an equal distance from
the rotor plane; (3) subtract the blade self-induction from the velocity at each monitoring point; (4)
average the velocity of the two monitoring points obtained in Step 3; (5) determine the AoA using
the velocity obtained in Step 4. Since the monitoring points for the first time can be set very close to
the aerodynamic center, leading to an excellent estimation of AoA. The aerodynamic polar extracted
through determination of the effective AoA exhibits a consistent regularity for both the mid-board
and tip sections, which has never been obtained by the existing determination methods.

Keywords: wind turbine; aerodynamics; angle of attack; blade element momentum; downwash;
computational fluid dynamics

1. Introduction

Wind energy has become an important and growing source of electric power. CO2 emission
reduction targets and rapidly falling costs per kilowatt-hour have made wind energy the priority
option for new power generating capacity in many places of the world. The country with the largest
new and total wind power capacities is China (23 GW and 211 GW in 2018, respectively [1]). The region
with the highest proportion of wind power in electricity consumption is Europe. In 2018, wind energy
covered an estimated 14% of the EU’s annual electricity consumption and a much higher share of
40.8% was achieved in its Member State Denmark [2]. The utilization of wind energy is expected to
grow steadily in the future [1], though as a natural energy it still has some unfavorable factors such as
unstable output and its related demand for control [3,4].

The great achievements of wind power were driven by the continuous improvement of wind turbine
technologies, among which the aerodynamics [5–7] is primary. Accurate aerodynamic computation is

Energies 2019, 12, 4012; doi:10.3390/en12204012 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-7472-6360
https://orcid.org/0000-0001-6233-2367
https://orcid.org/0000-0002-2238-9497
http://www.mdpi.com/1996-1073/12/20/4012?type=check_update&version=1
http://dx.doi.org/10.3390/en12204012
http://www.mdpi.com/journal/energies


Energies 2019, 12, 4012 2 of 19

essential for the design of advanced wind turbines with high power efficiency and low structural loads.
There are mainly three general methods in wind turbine aerodynamic computation: the blade-element
momentum (BEM) theory [8–10], the vortex wake theory (VWT) [11,12], and the computational fluid
dynamics (CFD) [13,14]. CFD is the most general one with a minimum of hypotheses, giving the
most complete flow information in the whole simulation field. On the other hand, it is the most
computationally expensive method. It is meaningful to relate the results of CFD to BEM theory or
VWT and validate some key issues such as interference factors [15], tip loss [16,17], rotational effect [18],
etc. Many of these investigations highly depend on the determination of the angle of attack (AoA).
For example, researchers have to know the AoA in order to compare the lift and drag of a blade section
in CFD with those in the BEM theory. However, the determination of AoA in CFD is not straightforward.

Several methods have been introduced for determining AoA using CFD or experimental data.
These can be divided into three categories: inverse BEM or VWT, averaging technique (AT), and
self-induction subtraction (SIS).

Inverse BEM was developed and used by Snel et al. [19], Bruining et al. [20], Laino et al. [21],
Lindenburg [22], and Bak et al. [23], applying the equations of BEM theory to solve the AoA with
given forces on blade sections. Inverse VWT was developed by Sant et al. [24,25] and Bretton et al. [26],
in which the bound circulation of a free-wake vortex model is computed with section forces by the
Kutta–Joukowski law, and AoA is consequently determined from the converged wake structure.
An advantage of inverse BEM/VWT is its simplicity: it is easy to convert the normal BEM/VWT code
into an inverse one. Nevertheless, the accuracy is restricted to the reliability of BEM/VWT method itself.

The AT method determines AoA by averaging the velocity at multiple locations. Hansen et al. [27]
and Johansen et al. [28] performed an annular average along certain rings upstream and downstream
of the rotor plane. This is usually called the azimuthal average technical (AAT). The average of
Jost et al. [29] is along a symmetric, closed line (usually a circle) around the rotor blade. Rahimi et al. [30]
used three monitoring points along the chord length on each side of the rotor. The above two ways
of averaging are called the line AT and 3-point AT, respectively. The main function of various types
of AT is the same: to cancel out the blade self-induction and estimate the required velocity in rotor
plane. Inspired by the idea of cancelling out, Herráez et al. [31] employed only one monitoring point
in the rotor plane for each cross-section. The point is located on the bisectrix of the angle between
two arbitrary blades where the influence of the self-induction of each blade is cancelled out by the
other blades.

Instead of cancelling out blade self-induction, SIS developed by Shen et al. [32,33] directly subtracts
self-induction from the velocity of a monitoring point in front of the blade. The Biot–Savart law is
used to compute self-induction from the bound circulation. The bound circulation is simplified to a
concentrated vortex in [32], which only requires section forces as an input, but leads to a shortcoming
that the monitoring point must be kept at a certain distance from the leading edge of the blade. As an
improvement, the bound circulation is represented by distributed vortices in [33], which requires the
pressure distribution over blade sections as an input. In this situation, the monitoring point can be
chosen closer to the blade and a distance between 0.5c to 2.0c (c is the chord length) is recommended.
For the sake of simplicity, the technique using a concentrated vortex [32] is hereinafter referred to as
SIS1 and that using distributed vortices [33] is referred to as SIS2.

The above methods have played significant roles in the research of wind turbine aerodynamics.
The accuracy of BEM method was improved by using the so-called three-dimensional (3-D) lift and drag
coefficients extracted through the determined AoA. Such kinds of work were made by Yang et al. [34,35]
using SIS1, Schneider et al. [36] using inverse BEM as well as AAT, and Syed Ahmed Kabir et al. [37]
using inverse BEM. There exists several other applications with AoA determination, such as improving
the actuator line/Navier–Stokes (AL/NS) simulation (Wimshurst et al. [38]), investigating stall delay
as well as dynamic stall (Zhu et al. [18]), discussing unsteady phenomena under yawed conditions
(Elgammi et al. [39] and Wen et al. [40]), and analyzing the measurements of a wind turbine in the field
(Wu et al. [41]). As a key parameter, accurate determination of AoA is of superior importance.
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However, discrepancies between the methods were observed by many researchers. In the IEA
Task 29 project [42], several methods were attempted to determine the AoA and the corresponding
aerodynamic polar of blade sections, including inverse BEM, inverse VWT, and SIS1, but they resulted
in remarkable difference (greater than 25%) in lift coefficient for some cases. Guntur et al. [43] observed
a discrepancy between inverse BEM and AAT even in the mid-board sections, and attributed it to the
effect of trailing vortices. Schneider et al. [36] found that the AoA determined by AAT produced a
lower tangential force than the CFD values. Rahimi et al. [30] implemented four different methods of
inverse BEM, AAT, 3-point AT, and SIS1. In their results, AAT and SIS1 lead to about 15% lower axial
interference factor. Jost et al. [29] analyzed several AT and SIS methods, pointing out that the different
considerations of trailing vortices lead to the discrepancies in the tip region. A recent comprehensive
evaluation of different methods, including inverse BEM, AAT, line AT, 3-point AT, SIS1, and SIS2,
was made by Rahimi et al. [44] on two different 10 MW reference wind turbines. The results are
consistent with each other in the mid-board area but discrepancies arise and increase as approaching
the tip. In addition, the chosen locations of monitoring points of AT methods were found to be a
significant influence on the resulting induced velocity. The above investigations indicate that a deeper
understanding of the determination of AoA is still necessary, especially for the tip region.

The present study presents a new method of AoA determination using the CFD velocity field. It
combines the advantages of SIS2 and AT methods and determines the effective AoA by five steps: (1)
Find the distributed vortices on the blade surface; (2) select two monitoring points per cross-section
close to the aerodynamic center on both pressure and suction sides with an equal distance; (3) subtract
the blade self-induction from the velocity at the monitoring points; (4) average the velocity obtained in
Step 3; (5) determine the AoA using the velocity obtained in Step 4. In addition to the new method
itself, the innovation of this study lies in the following items: (a) Based on an analysis of the induction
variation in the vicinity of a rotor blade, the definitions of effective AoA and nominal AoA are proposed;
(b) effective AoA is found to be different from nominal AoA in the tip region, which to some extent
explains the observed discrepancies between the existing methods; (c) the lift and drag coefficients
extracted through the effective AoA are largely consistent with those of the 2-D airfoil for both the
mid-board and tip sections, which has never been obtained by the existing AT or SIS methods.

The CFD results used in the present study are from the simulations of the NREL UAE Phase
VI rotor [45] solving the Reynolds averaged Navier–Stokes (RANS) equations using the k-ω SST
turbulence model. The detailed computational settings and validations can be found in [13].

The paper is organized as follows. In Section 2, an analysis of AoA is made and the concepts of
effective AoA and nominal AoA are introduced. In Section 3, the method of computing self-induction
is derived. In Section 4, the velocity field after self-induction subtraction is analyzed. In Section 5,
the effective AoA is determined by averaging the velocity on two monitoring points adjacent to the
aerodynamic center. In Section 6, a comparison is performed between the determined effective AoA
and nominal AoA, and the aerodynamic coefficients extracted through them are compared. In Section 7,
conclusions of the present study are given.

2. Definitions of Effective AoA and Nominal AoA

The classic definition of AoA for a two-dimensional (2-D) airfoil is the angle between the chord
line of the airfoil and the undisturbed uniform inflow. The direction of the undisturbed inflow can
be obtained by setting a monitoring point far away from the airfoil where the self-induction of the
airfoil is negligible. If we have to define the AoA using a monitoring point close to the airfoil, the
self-induction at the monitoring point must be subtracted from the measured velocity. In the present
paper, self-induction is defined as the velocity induced by the bound circulation of an airfoil/wing/blade.

For a fixed blade with a finite span, an additional induction generated by the tip and root vortices
(as well as the trailing vortices before rolling up into the tip and root vortices) arises, which is called
tip-root-induction in the present paper. Accordingly, there are two kinds of AoA definition: the
geometric AoA and the effective AoA. The geometric AoA is the angle between the local chord and
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the undisturbed inflow, while the effective AoA is defined by the inflow with tip-root-induction
included. The difference between the geometric AoA and the effective AoA of a blade section is an
angle determined by the downwash because of the tip-root-induction. It is clear that the effective AoA
varies along the wingspan, since the strength of downwash changes at different wing sections.

The inflow experienced by a blade section of a rotor is more complex than described above since
the tip and root vortices become helical and there are three kinds of induction. The first induction,
which is the azimuthally uniform part of the tip-root induction, corresponds to the induced velocity in
which the rotor is simplified to a theoretical disc with an infinite number of blades. It is hereinafter
referred to as disc-induction. The second is the blade self-induction. The third is the azimuthally
non-uniform part of the tip-root induction, which leads to tip/root loss and is hereinafter referred to
as 3D-induction because of its 3-D nature. The disc-induction leads to a continuous increase of the
axial interference factor a as well as the tangential inference factor a′ in the axial direction, causing
bended streamlines shown in Figure 1a. In lifting line theory, the most reasonable definition of AoA in
this situation should employ the velocity at the aerodynamic center (point C in Figure 1) of the blade
section. In practice, however, it is impossible to detect any velocity at the aerodynamic center since it is
inside the blade (that is, outside the flow field). As an alternative choice, a monitoring point (point P in
Figure 1) in the rotor plane can be set in front of the blade (along the azimuthal direction). The velocity
of point P could be regarded to be equal to that of point C (supposing there is a theoretical permeable
flow), if the self-induction illustrated in Figure 1b and the downwash (due to 3D-induction) illustrated
in Figure 1c were excluded, according to the azimuthally uniform assumption of BEM theory.Energies 2019, 12, x FOR PEER REVIEW 5 of 21 
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Figure 1. Different kinds of inductions in the flattened section of a certain radial location: (a) Bent
streamlines because of disc-induction; (b) self-induction; (c) downwash because of 3D-induction.

Let us think about the effects of the three inductions to the aerodynamic center. The disc-induction
and 3D-induction make realistic contributions to the (theoretical) velocity of the aerodynamic center,
while the self-induction makes no such a contribution because the aerodynamic center is exactly
the center of the bound vortex. Therefore, excluding the self-induction is always necessary for any
monitoring point away from the aerodynamic center, but excluding the 3D-induction leads to a different
physical meaning of the determined AoA. In the present paper, after the self-induction is subtracted, the
AoA defined by the velocity in a certain front of a blade section (where the 3D-induction is negligible)
is called the nominal AoA, while the AoA defined at the aerodynamic center is called the effective AoA.

The existing methods of AoA determination lead to AoA with different physical meanings.
The inverse BEM (with a tip / root loss correction) or inverse VWT method determines the velocity at
the blade axis (which usually is very close to, even coincident with, the aerodynamic center), leading to
an estimation of effective AoA. The AAT method estimates the annularly averaged velocity in the rotor
plane, which significantly weakens the effect of 3D-induction and thus results in an AoA close to the
nominal AoA. The line AT and 3-point AT methods attempt to estimate the velocity of the aerodynamic
center but their monitoring points have to be kept within a certain distance (usually about 1 chord
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length) from the aerodynamic center, leading to a blend of effective AoA and nominal AoA. The SIS1
and SIS2 methods employ a monitoring point in front of the blade where the 3D-induction is small and
thus results in a nominal AoA.

The methods as well as their corresponding kinds of determined AoA are listed in Table 1. It is
obvious that different methods should be employed for different purposes, depending on which kind
of AoA is required. For the blade sections of mid-board, the effect of 3D-induction is usually small and
thus the nominal AoA and the effective AoA tend to be consistent.

Table 1. List of the angle of attack (AoA) determination methods and their corresponding kinds of AoA.

Method AoA Method AoA

Inverse BEM [19–23] Effective 3-point AT [30] Blended
Inverse VWT [24–26] Effective SIS1 [32] Nominal

AAT [27,28] Nominal SIS2 [33] Nominal
Line AT [29] Blended

3. Method of Computing Self-Induction

3.1. Representing Airfoil by Distributed Vortices

According to the Kutta–Joukowski law, the lift of an airfoil in a potential flow can be related to a
bound circulation of the airfoil by

L = ρV∞Γ (1)

where L is lift, ρ is air density, V∞ is inflow speed, and Γ is the circulation of a concentrated vortex
which typically is located at the quarter chord point of the airfoil. The concentrated vortex of an
airfoil at a positive AoA is illustrated in Figure 2. The circulation is defined as positive when the
induced velocity of the vortex is clockwise in the present paper, meaning that the illustrated circulation
is positive and leads to a positive lift according to Equation (1). A shortcoming of representing the

airfoil by a concentrated vortex is that the induced velocity of the vortex, e.g.
→
v
′

at a point P(x,y) in
Figure 2, is different from that of the airfoil entity in the near field, because of the ignorance of the
airfoil’s geometry.
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Figure 2. Illustration of the concentrated vortex of an airfoil.

Another choice is to properly distribute vortices over the airfoil, as illustrated in Figure 3a.
The vortex distribution needs to meet two requirements. First, the sum of the circulations of the
distributed vortices should be equal to the circulation of the concentrated vortex,

Γ =
n∑

k=1

γk (2)
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where γk is the circulation of the kth vortex, and n is the total number of the distributed vortices.
Second, at any point P(x,y), the velocity induced by the distributed vortices should be consistent with
that induced by the airfoil entity,

→
v
′

vortices(x, y) =
→
v
′

air f oil(x, y) (3)
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The above two conditions will be met only whenγk is determined by the actual velocity distribution
over the airfoil.

In order to determine γk, the airfoil surface is divided into n small segments, each corresponding
to one of the distributed vortices. Figure 3b illustrates the viscous boundary-layer flow on the kth small
segment. The definition of circulation leads to

γk =

∫ B

A

→
v · d

→
s +

∫ C

B

→
v · d

→
s +

∫ D

C

→
v · d

→
s +

∫ A

D

→
v · d

→
s (4)

where d
→
s is a microelement along the clockwise and closed circuit A-B-C-D-A, and

→
v is the

corresponding local velocity. The segment BC is located on the edge of the boundary-layer. According
to the boundary-layer theory [46], the velocity along DA (on the wall) is zero, and the velocity on AB
or CD is almost perpendicular to the segment itself. As a result, the integrations along the segments
AB, CD, and DA are zero, and the equation becomes

γk =

∫ C

B

→
v · d

→
s ≈

→
v k ·

→

l k (5)

where
→
v k is the averaged velocity on BC, and

→

l k is a vector pointing from B to C with
∣∣∣∣∣→l k

∣∣∣∣∣ = BC = AD

Although the velocity at any location in the flow field can be obtained from CFD simulations, |
→
v k|

is difficult to be directly determined because the thickness of boundary-layer varies along the airfoil
surface. Instead of calculating the thickness of boundary layer, Shen et al. [33] suggested determining
vk from the local pressure by applying the Bernoulli equation. For an airfoil with fully attached flow,
the viscous effect is substantially limited within the boundary-layer that is usually very thin. Therefore,
the Bernoulli equation can be regarded as valid outside the boundary-layer, giving the relation between
the velocity and pressure,

p∞ +
1
2
ρV2
∞ = pk +

1
2
ρ
∣∣∣∣→v k

∣∣∣∣2 (6)

or ∣∣∣∣→v k

∣∣∣∣ =
√

V2
∞ −

2(pk − p∞)
ρ

(7)

where pk is the pressure at the location of the kth vortex, which can be taken from the airfoil surface
since pressure is almost unchanged across the boundary-layer.
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The circulation of the kth vortex, γk, can now be determined by Equations (5) and (7). The filaments
of the distributed vortices can be regarded infinitely long in the direction perpendicular to the plane
of the airfoil, since the concept of airfoil is 2-D. The induced velocity at any point P(x,y) can then be
computed by the following formula according to the Biot–Savart law for infinitely long vortex filaments,

→
v
′

vortices(x, y) =
n∑

k=1

γk

2π
∣∣∣∣→r k

∣∣∣∣2
(
→
e ×

→
r k

)
(8)

where
→
r k is the vector pointing from the kth vortex to point P(x, y), and

→
e is the unit vector in the

direction of the vortex (perpendicular to the airfoil plane and points inside in Figure 2.
The velocity field around the airfoil can now be reproduced by the distributed vortices, through a

simple summation of
→
v vortices(x, y) =

→

V∞ +
→
v
′

vortices(x, y) (9)

In order to evaluate the method introduced above,
∣∣∣∣→v ′air f oil

∣∣∣∣/V∞ is compared with
∣∣∣∣→v ′air f oil

∣∣∣∣/V∞

in Figure 4, where
∣∣∣∣→v ′air f oil

∣∣∣∣ is the induced velocity of the airfoil entity,

→
v
′

air f oil(x, y) =
→
v (x, y) −

→

V∞ (10)

in which
→
v (x, y) is the velocity at point P(x,y), obtained from CFD in the present paper. As shown

in Figure 4, the two contour maps look largely similar to each other. There is no difference observed
except in a slender region of the viscous wake originated from the trailing edge. The vortices give a
result with no viscous wake because of the potential assumption.Energies 2019, 12, x FOR PEER REVIEW 8 of 21 
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Figure 4. Contours of dimensionless-induced velocity: (a) Induced by the airfoil entity,
∣∣∣∣→v ′air f oil

∣∣∣∣/V∞;

(b) induced by the distributed vortices,
∣∣∣∣→v ′vortices

∣∣∣∣/V∞ (Airfoil S809, α = 6◦, Reynolds number =

1× 106).

A relative error can further be defined as

δ =

∣∣∣∣→v ′vortices −
→
v
′

air f oil

∣∣∣∣
V∞

× 100% (11)

which is contoured in Figure 5. It is observed that: (1) The relative error is generally small in the flow
domain, and can be considered negligible (δ < 0.5%) beyond a certain distance from the airfoil; (2) the
error is negligible in the region close to the front half of the upper surface of the airfoil; (3) the error
increases as approaching the trailing edge, but is almost less than 5% except in the viscous wake.
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Figure 5. Contours of relative error (Airfoil S809, α = 6◦, Reynolds number = 1 × 106).

In general, the results shown in Figures 4 and 5 indicate a good representation of the airfoil entity
by the distributed vortices.

3.2. Representing Blade by Distributed Vortices

As in the airfoil case, a blade can also be represented by bound vortices distributed over its
surface. Part of a rotor blade is illustrated in Figure 6 where the surface is divided into small faces.
Supposing that the pressure distributions of the two neighboring blade sections (Section 1 and Section
2 in Figure 6) are known, the bound vortices between the two sections can be determined.Energies 2019, 12, x FOR PEER REVIEW 10 of 21 
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Figure 6. Illustration of the vortex at a small face of blade surface: the faces are intentionally enlarged
in order to be displayed clearly.

Let us consider a small face ABCD in Figure 6, which is indexed as the kth face in the next
derivation. Points A and B are located at the equal dimensionless locations on their respective sections,
as well as points C and D. The vortex of this face can be simplified to a line vortex starting from point
P1(x1,y1,z1) and ending at point P2(x2,y2,z2) if the lengths of AD and BC are small enough. Points P1
and P2 are the midpoints of AD and BC, respectively.

In a rotational reference frame fixed with the rotor, supposing the pressure values of points P1
and P2 are known, the Bernoulli equation leads to

p∞ +
1
2
ρ
(
V2
∞ +ω2r2

S1

)
= p1 +

1
2
ρ
∣∣∣∣→v 1

∣∣∣∣2 (12)

p∞ +
1
2
ρ
(
V2
∞ +ω2r2

S2

)
= p2 +

1
2
ρ
∣∣∣∣→v 2

∣∣∣∣2 (13)
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resulting in ∣∣∣∣→v 1

∣∣∣∣ =
√

V2
∞ +ω2r2

S1 −
2(p1 − p∞)

ρ
(14)

∣∣∣∣→v 2

∣∣∣∣ =
√

V2
∞ +ω2r2

S2 −
2(p2 − p∞)

ρ
(15)

where
→
v 1 and

→
v 2 are the velocity of points P1 and P2, respectively; p1 and p2 are the pressure of the

points P1 and P2, respectively; rS1 and rS2 are the radial location of the Sections 1 and 2, respectively.
The circulation of the line vortex can then be estimated by the following average:

γk =
1
2

(
→
v 1 ·

→

AD +
→
v 2 ·

→

BC
)

(16)

where
→

AD and
→

BC are the path vectors (
∣∣∣∣∣ →AD

∣∣∣∣∣ = AD,
∣∣∣∣∣ →BC

∣∣∣∣∣ = BC, the vector directions are consistent with

the clockwise direction in Figure 6).
At point P(x,y,z) in the flow domain, the velocity induced by the kth line vortex can then be

determined by the Biot–Savart law,

→
v
′

k =
γk

4π

→
r 1 ×

→
r 2∣∣∣∣→r 1 ×
→
r 2

∣∣∣∣2

→
r 1 ·

→
r 12∣∣∣∣→r 1

∣∣∣∣ −

→
r 2 ·

→
r 12∣∣∣∣→r 2

∣∣∣∣
 (17)

in which
→
r 1 = (x− x1)

→

i + (y− y1)
→

j + (z− z1)
→

k

→
r 2 = (x− x2)

→

i + (y− y2)
→

j + (z− z2)
→

k

→
r 12 = (x2 − x1)

→

i + (y2 − y1)
→

j + (z2 − z1)
→

k

and
→

i ,
→

j ,
→

k are unit vectors in the x, y, z directions.
The velocity induced by all the distributed vortices can be computed by a summation,

→
ν
′

vortices(x, y, z) =
B∑

i=1

n∑
k=1

→
v
′

k (18)

where B is the number of rotor blades, and n is the number of small faces on each blade.
→
ν
′

vortices(x, y, z)
is exactly the blade self-induction. It is clear that the result will be more accurate if the faces are smaller.

4. Subtraction of Blade Self-Induction

One basic assumption of BEM theory is that the flow remains uniform in the azimuthal direction.
However, this assumption cannot be directly validated by the velocity field simulated by CFD, because
of the existence of the blade self-induction. Taking a mid-board section of r/R = 47% as an example,
Figure 7 shows the contours of axial interference factor defined by using a CFD velocity field before the
self-induction is subtracted. It is clearly shown that a strong variation exists around the blade, which is
obviously far from the azimuthally uniform assumption of BEM theory and can only be caused by the
blade self-induction. In order to make the CFD and BEM results comparable, the blade self-induction
must be subtracted.
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Figure 7. Contours of axial interference factor before self-induction subtraction in the flattened section
of r/R = 47%, where ψ denotes the azimuthal angle (V∞ = 7m/s, ω = 72rpm).

The method of representing the blade entity by distributed vortices provides a way for subtracting

the blade self-induction. The velocity after the subtraction, denoted by
→

ṽ , can be computed by:

→

ṽ (x, y, z) =
→
v (x, y, z) −

→
ν
′

vortices(x, y, z) (19)

The axial interference factor defined by the velocity
→

ṽ is shown in Figure 8. The thick dashed
line represents the rotor plane with many fewer contours than that in Figure 7, implying much less
variation in the azimuthal direction.
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Figure 8. Contours of axial interference factor after self-induction subtraction in the flattened section of
r/R = 47% (V∞ = 7m/s, ω = 72rpm).

The azimuthal (ψ) variation of axial interference factor in the rotor plane is plotted in Figure 9,
with the results before and after the self-induction subtraction. In front of the blade (left of the blade
axis), the curve of “After subtraction” is approximately horizontal in a wide range of azimuthal angle,
while the curve of “Before subtraction” presents a significant decline. Obviously, the result of “After
subtraction,” rather than that of “Before subtraction,” is comparable with the BEM theory. As for
the sharp fluctuation behind the blade (right of the blade axis), it is a result of the viscous effect of
trailing wake.
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Figure 9. Variation of axial interference factor with azimuthal angle in the rotor plane at r/R = 47%
(V∞ = 7m/s, ω = 72rpm).

5. Determination of Effective AoA

Figure 10 shows the contours of axial interference factor in the flattened section of r/R = 95%,
defined by the velocity after the self-induction subtraction. The 3D-induction dominates the flow field
of this tip section, which is very different from the result of r/R = 47% (Figure 8). Figure 11 shows the
local perspectives of the two sections. In the r/R = 47% section, the influence of viscous trailing wake is
limited to an area after the trailing edge. In the r/R = 95% section, the 3D-induction covers the whole
blade section including the aerodynamic center, implying a significant influence of the effective AoA.
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where av  and tv  are the axial and tangential velocity after the self-induction subtraction. 
To summarize, the new method of determination of AOA has five steps: (1) Find the 

distributed vortices on the blade surface (Section 3); (2) select two monitoring points per 
cross-section close to the aerodynamic center on both pressure and suction sides with an equal 
distance from the rotor plane; (3) subtract the blade induction from the velocity at each monitoring 
point (Section 4); (4) average the velocity of the two monitoring points obtained in Step 3; (5) 
determine the AoA using the velocity obtained in Step 4 (Equation (20)). 

 
Figure 10. Contours of axial interference factor after the self-induction subtraction in the flatten section
of r/R = 95% (V∞ = 7m/s, ω = 72rpm).
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Figure 11. Contours of axial interference factor after the self-induction subtraction around the blade
the dashed black line is a typical contour line (V∞ = 7m/s, ω = 72rpm).

The 3D-induction causes an azimuthally non-uniform flow in the rotor plane, leading to a
dependence of the determined AoA on the locations of monitoring points. Figure 12 illustrates the
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definition of nominal AoA and effective AoA. If the AoA is determined at a monitoring point that is a
certain distance in front of the blade, it should be regarded as nominal AoA. The closer the monitoring
point is to the aerodynamic center the closer the determined AoA is to the effective AoA. However, it is
never possible to get an exact effective AoA since no velocity can be detected if the monitoring point is
placed inside the blade.
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Figure 12. Values of AoA determined by the local velocity after the self-induction subtraction at various
azimuthal locations on the r/R = 95% ring in the rotor plane; the dashed black curves near the blade
axis as well as the effective AoA are estimated (V∞ = 7m/s, ω = 72rpm).

A technique has to be introduced to estimate the virtual velocity at the aerodynamic center, if the
effective AoA needs to be determined. The contours of AoA determined by the local velocity (after the
self-induction subtraction) are shown in Figure 13. The monitoring points of the 3-point AT and the
monitoring circle of the Line AT are also illustrated. It is clear that the determination would be more
accurate if the monitoring points (circle) were closer to the airfoil. However, the two techniques have
to be set at a certain distance between the monitoring points (circle) and the blade in order to avoid the
error introduced by the blade self-induction, because no self-induction subtraction was performed.
Once the blade self-induction is subtracted, much closer monitoring points can be set.
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Figure 13. Contours of AoA determined by the local velocity after the self-induction subtraction in the
flattened section of r/R = 95%; the solid points P1, P2, P3, P1’, P2’, P3’ are the monitoring points of
3-point AT; the dashed circle are used for Line AT; the star points A and A’ are the monitoring points of
the present determination (V∞ = 7m/s, ω = 72rpm).

In the present determination, two monitoring points (A and A’ in Figure 13) are set adjacent to
the airfoil surface, being above and below the aerodynamic center and with a same distance to the
rotor plane, respectively. In the present study, the aerodynamic center is assumed to be at the 25%
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chord and the specific locations of the points A and A’ are defined as: their azimuthal coordinates are
identical and are equal to that of the 25% chord, and their axial distances from the rotor plane are also
identical and are determined by a minimum range covering the inside area and the boundary-layer
(which can be easily identified by the velocity contours) of the blade. The two locations are very close
to the aerodynamic center and thus can be expected as the best choice for determining the effective
AoA. The final determined effective AoA is

αe = arctan
(

ṽa(A) + ṽa(A′)
ṽt(A) + ṽt(A′)

)
− θ (20)

where ṽa and ṽt are the axial and tangential velocity after the self-induction subtraction.
To summarize, the new method of determination of AOA has five steps: (1) Find the distributed

vortices on the blade surface (Section 3); (2) select two monitoring points per cross-section close to the
aerodynamic center on both pressure and suction sides with an equal distance from the rotor plane; (3)
subtract the blade induction from the velocity at each monitoring point (Section 4); (4) average the
velocity of the two monitoring points obtained in Step 3; (5) determine the AoA using the velocity
obtained in Step 4 (Equation (20)).

6. Comparison and Validation

6.1. Comparison Between Nominal AoA and Effective AoA

A comparison between the nominal AoA (αn) and the effective AoA (αe) is shown in Figure 14.
The nominal AoA is determined by setting a monitoring point in the 0.5c front of the blade in the
velocity field after the self-induction subtraction. From the mid-board to the tip, the nominal AoA goes
down first and then goes up, while the effective AoA presents a downward trend and drops faster
in the tip region. This result answers the question raised from the existing evaluations [43,44]; why
different AoA determination methods lead to different trends in the tip region. The reason is that
different determinations may lead to different definitions of AoA (nominal, effective, or blended).
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Figure 14. Variation of AoA along the blade span: (a) nominal AoA; (b) effective AoA.

The difference between the nominal AoA and the effective AoA is the induced angle because of
downwash which is called downwash angle in the present paper,

αi = αn − αe (21)

The trend of αi along r/R is shown in Figure 15a. The curves rise faster as r/R approaches the tip.
In addition, a higher wind speed leads to a larger value of αi at a certain location of r/R. The ratio of αi
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to αn, which is shown in Figure 15b, looks interesting: all the curves generally coincide with each other.
That implies a rule exists in the relationship between αi and αn. The value of αi might be estimated
from αn that can be more easily determined, if a model of their relationship could be established in the
future work.
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Figure 15. Variation of the downwash angle along the blade span: (a) downwash angle; (b) the ratio of
downwash angle to nominal AoA.

6.2. Validation of Extracted Lift and Drag Coefficients

As AoA is determined, the lift and drag coefficients of blade elements can be extracted through
the following relation,

Cl = Cn cosφ−Ct sinφ (22)

Cd = Cn sinφ−Ct cosφ (23)

in which φ = α+ θ is the flow angle, Cn and Ct are the normal and tangential force coefficients
determined by

Cn =
Fn

1
2ρV2

relc
(24)

Ct =
Ft

1
2ρV2

relc
(25)

where Fn and Ft are the normal and tangential forces of the blade section, and Vrel is the relative
velocity.

Figure 16a,b shows the lift coefficients extracted through αn and αe, respectively. The forces used
to determine the coefficients are obtained from pressure integration over the airfoil/blade sections.
The 2-D experimental data [47] and 2-D CFD data are for the airfoil S809 at Reynolds number of
1 × 106. Remarkable differences between Cl(αn) and Cl(αe) are seen. For the sections of r/R = 63%
and r/R = 85%, the curves of Cl(αn) is slightly lower than the 2-D experimental/CFD data, while the
curves of Cl(αe) are in good agreement with each other as well as the 2-D experimental/CFD data.
For the sections closer to the tip (r/R = 95% and r/R = 99%), the curves of Cl(αn) are observed to
decline significantly, being far away from the 2-D data. In contrast, the curves of Cl(αe) do not show a
sustained decline. The curves of r/R = 95% and r/R = 99% are consistent with each other. They are only
slightly lower than the 2-D curves, which could be caused by some phenomena, e.g., the de-cambering
effect [48], which are not taken into account in the present study.
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Figure 16. Lift coefficient extracted through: (a) nominal AoA; (b) effective AoA.

Figure 17a,b shows the drag coefficients corresponding to αn and αe, respectively. The curves
of Cd(αn) are observed much higher than the 2-D experimental/CFD data. In contrast, the curves of
Cd(αe) match much better with each other and the 2-D experimental/CFD data, except the curve of
r/R = 99%. The exception implies some physical difference in the mechanism of drag between the
section of extreme tip and the 2-D airfoil.Energies 2019, 12, x FOR PEER REVIEW 17 of 21 
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Figure 17. Drag coefficient extracted through: (a) nominal AoA; (b) effective AoA.

The above results have definitely shown that the lift and drag coefficients extracted through the
effective AoA are largely consistent with those of the 2-D airfoil for both the mid-board and tip sections.
This regularity of consistence has never been obtained by existing AT or SIS methods.

7. Conclusions

A new method has been developed and presented for determining the AoA of rotating wind
turbine blades. For AT methods, there must be a sufficient distance between the monitoring points
and the blade in order to avoid the errors caused by the blade self-induction. The present method
completely overcomes this shortcoming by representing the blade entity with distributed vortices and
subtracting their induction from the velocity at monitoring points. The monitoring points are for the
first time set very close to the aerodynamic center of the blade, leading to an excellent estimation of the
effective AoA. The success of this method is based on a combination of the advantages of the SIS2 and
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AT methods. The method may be regarded as an extension of the SIS2, and thus can be called SIS3.
The following conclusions are drawn from the present study:

• The determination of AoA depends on the consideration of different inductions (disc-induction,
blade self-induction, and 3D-induction) experienced by the rotor blade. The blade self-induction
should always be excluded, disc–induction leads to the nominal AoA, and the sum of disc-induction
and 3D-induction, i.e., the tip-root-induction, leads to the effective AoA. The discrepancies
between existing methods observed by other researchers are to some extent caused by the
unclassified comparisons.

• The effective AoA and the nominal AoA are close to each other at mid-board sections but have
different trends when approaching the tip. From the mid-board to the tip of the studied rotor,
nominal AoA decreases first and then increases, while the effective AoA presents a downward
trend and drops faster in the tip region.

• The difference between the nominal AoA and the effective AoA is the downwash angle. The ratio
of the downwash angle to the nominal AoA keeps an identical regularity along the blade for
different wind speeds, implying the feasibility to relate the effective AoA to the nominal AoA by
establishing an engineering model.

• The extracted aerodynamic polar of both the mid-board and tip sections are consistent with each
other as well as with the 2-D polar, which proves that the so-called 3-D polar is an appearance
rather than a substance and the fundamentally aerodynamic difference between a blade section
and its 2-D airfoil is caused by the variation of effective AoA. In fact, this conclusion is a basis
of the BEM, VWT, or AL/NS method that determines the section forces from the 2-D airfoil data
according to the effective AoA.

In addition, the present method provides a potential approach to use the full CFD simulation
with blade entities to validate the velocity at the blade axis in BEM, VWT, or AL/NS computations. The
present method could also be applicable to experimental results if the velocity of the monitoring points
and the pressure distribution of multiple sections are measured. Nevertheless, the method becomes
questionable when flow separation occurs, since the Kutta–Joukowski law no longer holds under this
situation. In the present study, the determination of AoA is not performed in conditions of high wind
speed (V∞ ≥ 10m/s) at which flow separation occurs on a large area of this stall-regulated rotor, which
is a limitation of the present method. Fortunately, for modern commercial wind turbines with pitch
control, flow separation rarely happens in the blade tip region where the effective AoA is of great
significance. In the future work, the present method can be applied to more wind turbines under axial
and yawed conditions for a more comprehensive evaluation.
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Nomenclature

a axial interference factor
B number of blades
c chord length
Cl, Cd lift and drag coefficients
Cn, Ct normal and tangential force coefficients
→
e an unit vector
→

i unit vector in the x direction
→

j unit vector in the y direction
→

k unit vector in the z direction

L lift
→

l k length of a segment

p pressure
pk pressure on the kth segment
p∞ pressure of the undisturbed wind
r radial location of a blade cross-section
R rotor radius
→
v local velocity
ṽa axial velocity after self-induction subtraction
ṽt tangential velocity after self-induction subtraction
→
v k local velocity on the kth segment
→
v
′

induced velocity
→
v
′

vortices induced velocity of distributed vortices
→
v
′

air f oil induced velocity of airfoil entity
V∞ wind speed
α angle of attack
αe effective angle of attack
αi downwash angle
αn nominal angle of attack
γk circulation of kth vortex
Γ circulation of concentrated vortex
δ relative error
θ local pitch angle
ρ air density
ψ azimuthal angle
ω rotational speed
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